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Several aspects of the crystal field problem of rare-earth ions
in ionic solids are discussed. In particular, three problems are
considered. (1) A calculation is performed to determine to what
extent the Ss'p' electrons shield the 4f electrons from the crystal
field. The shielding is small ((10%) and unimportant compared
to the many other uncertainties in crystal field calculations. The
calculation was carried out by considering the crystal field,
ZB„'"r",Y,„,as a perturbation on the5s2 and 5p6 state. The excited
state wave functions are calculated and the extra potential,
ZB„V„~F„(r), d. ue to the distorted charge distribution is
compared to crystal potential. (2) The reason as to why the rare-
earth ions electively see smaller crystal fields than the iron series
ions is considered by performing the lattice sums in several typical
lattices so that the B„coefIIicients could be compared. One ob-
serves that the crystal field to spin-orbit coupling ratio is con-

siderably larger in the iron series ions than for the rare-earth ions
for straightforward reasons (the ion series ions have B„=3to 10
times larger, (r„)= 2 times larger and spin-orbit coupling constants
=1/2 as large as the rare-earth ions). Thus, the difference in be-
havior between these two groups of ions comes about for straight-
forward reasons without resorting to shielcling. (3) The calculated
crystal field parameters, (r„)B„=V„~, for the rare-earth ions
are compared with those obtained by fitting optical levels. A
discussion of the problems involved in calculating the lattice sums
(8„) is given and one can see why detailed agreement is not
expected. The calculated V„' for n=4 and 6 are reasonable but
smaller than those obtained from the optical data. Little can be
said for the n= 2 terms because of the uncertainties involved in
the lattice sums.

INTRODUCTION

' T has been known for a long time that the electron
~ ~ paramagnetism of rare-earth ions in insulating crys-
tals is very different from that of the iron series ions.
The rare-earth ions essentially behave as though they
are in the gas phase. That is, the eGect of the crystal
field is small compared to spin-orbit interactions. Thus,
J is a good quantum number (J=L+S). On the other
hand, the iron series ions behave as though the orbital
angular momentum is zero. Treating the crystal field
as large compared to the spin-orbit interaction one can
obtain this quenching of orbital angular momentum.
The reason for this difference in behavior between the
rare-earth ions and iron series ions is often stated as
follows: "The 4f shell, which is responsible for para-
ma, gnetism in the rare earths, is shielded from the
crystal fields by the outer 5s'ps electrons while in the
iron series ions the 3d electrons are the outermost elec-
trons and are thus not shielded. and see the very strong
crystal fields. "

This statement is examined. A calcula, tion is made of
the magnitude of this shielding in rare-earth ions and.
it is found to be unimportant. Thus, the difference
between the rare-earth ion behavior and the iron
series ions is not due to the fact that the outer electron
shells shield the 4f electrons from the crystal fields.
Then a calculation of the crystal fields in several
host lattices that typically accept rare-earth ions and
several host lattices that accept iron series ions was
performed [i.e., the crystal field is written in the usual
form' U, „~=+B„r"Y„(0,&) and the B„'s, which
a,re lattice sums, are calculated]. In the iron series
lattices the crystal fields are as much as ten times

larger than the rare-earth type lattices. Also, the crystal
field splittings are determined by the product (r")B„
where (r") is the expectation value of r" over the 3d or
4f wave function, and (r") for the 3d iron series ions is
typically two times larger than for the 4f rare-earth
ions. Lastly, the spin-orbit coupling parameter for the
iron series ions is at least two times smaller than that
for the rare-earth ions. Thus, without resorting to
shielding, one observes that the difference in behavior
between the iron series and the rare-ea, rth ions comes
about in a, straightforward manner.

SHIELDING

In this section the shieMing calculation is discussed.
A simple perturbation calculation is performed in which
the crystal field, B„r"Y„(0,&), is 'the perturbing
Hamiltonian, Hi.

The ground state 5s or 5p wave function, lfs, has
matrix elements with only certain excited states for
certain terms in the crystal field. The symmetry of
these excited states is precisely the correct form so
that one can write an additional potentia, l energy for
electrons about the origin (the rare-earth ion) as
B„Y„(0,&)F„, (r). Then the 4f electrons on the rare-
earth ion see a potential energy B„Y„"'fir"+F„(r)j.
The relative magnitude and sign of the expectation
value of r" and' F(r) over the 4f wave function will
determine the magnitude of the shielding or antishield-
ing of the crystal field.

To be more specific consider, for example, the 84"r4F4"
term. This will connect the 5s ground-state wave func-
tion to excited-state wave functions that have g orbital
angular momentum (i.e., l=4). Thus, the wave func-

' For general references, see B. Bleaney and K. W. H. Stevens,
Repts. Progr. Phys. 16, 108 (1953); and W. Low, in Solid State
Physi'cs, edited by F. Seitz and D. Turnbull (Academic Press Inc. ,
New York, 1960},Suppl. 2.

2 For the sake of brevity some of the 0, @, and subscripts
will be left out. Thus, F(r) =F, (r), 1 ~= V„~(e,p), an&i
P„=P„(cos8),etc.
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In a similar manner the 84" term will connect p sta. tes
to f and lz states (i.e. , p —+ f and p —& lz). Then one can
compute the electrosta, tic potential due to this new
wave function from'

to obtain

1 —(P l (l+1)
( Vp —E())=——— up'

uo' dr' r'

d'ni' ui'(r+6) 2n—i'(r)+ui'(r —())

dr~

l' (l'+ 1) l (1+—1)
u, '(r+8) = u, '(r)

)
2+m

r'-

solve Eq. (5) by using (l is the orbital angular momen-
tum of the ground state)

where

r, "p„,„(r,).dr, +r" dr;—, —(2-)
r .n+1

d'-'zzp'(r)/dr' Hi(r) up'(r)
-u, '(r-8). (8)

u()' (r) ni' (r)

p„(r),
= p(r0$)P„(cos0)e"" r' sin0d0d-(l), (3)

p(re) being the charge density )P*ll. Now, for t.he
example of s —+ g, the lowest order term contributing
to Eq. (2) is 2)Ps.)P).

However, Eq. (1) is really of little use for this type
of problem since one does not know the radial wave
functions of the g (excited) st.a.tes. The excited state
wave function, )P&, must be found by a different method.
The method used here is the same as has successfully
been employed by Sternheimer' in considering similar
types of problems. )Pi is obtained by solving the first
perturbed Schrodinger equation

(H() E()))P)= —(H—i—E)))Pp, (4)

where the symbols have their usual meaning. ' In a,

great many cases Ei ——0. Then the radial form of Eq. (4),
where 1.1' and uo' are r times the radial part of the re-
spective wave functions and l' is the orbital a,ngular
momentum of the excited state (0 for s state, 1 for p
sta. te, 4 for g state, etc.), is

This equa, tion is convenient for a computer (an IBM
7090 was used) and it is solved by sta.rting the solution
with zii'(r —(5) equal to zero at the origin and ui'(r) is
varied until u1' behaves properly at inanity. In practice,
solutions of (8) are used that diverge to + ~ or —~ but.
the difference between the solutions over the region of
interest could be made negligibly small. This method
of solution has been previously used and found to give
good results. '

The angular part of the excited-state wave function
must also be known so that Eq. (3) can be solved. This
type of determination has also been previously used4

and will simply be outlined here. One ca,n take for the
Ss the form

np =np'/U2,

ivhere up—=r)pp, i.e. , r times the total wave function
whele 2so is the radial part of no. Then the 84" type
perturbation is of the form P4'(cos0) so the right-hancl
s!de of Eq. (4) is of the form P4P(cos0)/&2. Thus, the
excited-sta, te, g, wave function can be taken to have
the form

zz) =P( (cos0)/v2

z(i'-—— (8w2) '(35 cos'0 —30 cos'0+3)ui',
d' l'(l'+1)——+ + (Vp —Ep) u, ' = II)zzp . (5)—

r
(10)

where zii' must be obtained from Eq. (8) (l'=4 and l=0
for this pa, rticular case). Thus, p.„„(r)in Eq. (3) can
readily be obtained, i.e.,

The hard part of the problem is thus reduced to solving
an ordinary differential, Eq. (5), for the radial part, of
the perturbed wave function. The unperturbed wave
functions that are used are those calculated by Ridley'
for»Pr+' (4f'Ss'p') and ppTm+' (4f"Ss'p') They are.
calculated without exchange terms and are listed in
the usual tabular form which gives No' values at fairly
uniform separations 8 in r. It is thus convenient to

The extra factor of 2 is due to the fact that there are
two s electrons. The calculation of the extra, potential
in Eq. (2) is reduced to a, single integral of up'z&)'.

The deta, ils for obtaining the angula, r form of the
excited state wave function and the values of p„(r)
a,re in the appendix. The results will be discussed here.

The values for F(r) integrated over the 4f wave

' See J.0.Hirschfelder, C. F. Curtiss, and R. B.Bird, Aloleczflar
Theory of Gases and Izqzszds {John Wiley R Sons, Inc. , Ne~v York,
1954), Chap. 12.

4 R. M, Sternheimer, Phys. Rev. 115, 1198 {1959) and the
references quoted there.

" See L. Schiff, Quantzws klechanzcs {McGraw-Hill Bool-
Company, Inc. , Nerv York, 1949), p. 150.' E. C. Ridley, Proc. Cambridge Phil. Snc, 56, 41 {1960). ' G. Burns, Phys. Rev. 115, 357 (1959).

P4 kg Np 4
p( p(r) =4 ———P,"r' sin0d0dp) =—np'z(, '. (11)-

W2 r &2r
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functions are listed in Table I. All the nonzero perturba-
tions are calculated for Pr+' for the 84', and 86" per-
turbation. As can be seen, the results compared to the
4f expectation values a.re small. Wave functions without:
exchange were used for the calculations since they are
the only complete set available. ' The inclusion of ex-

change tends to contract the outer regions of the ion,
Since the values of (F(r)) are negligible compared to
t.he (r") values a small amount of contraction should
not significantly alter the result. . Several values of F (r)
were calculated for Tm+' to see effect for a smaller ion.
The results can be seen in Table I. The F(r) values are
reduced in just about the same ratio as the (r") values
are reduced.

The calculation of the effect of the B~' perturbation
is more difficult for a technical reason. The excited state
wave functions that have nonzero matrix elements
with the 5s and Sp ground states will have nodes. This
makes it more difficult to solve Eq. (5), at: least by the
method used here. There is no reason to expect any-
thing very different to happen in the BP. Judd' has
calculated the shielding effect for the hydrogen atom
and has shown that the effect is basically the same for
m=2, 4 and 6 potentials. The only difference in the
hydrogen case is that the shielding is larger for smaller
n. However, there is a possibility for something un-

expected to happen due to the normalization of the
excited-state wave function to the ground state. For
example, the Bs term will connect 5p ~ f and 5p —+ p.
The p state from the latter perturbation must be made
orthogonal to the ground 5p state. It is this orthog-
onalized excited p state that gives a large contribution
to the antishielding factor' that. is of importance in
interpreting nuclear quadrupole resonance data, . On the
other hand, this special wave function has just its normal
importance in the calculation of the quadrupole polar-
izability of the electron shells. Thus, it, is of interest to
see if the orthogonalization produces any large effects.

To do this, and in light of the difFiculty experienced
in obtaining these if t s here it was decided to make use
of the extensive wave functions (orthogonalized when

required) that have been calcula, ted in connection with
antishielding and quadrupole polarizability calcula-
tions. " The perturbation for these problems is of the
same form as the 820 perturbation. Thus, if the proper
N~"s are known one need only do the radial integra-
tions in Eq. (2) to determine F& tt(r). The wave func-
tions used are these calculated by Sternheimer" for
K+'. they are calculated starting with ground-state
wave functions that were calculated with exchange.
Using these wave functions, Fs, tt(r) was calculated and
its expectation value is taken over a normalized nodeless

s B.R. Judd, Proc. Roy. Soc. (London) A251, 134 (1959).' H. M. Foley, R. M. Sternheimer and D. Tycko, Phys. Rev.
93, 734 (1954); R. M. Sternheimer and H. M. Foley, ibid. 102,
731 (1956); R. M. Sternheimer, ibid. 84, 244 (1951)."R. M. Sternheimer, Document No. 6044-ADI Auxiliary
Publications Project, Photoduplication Service, Library of
Congress, Washington 25, D. C.

TAnLE I.The expectation values of ft (r) over 4fwave functions
for the 84' and Bs' terms are given along with (r") of the 4f wave
functions (all in atomic units). The wave functions used are those
calculated by Ridley (see reference 6). I'or the 8„"perturbation
the wave functions for K+' are used as described in the text.
(The shielding for the 86' terms is smaller than the 86' term by
a fact.or of 3 for s ~ f and 84/52 for p ~ j.)

Type of
perturbation I' unct. lon —(F(r))

g 0

+40
g 0

+,0

g 0

(r4) =5.341

(r"') =39.58

Pr 5s~g
Pr Sp~ f
Pr Sp~li

Pl 5s~i
Pr Sp~h
Pr SP~ j

+0.09923
—0.01087
+0.16414

y =+0.2525

+0.1058
+0.4448
+0.1410

&=+0.6916

a,0 ((74) =1.570)
8,0 ((r6) = 7,301)

Tm Ss~ g
Tm5p+ j +0.03271

+0.02923

, 0

8.0
+20

(r') = 1.017

K3s~d
K3p~ pK3p~ f

+0.1218—0.1265
+0.1282

Q = +0.1235

funct;ion tha, t has about the same ra, tio of expectation
values to the 3p as the Pr+'4f to 5p so that; a, somewhat
reasonable comparison could be made between the
(F(r)) for n=2, 4, and 6. The results for ts=2 were
also integrated over several other similar functions
with little change in the results as given in Table I.

The expects, tion values of F(r) appear to increase a,s

e increases, but at a. slower rate than the increase of
(r"). Thus, the percentage effect is largest. for is=2 as
suggested from the hydrogen calculation. For 8&' the
effect of orthogonalization in the 3p ~ p is interesting
in that it is of opposite sign from the other contribu-
tions but here there is no large effect as there is in
calculating the antishielding factor, To see if the
opposite sign is usual for the orthogonalized excited
state wave function, the calculation of Fr„s(r) was also
performed for Cu+' considering all the 8&' type pertur-
bations from the ground 3d as well as 3s and 3p states.
Again the excited-state wave functions have been
calculated by Sternheimer' and the expectation value
of Fs, tt(r) was taken over the 3d ground-state wave
function ((r')=1.284 a.u. '). This is also of interest in
the prob&em of calculating the zero-field splitting, D,
in the spin-Hamiltonian. Again a cancellation is ob-
served. (The 3d ~ s, 3d ~ d, and 3d —+ g contributions
are, respectively, +0.05852, —0.1462, and +0.07933
for a total of —0.0083. The 3s —& d, 3p —+ p, and 3p —+ f
contributions are, respectively, +0.02711, —0.06297,
and +0.03212 for a total of —0.0037.)

Thus, because (F(r)) increases with ts at a slower
rate than the increase of (r") with n the shielding effect
is largest for v=2. However, the size of the shieMing
effects are small = 12%, 5%, and 2% for rt, = 2, 4, and 6,
and there are no large effects as experienced in the
fie/d-gradient antishielding factor. These effects are
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most probably a good deal smaller than the accuracy
of the (r") values considering that the effect of the
crystalline surrounds are not taken into account (see
Appendix II). Also one cannot calculate the I3,„
coeKcients accurately (see Sec. IV).

LATTICE SUM (8„"') CALCULATIONS

If the shielding effects are small one should be able to
calculate the B„coefficients by performing the proper
lattice sums for the various lattices. This is done for
several lattices that typically accept rare-earth ions
and several that typically accept tb e iron series ions.

The quantities calculated for the various lattices are

c'=2 j (3~ '—1)(t '
C4"=Q, j,(35',4 30iz,z+—3)/r;"',

(12)
C 0 P & (693@ 6 945' 4+315pP 15)yr

C6' ——P,j,(1—pP)' cos6y, /re,

where the sum is over all the i ions in the lattice each
with a charge, j;, at a distance r, from the origin and I;
is cosine of the angle between the symmetry axis and
r, (p;=cose;). The numerical factors that relate the
C,„'s to the 8„'s need not be discussed in this section
since they are the same for any ion, rare earth or iron
series.

The values calculated for these fairly typical and
often used lattices are in Table II. For the purposes of
this section, it is only necessary to look at 1(a)—5(a);
the (b) (c), and (d) will be discussed in the next section.
The crystal field parameters (~ (r")C„) for a number
of rare-earth ions in the first two lattices [1(a)—LaCl&
and 2(a)—ethylsulfate] have been measured and x-ray
data exist"" so that the lattice sums, C„,were calcu-
la, t.ed. The last three la, ttices (3—5), or very similar
ones, have been used as hosts to measure a number of
iron series ions. The rare earth in the I.aCl~ and ethyl-
sulfate has nine nearest, neighbors (9 Cl or 9 HzO's)
while the iron series ions have six. One must consider
several important details to actually do the lattices
sums, such as how to distribute the charge over the
H&O's, etc. , the positions of the hydrogens, and the
sensitivity of the sums to the x ray and charge distribu-
tion parameters. These details will be discussed more
fully in the next section where a detailed numerical
comparison with experimental rare-earth crystal field
parameters will be made. In this section principally the
differences between the rare-earth lattices and the iron
series lattice is of interest. .

One of the first things to notice in Table II is that
the iron series lattices (3a—5a) have crystal fields that
are larger than those in the rare earth lattices (for-
getting about Cze for the moment). This comes about
for several reasons, but whatever the reasons, the rare

"D.R. Fitzwater and R. E. Rundle, Z. Krist. 112, 362 (1959).
K. H. Zachariasen, J. Chem. Phys. 16, 254 (1948).

earths see smaller crystal fields than the iron series ions.
Also the crystal field splitting is determined by the
product (r")C„and the iron series ions have (r")'s=
two times larger than the corresponding rare-earth ions.
(For values of (r") for the iron series ions see the Appen-
dix and for the rare-earth ions see a paper by Freeman
and Watson". The values for (r4) for Ti+' to Cu+' are
7.1 to 1..6 and Ce+' to Er+' are 3.4 to 1.2.'4 For (r') they
are 43 to 5.5 and 21 to 4, respectively, all in atomic
units. ) Thus, the crystal field splittings of the 4f elec-
trons in the rare-earth ions are small because the crystal
fields are small. The values of the spin-orbit coupling
(s.o.) also favors the importance of the crystal field
over s.o. in the iron series ions while the reverse is true
in the rare earths; the s.o. parameters, l, for Ti+' to
Cu+' are" 155 cm ' to 875 cm ' and for Ce+' to Yb+'
are" 640 cm ' to 2940 cm '

It should also be pointed out. that in the iron series
ions there is a strong tendency for the ions in the second
half of the group to be divalent. Thus, Co+', Xi+', and
Cu+' are the usual configurations rather than the +3
configuration. The +2 sta, te will further increa, se the
(r") values and decrease the s.o. para, meters for these
ions over those values listed above, again causing the
crystal fields to be still more important in the iron series
ions than the spin-orbit coupling.

Before the next section, in which numerical com-
parisons are made betv een the crystal 6eM parameters
calculated above for the rare earths and those obtaIned
by fitting energy levels, it is appropriate to make
several comments. In the iron series ions the large
important crystal field parameter is the cubic crystal
field parameter (approximately proportional to (r4)C4').
It has been the subject of a considerable amount of
theoretical and experimental work. One of the findings
is that the point charge lattice sum does not give good
agreement v ith the experimental 10DII values. Various
calculations have been performed to 6nd out why. "
It appears that important contributions to 10Dq arise
from covalent bonding of the magnetic 3d electrons.
This is possible because the 3d electrons in the iron
series ions are the outer electrons and they can inti-
mately mix with the neighboring ions. One finds that
the covalent effects are bigger than the point charge
effects in the iron series ions. Thus, the cubic crystal
field in the iron series ions is actually large; than one
would calculate from C4' as listed in the table. This type

"A.J.Freeman and R. E.Watson, Phys. I&ev. 127, 2058 (1962).
l am indebted to these authors for sending me their manuscript
prior to publication,' Values of (r") for the 4f wave functions are those from
reference 13 since the wave functions were calculated with ex-
change. These values will be used whenever possible. However,
since the only complete set of wave functions 5s2p, etc. , for a
single rare earth are those in reference 6, (P(r)) is compared to
(r") of the 4 f wave functions computed there."See T. M. Dunn, Trans. Faraday Soc. 57, 1441 (1961).

'6 See B. Bleaney, Proc. Phys. Soc. (London) A68, 937 (1955).
7 For a short review and references to the original work, see

S. Sugano, J. Appl. Phys. 33, 303 (1962).
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TAnLz II. Values for the lattice sums of Eq. (12) for several lattices.

1 (a)—LaC18' (c//a =0.58463)
1(b)—UC1, (c/a=0. 5805)
1(c)—Gdcl~ (c/u =0.55752)

1g) L Cl maximum
minimum

2(a) Kr ethylsulphate" (Er E,S.)
2(b)—~0Pr E.S. (nearest 0's only)
2(c)—68Er E.S. (nearest 0's only)
2(d)—Y E.S. (nearest 0's only)

3 (a)—Fe20s'

4(a)—MgAlr04~ (u= 0.387)

5(a)—K Cr alum (nearest H20's only)

C2'
(10+"esu/cm')

+0.2918
+0.3070
+0.4056
+0,6649
—0.06319

—0.2773
—0.3353
—0.3604
—0.3893

+0.3063

+0.1918

C4'
(10 30 e

su�/cm

~)

+0.2605
+0.2845
+0.4048
+0.3390
+0.1159

+0.4875
+0.4030
+0.4935
+0.5065

+4.130

+6.649

+1.608

C 0

(10+4' esu/cm')

+0.3250
+0.3390
+0.3667
+0.4213
+0.2623

+0.5093
+0.3477
+0.4902
+0.4663

—2.802

—3.674

—2.156

C 6

(10~ 4' esu//cm')

—9.721—10,18—11.43
—15.03
—6.890

—18.67—13.56—18.55—16.83

—208.5

—116.8

—49.41

' The atomic position coordinates for 7JC13 are used for all the lattices (see reference 12). The c and a values can be found in references 12 and 21. ln
1(d) the x' and y describing the coordinates of the Cl I were varied by &0.02 to obtain a maximum and minimum for the sums.

b The x-ray data of Fitzwater and Rundle are used (see reference 11).
e The x-ray data of D. E. Cox and G. Shirane (private communication) are used. (Fe parameter zz =0.355, 0 parameter x =0.552, cr =55' 17', and

c =5.424 A)."G. E. Bacon, Acta Cryst. 5, 684 (1952).
e G.E. Bacon and W. E. Gardner, Proc. Roy. Soc. (London) 246, 78 (1958), C&0 is not included since other ions will make important contributions to it.

o.f covalent bonding is expected to be vastly reduced for
4f electrons in rare earths since the 5s'Ps electrons are
now the outer ones. Thus, the C4 's for the rare earths
should be reasonable and the C4' type of crystal fields
are even larger for the iron series ions than calculated
as in Table II. Very probably the situa, tion would be
similar for the iron group C6 type of crystal fields.

COMPARISON WITH RARE-EARTH
CRYSTAL FIELDS

In this section a comparison is made between the
crystal field splitting parameters that are found for
rare-earth energy levels and those calculated from the
lattice sums. For convenience, the crystal field is taken
in the form as given by Elliott and Stevens. "
U=As+As (3s'—r')+A4 (35s4—30r s'+3r )

+A ss (231s'—315r's'+ 105r's' —5r')
+A s'(x —15'."y'+15m'y4 —y ). (13)

Only these terms are needed for the LaC13 and ethyl-
sulfate crystals.

By considering optical or specific heat and resonance
data, they have been able to fit the energy levels with
the four crystal field parameters, i.e. , (r')As', (r')A, ',
(r')Ass, and (r')Ass. The relations between the lattice
sums calculated and )isted in Table II and the A „'sare

A ~' ———eCs'/4, A 4' ———eC4'/64,
(14)

A,'= —eCse/768, A, '= —231eCss/512.

~here e=4.8029X10 " esu. The minus sign arises
because it is an electron in the potential of the lattice.

' R, I.Elliott and K. W. H. Stevens, Proc. Roy. Soc. (Lonclon)
A219, 387 (1953). Also references to the earlier papers in this
series are given there.

The values of (r") of the 4f electrons are obtained from
the recently calculated wave function for rare-earth
ions. ' "The 4f wave functions calculated by Freeman
and Watson with exchange are used here. "

Before discussing the computed numerical values for
the crystal field parameters a number of problems that
arise when the lattice sums are calculated are discussed.
This bears on the sort of agreement one should expect.

A. Lattice Sum Problems

In order to ca.lculate lattice sums as listed in Table II
a, number of problems arise. Some of these problems are
extrinsic in the sense that better x-ray or thermal
expansion data, for example, would solve them, but
some of the problems are of a more intrinsic nature.

One is faced with the extrinsic problem of obtaining
good x-ray data for the crystal. Then, especially in the
case of the ethylsulfates (E.S.), one must divide up the
charge, i.e. , exactly where is the charge on the SO4 ' ion
or the H~O molecule? The lattice sums are point charge
sums so one must pick out a point at which to place the
charge. Dipole, etc. , moments can be taken care of by
a charge-distance arrangement approximating the mo-
ment. For example, there are nine H~O molecules im-
mediately surrounding the rare-ea, rth ions in E.S. They
have no charge but they do have large dipole moments.
ln order to do the lattice sums the dipole moment is
approximated by a charge of —g on the oxygen atoms
and +if/2 on each of the hydrogen atoms with &=0.6
so that the value of the dipole moment in gaseous H20
a,pproximately is reproduced. " Also, the positions of
the hydrogen atoms must be guessed at since x-ray
work will not give their positions. " This is done by

"See Chap. 13 in reference 3.
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locating them 1.02 A along the most probably hydrogen
bond direction. Both this hydrogen location scheme and
the p value had been previously used with some success. "
For the E.S. lattice, one must also distribute the charge
for the ethylsulfate ion, (C&HsSO4) '. This is done by
assigning a charge of —2 to the S position in the SO4
group and a charge of +1/2 to ea, ch of the C atoms.
As will be seen, the effect on the A4' and Ao' ' sums is
not important.

Fortunately, Fitzwater and Rundle" have published
detailed x-ray results on the crystal structure of Er, Y,
and Pr ethylsulfates and their structure parameters
are used. The situation is not as simple for the LaCld
structure. The values of the c and a dimensions in this
hexagonal cell have been given for LaC13 and many of its
isomorphous compounds. ""However, the atomic posi-
tion parameters, which describe the position of the ions
in the cell, have only been given for UCl&."To do the
calculations, the UCl ~ parameters were used with
values of c and a appropriate to La, U, and Gd tri-
chloride. The results for C„appear in Table II as
1(a)—1(c), respectively. Finally, the x-ray position pa-
rameter of the Cl ' ions (the error in this case is large)
is varied v ithin approximately the given experimental
(s:, y = +0.02) error to see the effects on the C„~results.
The results are given in 1(d) of Table II for c and a
corresponding to LaC13 and as can be seen the C„'s
vary considerably, in fact C2' cha, nges sign. Accurate
x-ray data for the trichlorides would be very helpful.

Thermal expansion and the change of the x-ray
position parameters with temperature are also im-

portant to bear in mind. Many of the optical, etc. ,
data. that go into determining the crystal field splitting
parameters have been measured at low temperatures.
The x-ray da.ta are room-temperature data. Tempera-
ture changes in the position parameters, judging from

1(d), can have some noticeable effects. The thermal
contraction of the crystal will also effect the C 's

since the internuclear distances will be smaller but
more important, the shape (c/u) of the unit cell will

change. Again, x-ray data could elucidate these points.
The sensitivity of the C2"'s to the x-ray coordinates

is an old problem since C~' is just the field gradient q
that one is concerned with in nuclear quadrupole
coupling measurements. The sensitivity of q to x-ray
coordinates and convergence of the lattice sum has
been discussed previously. "As can be seen in 1(a)—1(d)
of Table II, C.o varies considerably v;ith changes in the
shape of the unit cell and with changes in the atomic
position coordinates.

As mentioned in the previous paragraph, the con-
vergence of the C~' lattice sum is not rapid and care
must be taken in evaluating the sum. The convergence
for the other sums is rapid. However, more than just

~' G. Burns, Phys. Rev. I2B, 1634 (1961)."D.H. Templeton and C. H. Dauben, J. Am. Chem. Soc. 76,
5237 (ie54)."R.13ersohn, J. Chem. Phys. 29, 326 (1958).

nearest. neighbors are required to give reasonably ac-
curate values. Table III is a breakdown of the contribu-
tions to the C„'"'s from the various ions or groups.
Each contribution for each ion is actually the sum out
to several lattice constants but, especially for sr~4,
only the contribution with the smallest r, is import, a.nt. .
As can be seen all the ions can give important, contribu-
tions to C2 . However, the other C„'s are sti11 inftuenced
by the next neighbor ions. For example, the contribu-
tion from La+' to the C4' is about as big as the re-
sultant. Cl ' contribution. The contributions from the
iron series ions are more evenly spread among all. the
ions. Only the nearest-neighbor oxygen atoms of the
H~O molecules make substantial contributions to C4"

and C6' ' in the ethylsulphates. Thus, only these oxygen
contributions were calculated for V E.S. and Pr E.S.
and they appear a,s 2(d) and 2(b) in Table II.

Another problem in comparing the calcula, ted crystal, l

field splittings with those obtained by fitting optical,
etc. , levels is that some of the spectroscopy is done
on the rare earth diluted by the appropriate salt, i.e. ,
approximately 1%%uz Gd in LaCls. Thus, the problem
arises: Does the Gd+' see the crystal 6elds it wouM in
GdCl~, or the fields appropriate to LaCl~, or some
average? If the calculations, as made in Table II, are
appropriate (which is open to question until the x-ray
work is done), the various fields are somewhat different
even for these isomorphous compounds. Care must be
taken if one obtains a set of crystal field splitting param-
eters from dilute and nondilute crystals. However, the
problem of which 6eld the ions wouM see shouM be
easy to find out experimentally. Some work has been
done along these lines for the iron series ions."

The last problem discussed in this section is very
important and yet probably not tractable. The C6
la, ttice sums a,re =1/R', where R is the internuclear
distance between the rare-earth ion and the nearest-
neighbor ion (Cl ' for LaCl, or 0 for the E.S.). Now
the lattice sums are computed for point. charges. Thus, it
is assumed that the Cl ' ion is spherical and can be re-
placed by a charge at its center. One could go further
and calculate the electric held at the Cl ' site and then
the induced dipole moment, etc. This induced dipole
moment would also contribute to C6, etc. However,
this is really not enough since the Cl ' ion can not be
spherical. It overlaps the La+' and other Cl ' ions.
These effects might be able to be taken care of in a
simple electrostatic manner by considering various mo-
ments, However, the point. of observation of the fields
is not large compared to the radii of the ions. Thus, the
use of higher moments local. ized at the nucleus of the
Cl ion becomes limited. Consider some sort of dis-
tortion in the C1 ' ion out near its ionic radius along
the internuclear line joining the Cl and rare-earth ions.
If this distortion can be taken care of electrostatically,

"6. Burns and %. J, Nicholson, "International Conference on
Magnetic and Electric Resonance and Relaxation, " Eindhoverl,
1962 (to be pub1ished).
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TABLE III. The contributions to C„are listed from the various types of ions in the lattice. To actually obtain the C 's one must
multiply the numbers by the charge of the ion and the number of equivalent ions (both numbers are in parenthesis in the left-hand
column) and divide by o"+~ (a is the unit cell dimension). LThe origin is at La ($, r, t4, ) and Fe(u, m, e).7

I attice

LaC13

Cl (x,y, —', )
Cl (*',y,"-,)

(x=0.375, y=0.292)

Er ethylsulfate
06
Oy

(q =0.6e)

I'"e2Og

Fe (u,u,e)
Fe (u,u,u)
Fe (-2+m, —,'+I, -', +u)

o (x, s+x, —:)

(m =0.355, x=0.552, n =55' 17')

(+3e) (1)
(+3e) (1)
(—ie) (3)
(—1~) (3)

(-n) (3)
(—n) (6)

(+3e) (1)
(+3e) (1)
(+3e) (1)
(y3e) (1)
(—2e) (3}
(—2e) (3)

C20

15.36—5.729—15.51
+17.13

—150.3
131.6

—0.7005
9.718
2.509—10.35
9.204

10.31

C 0

244.4—89.20
317.2—581.9

15445—22613

19.28
105.5—133.4
149.7—398.8—203.5

C60

4112
1916—10581—12614

—2.316X10'
—1.705X 10'

—263.9
5347
558.4—404.8—3372

19420

C 6

8.264
—66.11
679.1.

137.0

1,545 X10"
0.3112X10

—10.97—38.72—22.75—184.4
128.1
709.3

it would be an effect = (2.8/1.0)' times as large as a
similar e8ect occurring at the center of the Cl ' ion
(i.e., taking the ionic radii of Cl on the rare earth to
be 1.8 A and 1 A, respectively). This is a large number
and very small effects can thus be important. These
distortions, etc., e8ects probably occur readily in the
Cl ' and 0 atom in the H~O molecule since the molecule
is easily polarizable. Another similar and important
consideration for the H20, molecule is the representation
of it by a charge of —rf on the 0 and +r)/2 on each of
the hydrogens. This seems reasonable if the sum con-
verges slowly enough so that every time an —g charge
gives a contribution, the two +t)/2 charges also are
important so that the idea of the dipole is meaningful.
This occurs for the C20 sum but does not for the sums
for larger e where the nearest 0 is much more im-

portant than the nearest hydrogens. Thus, the explicit
C„result depends sensitively on the method of distri-
buting the charge on the H20 molecule.

The above considerations give some indication of the
problems involved in calculating the lattice sums.
Clearly very good agreement between the calculated
parameters, (r")C ~, and those obtained by fitting
various kinds of experimental data would not be
expected. However, the comparison will be made and
discussed in the next section. Still a comparison between
the C„'s calculated for the rare earth lattices and the
iron series lattice should be much more meaningful.
Many of the above diKculties will tend to cancel out
and the qualitative aspect of Table II, namely, that the
rare earths see smaller crystal fields than the iron series
ions, will remain.

B. (r") A„~ Values

To calculate the crystal fmld splitting parameters,
(r")A„, for the trichlorides and the E.S.'s the C„'s of

Table II are used. The relations between the C„'s and
the A„™sare in Eq. (14). The 4f(r") values used are
those calculated by Freeman and Watson for the rare
earth ions with exchange. " To simplify matters the
(r'), (r4), and (r') used are those for Ce+'. Their values
are" 1.200, 3.455, and 21.226, respectively (in atomic
units, 1 a.u. =0.52917 A). Values for the other rare
earths, i.e., those with higher Z, are smaller (lanthanum
contraction). The results for the calculated values of
(r")A „are listed in Table IV along with the calculated
ratio'4 A s'/A s'.

One would like to compare these calculated values to
those obtained by 6tting the optically observed energy
levels, etc. To do this, a certain amount of jud.gement
is required to pick good fits to the observed energy
levels, as some of the earlier fitting procedures gave
very inaccurate values. References to the original
papers of some of the more recent and undoubtedly
more accurate fits can be found in footnote. "In fitting
the energy levels only the product of (r") with A ~ is
involved ((r")A„"=V„) and not each separately. The
values of V„obtained do not vary greatly for the
various rare-earth ions in each of these two lattices.
Thus, typical values are listed so that a comparison can
be made with (r")A„~ in Table IV. The V„values are
in the usual cm ' units.

Yrichlorides
Ethylsulfates

V20 V40 V6' Vo' Ao'/A6'

+80 —35 —25 +260 —10.5
+120 —50 —30 +420 —14

In comparing these values with the calculated values
in Table IV one notices that the signs are in all cases in
agreement except for the LaC13 A~' value. This is not

~ Also see C. A. Hutchison and E. Wong, J. Chem. Phys. 29,
754 (1958}."See references to the original literature in footnote 13.
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TanLE IV. Values of (r")A ~ are given in cm '. The A ™sare de6ned in the usual way (see reference 18)
and the (r") values used are those of Freeman and Watson (see reference 13) for Ce+'.

LaC13 (c/u =0.58463)
UClg (c/a =0.5805)
GdCls (c/a=0. 55752)

L Cl maximum
minimum

Er ethylsulphate (Er K.S.)
;QPr K.S. (nearest 0's only)
6&Er E.S. (nearest 0's only)
Y K.S. (nearest 0's only)

(r')A so

(cm ')

—592.6—623.5—823.7—1348
+128.3

+563.2
+681.0
+732.0
+790.6

(r4)A4'
(cm ')

—26.66—29.12—41.44—34.7I—11.87

—49.93—41.25—50.52—51.85

(r')AP
(cm ')

—4.771—4.977—5.383—6.185
—3.864

—7.477—5.104—7.196—6.846

(r')A6'
(cm ')

+49.44
+51.79
+58.15
+76.44
+35.04

+94.95
+68.98
+94.34
+85.59

Ae'/Ae'

—10.3—10.4—10.8—12—9.1

—12.7—12.5—13—13

surprising since the A~' lattice sum is sensitive to the
atomic position parameters (see 1(d)] and these
parameters are only roughly given for UC13 and as-
sumed to approximately hoM. for LaC13. Also, the
magnitudes of the calculated values in Table IV are
smaller than the V„'s, especially for V6' '. It is again
dificult to say anything about the magnitude of (r')As'
for the trichlorides for the reasons mentioned above.
For v=4 and 6 only the nearest-neighbor oxygens con-
tribute significantly to A„ for the ethylsulfates. How-
ever, all the ions contribute to Ass (~ field gradient).
Its value is sensitive to the position of the hydrogen
atoms of the 820 molecules. Keeping the same g and
H —0 distance (1.02 4) one can move the hydrogens
about, particularjy the hydrogens associated with 07,
and reduce A~' to =0. Thus, again one cannot expect
good agreement between the parameters obtained from
optical data and the lattice sums for V2 . The calculated
ratios of As'/Ass are in fairly good agreement with
those obtained by fitting energy levels.

It should again be pointed out that the (r") values
used in Table IV are those for Ce+' which is the biggest
of the rare earths. For example, Freeman and Watson
find that (r') decreases by a factor of 2.5 in going from
ssPr+' to ssEr+s and (r') decreases by 3.9, while the lattice
sums C4 and C60 increase by a factor of 1.2 and 1.4 in
going from Pr to Er E.S. (see Table II). (Due to the
lack of x-ray data for the trichlorides one cannot say
in detail how the lattice sums will vary. ) The experi-
mental V„"'s (for v=4 and 6) tend to decrease slightly
mith increasing atomic number. Thus, the situation
appears to be: The calculated (r")A„(m=4 and 6)
tend to a smaller than the V„'s obtained by fitting
the optical data, and the discrepancy gets larger with
increasing atomic number due to the fact that the
(r") decrease at a much faster rate than the C„'s
increase. It should not be too surprising that there is a
lack of detailed numerical agreement in light of the
difhculties in calculating the C„'s discussed in the
previous section. Particularly important should be the
sects of nonsphericalness in the outer regions of the
polarizable negative ions or H~O groups. As discussed
in the last section, the 1/R"+' factor weights these

regions very heavily for m=4 and 6. It should also be
pointed out that one has the usual problems with the
expectation values of r". The 4f wave function is an
inner wave function but. it does have a long tail. Even
though essentially all of its charge density is at distances
smaller than the ionic radius of the ion, the small outer
portions of the charge contribute heavily to the higher
moments, for example, more than 50'Po of the contribu-
tion to (r') comes from regions outside the ionic radius.
This is not an unusual situation for ions in solids but
should be borne in mind. (See Appendix II.)

The C.' type of crystal field is not very important in
determining energy levels in either the rare earths or the
iron groups. However, C2', as defined here, is just the
lattice contribution to the field gradient, q, that is of
interest for interpreting nuclear quadrupole coupling
constants, eQq/h. It can be seen that the rare-earth
lattices have field gradients=iron series lattices, even
though one usually considers the latter as slightly dis-
torted from cubic symmetry while the rare-earth
lattices considered here bear little resemblance to cubic
symmetry. Still the various contributions from the
various ions in these rare-earth lattices tend to cancel,
as in the iron series lattices, with a resultant small
value for q. Since the antishielding factor associated
with the lattice contributions to q will be large for the
rare-earths ions, their effects will be noticed in inter-
preting eQq/h results. "

SUMMARY

(1) It is often said that in rare-earth ions the 4f
electrons are shieMed from the crystal field by the
outer Ss'p' electrons. Vsing the usual ionic, electrostatic
ideas a quantamechanical calculation of the shielding
is performed. It is shown that the shielding is unim-

portant.
(2) Then the crystal fields in several typical rare

earth and iron series lattices are calculated and com-
pared (i.e., the 8„ lattice sums in the crystal field,

g B„r"Y„~,are calculated). The crystal fields in the
rare-earth lattices are 3 to $0 times smaller than the

26 E. G. Wikner and G. Burns, Phys. Letters 2, 225 (1962}.



SHIELDING AND CRYSTAL FIELDS AT RARE —EARTH IONS 2129

iron series lattices mainly because the rare-earth
ions are physically larger than the iron series ions
(B„~~ 1/R"+'). Thus, the 5s'p' electrons cause the rare
earths to be large ions and they, in a sense, mechanically
shield the 4f electrons. Also, the crystal field splittings
are ~ (r")B„~and (r"), for positive N, for the 4f electrons
are approximately half as large as the corresponding
values for the 3d electrons. On the other hand, the spin
orbit coupling parameters for the rare earths are
approximately t~ice as large as those of the iron series
ions. Thus, the predominance of the spin orbit coupling
over the crystal field splitting in the rare-earth ions
comes about in a straightforward manner. (Vice versa
for the iron series ions. )

(3). The sensitivity of the B„ lattice sums to the
x-ray and charge-distribution parameters for the rare-
earth lattices is investigated. As expected the 82' is
sensitive to these parameters. Thus, one can say little
when comparing these calculated lattice sums to the
values obtained by fitting optical energy levels. The
~z=4 and 6 sums suffer much less from the sensitivity
but they could easily be effected by small charge dis-
tortions in the neighboring ions near the ionic radius
of the rare earth. These effects will be heavily weighted
since B„~1/R"+' and the convergence of these lattice
sums is too rapid to average out these effects.

(4). A comparison between the calculated (r")A„'s
((r") from Freeman and Watson" and A„, ~B„~,
calculated here) and those obtained by fitting the
optical absorption data is made. Little can be said for
m=2 for reasons mentioned above. For n=4 and 6
the calculated values tend to be small, particularly for
r4=6 although the ratio of A4'/A4o is in good agreement
with the optical fitting. Also agreement as one goes
along the rare series, i.e., Ce to Yb, gets worse since the
parameters obtained from optical fitting tend to
decrease somewhat while the calculated A„'s increase
somewhat (lanthium contraction) but the (r")'s de-
crease at a much faster rate than the A„'s increase.

It is difficult to quantitatively tell how the A„'s
will be affected by charge distortions near the ionic
radius of the rare-earth ions as discussed above. How-
ever, one should also bear in mind, as discussed in the
Appendix, that a large fraction of the contribution to
(r'), etc. , comes from a very small fraction of the 4f
charge and could be easily altered in solids.
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APPENIHX I

In this Appendix the method of ending the perturbed
wave function and p„(r) is discussed.

The form of the crystal potential can be taken as

+ (ri —) m))!
Y(r&~)=Z Z p m. (+)—(r4+ (rN ))!

4m—4r 66$g jP+ ™
(, p )84.mpi/g .n+lj (A1)

(p= cos8 and j; is the charge on the ith ion). This is a
convenient form since one can then use the recursion
formulas for E'„which are a bit simpler than those for
Y„.Equation (A1) describes the potential in the space,
where the rare-earth ion site is, due to a distribution
of discrete charges around it. If the surrounding charge
distribution is continuous there is just a trivial change
in the square bracket in (Al).

If the potential in (A1) is used as a perturbation, one
can obtain a first-order perturbed wave function, fi,
so that the total wave function is /=$0+$4. Then the
charge density will essentially be fo2+2tfptji+fi2. In
calculating shielding, etc. , the Po part is of no interest
and the fi2 is second order in the perturbation so only
the 2fog, term is considered. This will contain the
numerical factors Lthe square bracket in Eq. (Al) 46: B„)
to the first power. The effect of the perturbation can
be found by computing the additional potential in the
space around the origin (rare-earth site) due to the
distorted charge density of the rare-earth ion. This is
given in Eq. (2), where p„, is defined in Eq. (3). Note
that p(r8&) contains the square bracket to the first
power so the extra potential can be written as
B„~Y„~F„,(r) if the initial perturbing potential were
taken as B Y„~r" F„, (r) i.s just the radial integral
in the square bracket in Eq. (2) containing none of the
numerical factors which are conveniently lumped
inB m.

An example will make this clearer. Consider the 84
term as a perturbation on the s-state wave function.
Then one can find the angular form of the excited-state
wave function in a manner pointed out by Sternheimer. 4

The normalized angular part of the s wave function is
1/(24r)'i' and the angular part of the perturbation is J'4'.

Thus, the angular part of the right-hand side of Eq. (4)
is E4'/(2~)'i' which is a g-type wave function. Then r
times the excited-state wave function is

(A2)

where N', , is the u&' that must be obtained by solving

Eq. (5). The p4, o of Eq. (3) is

e,' P4' 4
p4, 0= 4 — &4' N'6~6 =—(N6'N'6~4)-l (A3)

(24r)'i2 (24r)'" 9

where the extra factor of 2 is due to the fact that there
are two electrons in the s state and N,

' is r times the
radial part of the ground-state wave function.

In a similar manner, one can find p4, 0 for the ground-
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state p, wave functions:

VSf'4 5
p4, o—4 —coseu„'[P4

I
—

I
-Psu „„r+ psu „„~

2 9 9

TABLE V. Values of (r") are given for various iron series ions.
(Results are in atomic units, i.e., 1 a.u. =0.529177'.) The wave
functions, with exchange, calculated by Watson were used (see
reference 28).

= (64/189) (u„'u'~ g)+ (100/297) (u~'u'~ „). (A4)

For the four electrons in P, and P„states Pro&3(sin())u~'j,
one obtains

p4, o= (16/63) (up'u ~ y)+ (40/99) (u„'zz'„s). (A5)

For the Boo terms, adding up all the p, and p„and p„
contributions, one has

ps, o= (4/13) (u''u' '),
A6

ps, o= (792/1859) (u&'u'& a)+ (84/169) (u, 'u'„~;).

For the 86' terms one obtains

po, s= (4/39) (u, 'u', ;), po, s ——(4/13) (u 'u'„;). (A7)

The values of p2 p for the various excitations are
directly related to the angular integrals used
in calculating antishielding factors and quadrupole
polarizabilities. "

ps, o= (4/5) (u, 'u', g),
AS

ps, o
——(24/25) (up'u'„„)+ (36/25) (u~'u'~ r).

Ion (state)

Ti+6 (6D)

V+6 (6F)

Ti"' ('F)
V+6 (6F
Cr+' ('F)
Mn~ (4F)

Cr+' ('D)
Mn+' ('D)

Cr+1 (6S)
Mn~ ('S)
Fe+' ('S)
Co+6 (6S)

Fe+' ('D)
Co+' ('D)

Co+' (6F)
¹

6 (4F)

Co+' ('F)
Ni~ ('F)
Cu+' ('F)

Cu~ ('D)

2.552

3.217

1.706
2.748
3.959
5.361

3.451
4.790

2.968
4.250
5.724
7.421.

5.081
6.699

6.035
7,790

5.388
7.094
9.018

8.251

(r')

1.893

1.643

3.508
2.070
1.447
1.104

1.781
1.286

2.319
1.548
1.150
0.9080

1.393
1.049

1.251
0.9582

1.576
1.130
0.8763

1.028

(r')

7.071

5.447

31.62
9.605
4.297
2.389

7.211
3.446

14.14
5.513
2.789
1.659

4.496
2.342

3.655
1.971

6.637
3.003
1.662

2.498

(r')

43.16

30.00

544.5
79.54
21.49
8.473

52.90
15.73

172.1
36.03
11.66
5.065

26.71
9.055

19.75
7.058

55.86
14.83
5.525

11.32

In all the above cases ui' is obtained from Eq. (5) as
described in the text and

Pn, on

r;"p„, dr;+r" dr;. (A9)
~.n+1

Z0
l- 0.8
ta
X
x 0.60
O

m OA0
I-
O

iL G2

0
0 2

RADIAL DISTANCE (a.ul

Fin. 1. A plot of the fractional contribution to (r") for the 4f
wave function (see reference 13) of Gd+'. All of the (r") values are
normalized to unity.

'7 The angular integrals are just 1/2 those used in de6ning the
quadrupole polarizability. See Eq. (101) of R. M. Sternheimer,
Phys. Rev. 96, 951 (1954).

This F„, (r) can be directly compared to r" as in
Table I.

APPENDIX II

In this Appendix values of (r") for the 3d ious are
given and (r") values for the rare earths are discussed
briefly. Watson has calculated the wave functions for

several con6gurations of the iron series ions." To
compare (r") values between the rare earths and the
iron series ions, values of (r") of the latter were com-
puted and are listed in Table V. Also listed are values
of (r") for several ions that might be useful for resonance
purposes.

Figure 1 is a plot for the contribution to the various
(r")'s as a function of radial distance (i.e., Jp ip*r"/dr
as a function of R). All the (r")'s are normalized to 1.
The plot is for Gd+' using Freeman and Watson's wave
functions" with exchange. Results are similar for
the other wave functions. The arrow at 1.77 a.u.
(1 a.u.=0.52917 A) corresponds to the ionic radius of
Gd+'. As can be seen in the 6gure essentially all of the
4f charge ((r')) is confined to regions within the ionic
radius. On the other hand, a large percentage of the
contribution to (r') comes from regions outside the
ionic radius and from only a small fraction of the 4f
charge. Thus, it is possible that the (r') values are not.
as accurately predicted from the Hartree-Fock wave
functions as perhaps (r ') (90%%uq of the contribution
to (r

—') for Gd+' comes before 0.55 a.u.). This situation
is quite normal for the outer electron shells of ions in
ionic lattices. The point here is that even though the
4f electrons are not the outer electrons, still a good deal
of the contribution to (r ) etc. , comes from regions out-
side the ionic radius.

' R. E. Watson, Phys. Rev. 118, 1036 (1960); and TechIIica, l

Report No. 12, "Solid State and Molecular Theory Group, "
Massachusetts Institute of Technology, 1959 (unpublished).


