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Crystal Potential and Energy Bands of Semiconductors.
IV. Exchange and Correlation*
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The contribution of exchange and correlation to one-electron self-energies in a periodic potential is treated
using the generalized Koopmans' theorem. Numerical estimates are made for effects due to covalent bonds
in Si. In the random phase approximation, matrix elements of the valence exchange and correlation operators
are found to be weakly momentum dependent and spatially similar to the valence Coulomb potential.
Near the energy gap the combined exchange and correlation "potential" in Si is remarkably similar to the
Slater free-electron exchange potential.

1. INTRODUCTION

~ ~

E are concerned here with the contribution of
exchange and correlation to one-electron self-

energies in real crystals. A method for calculating these
contributions in the random-phase approximation has
been proposed. ' We apply the method to a covalently
bonded semiconductor Si.

Although the importance of exchange and correlation
is frequently emphasized, all rigorous calculations have
so far been confined to the free electron gas. Only in
this case does the exchange operator A, de6ned by

r12

reduce to a, scalar (momentum-dependent) potential
which can be evaluated analytically. ' Here N; is the
occupation number of the jth state. In general, (1.1) is
dificult to evaluate because of the sum over occupied
band states.

Slater has suggested' a generalization of the free-
electron exchange potential which can be used to treat
nonuniform charge densities, He has shown that the
eGect of exchange is to introduce a hole in the charge
density of (X—1) electrons exchanging with electron i,.
The total charge in this hole is just e. The interaction
of the hole with an electron at r gives the average, over
the occupied band, exchange energy. The size of the
hole, and hence the exchange energy, is determined by
the charge density p(r). In this way Slater proposes a
Thomas-Fermi approximation to the exchange operator
which replaces it by the local potential of a free-electron
gas with charge density p(r).

jeff (r) p Ir effefx. r (1 2)

the Fourier coeKcients pK in the valence charge density

p(r) po+Zxwo pKe (1.3)

There are several disquieting aspects to this approach.
The free-electron exchange potential is momentum-
dependent (nonlocal) and varies by a factor of 2 from
k= 0 to k J . We know that it is the long-range character
of the Coulomb interaction 1/rfs in (1.1) that produces
analytic singularities in the exchange potential at k =kI:.
These are eliminated by inclusion of correlation'
which makes the effective interaction short range. The
Thomas-Fermi-Slater exchange potential makes no
mention of correlation screening. It turns out that in the
limit that p(r) is slowly varying, when the Slater
approximation should be most accurate, correlation
effects due to plasma screening produce quite different
one-electron potentials.

In spite of these objections the Slater potential has
generally led to satisfactory results, even in semicon-
ductors where the covalent bonding produces a charge
density that is far from uniform. ' Semiconductors are
particularly interesting because we shouM expect the
exchange potential to be quite diferent for antibonding
(conduction band) states as compared to bonding
(valence band) states.

Consider, then, the calculation of the self-consistent
exchange potential (1.1). The calculation of the
valence Coulomb potential must also be carried out by
summing over valence states. We have previously
shown' 7 that because the effective potential for valence
states can be represented almost entirely by the
coeSclents V111 in the Fourier expansion
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from orthogonalization to core states. ' Also, the contri-
butions to piii from different k's in the valence band
will be similar and will vary smoothly throughout the
band. Thus, to calculate the valence Coulomb potential
it is sufhcient to replace the sum over the entire band by
a sample of 32 points.

The calculation of each of the matrix elements of the
valence exchange operator proves to be similar to the
calculation of the valence Coulomb potential. It is dis-
cussed in Sec. 2. Numerical results for exchange and
correlation in Si are given in Sec. 3. In Sec. 4 we sum-
marize the results of the calculation and make simple
semiclassical comparisons with the Thomas-Fermi-
Slater model. A critical summary of numerical approxi-
mations is given in the Appendix.

&=4"—2- b"1"-, (2.1)

where the f„arecore functions, and b„ischosen so that
Q'pP„)=0. Here g~ is the "smooth" part of the wave
function, which we represent as a linear combination
of plane waves. Covalent bonding introduces construc-
tive interference'~ between the plane waves making up

The .valence Coulomb potential coefficients Uiii""'
in Si derived mainly from PztPz, with a small reduction
from core terms involving P„.Because it turns out that
"smooth" exchange and correlation terms are similar to
Coulomb terms, we assume the same holds true for the
small core terms and confine our attention to terms
involving only @'s. These terms are the ones associated
with covalent bonding.

In this manner evaluation of the exchange integral
(1.1) is reduced to summing terms of the form

(aP')ta, "/(k —k'~', (2.2)

where a," is the coeScient of e'" in the expansion of P;
in plane waves. This is similar to calculating an exchange
charge density and should be contrasted with the labor
required to calculate 2-, 3-, and 4-center exchange
integrals in an atomic orbital representation.

According to the discussion of (1.2) and (1.3), bond-
ing effects are described largely by p~~~. Valence-valence
exchange would be simplest if the exchange operator in
a plane wave representation could be separated into a
diagonal, momentum-dependent potential

A(k), (2 3)

and an exchange matrix whose o6-diagonal part was
approximately proportional to the oG-diagonal part of

'An approximate treatment of such terms, which can be
extended to give exchange terms, is given in reference 7.' V.- Heine, Proc. Roy. Soc. (London) A240, 340 (1957).

2. EXCHANGE AND CORRELATION MATRICES

%e are concerned here solely with valence-valence
exchange and correlation. Valence-core exchange has
been treated carefully by Heine for Al.9 The valence
wave functions are written as

transforms like o, . Thus, 3 has no off-diagonal matrix
elements between diferent irreducible representations.
For this reason it is convenient to calculate matrix
elements of 2 between symmetrized combinations of
plane waves belonging to irreducible representations o.

of the group of the wave vector. By adding the index
n to (2.3) wehave

A.(k), (2.5)

which enables us to distinguish between valence and
conduction band states. It turns out that xiii and 2 (k)
describe all the matrix elements that we have calculated
quite accurately.

According to the generalized Koopmans' theorem, '
we can now add correlation to oG-diagonal matrix ele-
ments by replacing j

k—k'~ ' in (2.2) by

1/. (f l —k'[)
/
I —k')2 (2.6)

Here, e(q) is the static, wave-number dependent dielec-
tric function. Strictly speaking, the screening factor c
in (2.6) should be evaluated at the exchange frequency
su= (E,, L'",)/A. We have —found that this changes our
results by about 5%, so we have approximated the
screening factor by its static value. A calculation of
e(q) for a model semiconductor approximating Si has
been given by Penn. ' His results have been used to
evaluate correlation effects in Sec. 3.

3. EXCHANGE AND CORRELATION IN Si

In order to examine the validity of the simplified
picture of an exchange operator 2 described by A (k)
and A~~~ we have calculated 10 matrix elements of A.
These calculations have been carried out for the
representations F25 (top of valence band, p atomic
symmetry), I'» (conduction band, p symmetry), and
Xi (valence and conduction bands, mostly s symmetry).
Because of degeneracy we have basis functions con-
sisting of symmetrized combinations of plane waves.
The first two basis functions have ka/2m = (1,1,1) and
(2,0,0) for F", (1,1,1) and (2,2,0) for Fiq, and (1,0,0)
and (0,1,1) for Xi. With these basis functions we have
calculated A~", A~' and A~" for n=F2~, F~q, and X~.
AVe have also calculated A "for n= I'j, whose first basis
function had k =0. This basis function gives a good

"D.Penn, preceding paper /Phys. Rev. 128, 2093 (1962)g.

the Coulomb matrix resulting from V~~~""'. In that case
one could describe the off-diagonal parts of the exchange
matrix as resulting from the potential A ~~~' '".

Although A(k) is the natural generalization of the
diagonal free-electron exchange potential, it is in-
adequate because of degeneracies. It is easy to show that
at a symmetry point in the Srillouin zone, where
irreducible representations are labeled by n,

g2

~4'.= ——Z &i 4~'(r2)~. -(r2)~"~A(rr) (2 4)
2 1 F12
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F alone:
I'I
31 2,, r

Total

r, X, and. L:
r,
322;
6X1
6X4
4L1
4L2
8L3

Total

—0.024—0.432
—0.456

—0.003—0.188—0.030
—0.031—0.006—0.018—0.075
—0.351

—0.017—0.165
—0.182

0.003—0.031—0.01j—0.016—0.003—0.011
—0.028
—0.109

approximation to @ at the bottom of the valence band.
The other matrix elements can be used to study A (k).
If our simple model is correct, A~~~ should describe all
the off-diagonal matrix elements A ".

As an example, consider A "for n= I'2q . The matrix
element II " is responsible for the large drop in F25,
which makes Si a semiconductor (see Fig. 3 in reference
6). The energy gap is most sensitive to A ".The con-
tribution of sta, tes at I', X, and I. to the matrix element,
properly weighted according to degeneracy, is listed in
column one of Table I.

A typical entry in this table (such as the exchange
with X4) is proportional to

krks[(012) '+(112) '+(122) '+(103) '
+2(100) '+2(110) 'j (3.1)

where h~ and h2 are the coe%cients of the expansion of
X4 in SCPW (hs, k4, are negligible). Because of
interference between SCPW various terms appear in
(3.1): (012) ' is an abbreviation for k s, where
where k=2z.u '(0,1„2).

One point deserves special attention. In the exchange
of Pss with itself, a term proportional to (000) '
appears. Evidently for this singular term numerical
sampling breaks down. In this case we return to (1.1)
and replace the sum by an integral, so that the term is
proportional to

—d'k=
nb@one k

(3.2)

where k~z is the radius of a sphere having the same
volume as the Brillouin zone and nz is the number of
subzones (of equal volume) into which the Brillouin
zone has been divided by the sampling process.

TABLE I. The contribution of different subzones to the (12}
matrix element for I'25 in Ry for Hartree-Fock exchange (HF} and
Hartree-Fock-Hubbard screened exchange (HFH}. In the erst
approximation 1 alone is sampled and in the second I', X, and L
are sampled. In each case the product of the degeneracy and
weighting factors is listed with the term value, and the contribu-
tion listed is the product of this factor with the contribution of an
individual term.

It is interesting to note that no singular terms appear
for 0;= I'». It is easy to show tha, t this is so because F&~ is
orthogonal by symmetry to all valence band states.

We note from Table I that except for the singular
term the contributions to the oG-diagonal matrix
element from 1, X, and I.are roughly in the proportion
1, 3, 4, as would be expected if each valence state
contributed roughly the same amount. This means that
the sampling should be a good approximation. In
Table II we have listed in column one the values
for the IO exchange matrix elements that we have
calculated.

It is now easy to calculate the screened exchange
matrix 8: we need only replace k by e 'k in con-
tributions of the form (3.1). Again except for the
singular term variations in the contributions from one
part of the zone to another seem small, as can be seen
from column two of Table I. There is, however, a
dramatic reduction (by about a factor of 3) in the one-
electron matrix elements as a result of dielectric
screening.

It is evident that a, special discussion of the suitability
of the sampling method is required for the singular
terms. In eft'ect we assume in evaluating these terms that
for k' in the subzone of k, Nx =Nx. This approximation
causes little error in the nonsingular terms, but it can
lead to overestimates of the valence singular terms.
For example, for 1'&s (k =0) by k p perturbation theory
we know that the N~ contributing to the singular term
has for small k' the form

and, as we have remarked, u~ " does not contribute
singular terms in exchanging with I'~5. A detailed
graphical analysis based on (3.3) shows that Ns ——eq
overestimates the valence singular terms by about 20%.
From Table I it is seen that A~2 is overestimated by
about 0.04 Ry, and 8~2 by about 0.004 Ry. The former
error would be important if we were to make much use
of unscreened exchange (which we shall not), while the
latter error can be neglected: It is somewhat smaller
than the error inherent in the sampling of the rest of the
zone

I et us now examine these matrix elements and
compare the exchange terms in the presence of covalent
bonds with those of a free electron gas.

The diagonal matrix elements of A show the same
qualitative behavior, as one would expect. There is a,

sharp dependence of A (k) on k for k ks. (cf. Art vs
Ass for I'ss and I'rs. ) A feature not present in the free
electron gas is the difference between a conduction
band and a valence band matrix element for the same
value of k (A rr for Pss and I'rs). This feature is also not
present in the Thomas-I'ermi-Slater model. It alone
would increase the energy gap between valence and
conduction bands by about 0.3 Ry; it is the semicon-
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TABLE II.Matrix elements (in Ry) of various irreducible repre-
sentations using SCPW basis functions, for exchange (HF) and
screened exchange (HI"H).

Rep.

F25'
Fg5
FgjtI
I IS
F15
F15
X1

XI
FI

(s,i)
(11)
{12)
{22)
(11)
{12)
(22)
(11)
(12)
(22}
(11)

—0.67—0.35—0.38—0.35—0.07
—0.12—0.86
—0.34—0.39—1.10

HFH

—0.25—0.11
—0.19—0.21
—0.05—0.10—0.29—0.11—0.20
—0.35

ductor analog of the analytic singularity' in the free-
electron exchange potential for k= kp.

The off-diagonal elements are, of course, new. By
comparison the oG-diagonal matrix element of the
valence Coulomb potential V~2 "' for F25 is 0.21 Ry.
Because of spin, one expects exchange interactions to
be about half of Coulomb interactions, but 2~2= —0.35
Ry for F25. According to Table I most of this comes
from exchange with nearby states in k space (long-range
1/r interaction again). It turns out that such strong
covalent exchange would also increase the energy gap
by about 0.3 Ry. The combined diagonal and o6-
diagonal effects of unscreened exchange completely
destroy agreement' between theory and experiment for
the energy gap in Si.

The inclusion of correlation screening clears up all
the difficulties resulting from bare exchange. In the
diagonal matrix elements the average energy of I'ss (the
top of the valence band) is about 0.68rr+0.48ss
= —0.21 Ry. This is to be compared with the diagonal
energy for Xt (the bottom of the conduction band),
which is given accurately by 822= —0.20 Ry, so that
the energy gap is practically the same as one would
calculate from an ordinary potential.

1Vote added its proof. We notice that the dia, gonal
matrix elements of the screened exchange operator 8
are less negative than those of A. This is because we
have not included the lowering of energy due to sup-
pression of plasma oscillations. It was suggested' that
because the latter is practically constant if all electrons
have energy Ez(ko~, that it be added as a constant
Bp to all dlagollal clcmcnts with unperturbed cnclgy
below the plasma energy. The constant Bp cancels in
computing energy differences near the energy gap.

Numerical computation of Bp requires knowledge of
e(q, oo) for oo&oo~ and q&q„where q, is the Bohm-Pines
cutoff, which task is beyond the scope of this paper.
We may estimate 8p empirically as follows. The
average diagonal exchange potential for valence states
is from Table II of order —0.9 Ry. The average di-
agonal 8 for valence states is —0.3 Ry. Correlation
lowers the total energy of silicon by about 1 CV per
valence electron, or 0.15 Ry of potential. This gives
8() —0.75 Ry.

The situation is also satisfactory for the oG-diagonal
elements $~2, ~= I'25, I'&5, and X~. The Thomas-Fermi-
Slater value for these matrix elements is 0.11 Ry in all
cases. This is in surprisingly good agreement for I'2~

and Xt (see also the next section) and is a slight over-
estimate for F~s. Because the second basis function for
Frs has very high kinetic energy (about 30 eV) this
correction has little effect on the lowest I ~t; eigenvalue.

1 1
e'L q !'d3q

c (r)r (27r) ' e (q)q'
(4 1)

and uses (4.1) to compute e(r), it turns out that e(r,) 3.
The effect of screening is to replace the bare exchange
energy, of order

2x———(e'/r, )px,

by the screened interaction, of order

Bx= $ e'/e (r,)r, jpx. —

(4.2)

(4.3)

By contrast the Thomas-Fermi-Slater expression is

(r) = —(092/')e'(p )'",

where pg has the form

Pr=1+pxwo Pxe

(4 4)

(4.3)

If we, now, linearize (4.4) by expanding the cube root
we find

I'Trs"= —(e'/r. ) (px/3), (4.6)

where the factor of 3 comes from the cube root. Fortui-
tously, this factor is nearly equal to the mean screening
factor e(r,) given by Penn's wave-number-dependent
clielectric function e(q).

4. CONCLUSIONS

YVe have examined the physical content of the modern
theory of exchange and correlation, which has hitherto
been studied in detail only for the free-electron gas,
when it is applied to covalently bonded Si. We have
found that in many respects the true exchange operator
does resemble an exchange potential, but that because
of the long-range interaction bare exchange potentials
would destroy the agreement between theory and
experiment for semiconductor band structures.

Actual band calculations have used the Thomas-
Fermi-Slater approximation based on the picture of an
exchange hole. Because the interaction of an electron
with its exchange hole is a short-range one, this approxi-
mation inadvertently includes (in a qualitative way)
effects of correlation. Surprisingly enough, our values of
8y2 were in good quaetitutiM agreement wi th the
Thomas-Fermi-Slater values.

The reason for this agreement can be found by
examining Table II. The oG-diagonal exchange matrix
elements for F» and I& are reduced by a factor of 3 by
screening. If one de6nes
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This screening function is, of course, only approxi-
mate. In spite of the large number of approximations we
have ma. de (see the Appendix), we feel that the most
serious one is the use of an approximate e(q). Further
progress requires a more accurate evaluation of this
complicated function. On the other hand, the present
work resolves, at least partly, the objections to the
Thomas-Fermi-Slater approximation raised in the
introduction, and suggests that it is good to a few
hundredths of a Ry for calculating term differences in
real crystals.

Several self-consistent band calculations for Si and
Ge using the Slater exchange potential have been
reported. "We have demonstrated that near the energy
gap the momentum dependence of exchange and
correlation shifts term values by about 0,01 Ry. By
interpolating between F25 and I'~ we see that for states
deeper in the valence band (such as I.s or Xt) the shift
may be of order 0.03-0.05 Ry. It would be of consider-
able theoretical interest if such diGerences couM be
observed as discrepancies between the ultraviolet term
diGerences" and local potential band values.

Part of this work was done by one of us (J.C.P.)
during a visit to the Royal Society Mond Laboratory,
Cambridge. He is grateful to the staff, particularly
Professor A. B.Pippard, for stimulating discussions and
kind hospitality. We are also grateful to Professor M. H.
Cohen and Dr. V. Heine for several conversations.

emote added itt proof. After this paper was submitted,
a letter appeared discussing the application of the free
electron Slater exchange potential to the tight binding
method t J. E. Robinson, F. Bassani, R. S. Knox, and
J. R. Schrieffer, Phys. Rev. Letters 9, 215 (1962)j.
This Letter proposes to use a screened interaction similar
to (4.1), and states that the interaction will always be
closer to true exchange and correlation than the Slater
approximation. While it is not surprising that our con-
clusions, which have been obtained in a nearly free
electron representation, differ from theirs, it appears
desirable to clarify several points.

The principal difference of approach lies in the re-
placement by these authors of the total charge density
p& in (4.4) by a superposition of atomic charge densities

Pp;, and the subsequent replacement of p'" by Pp, it'.
The first of these approximations is a good one, the
second is not. All their criticism of the Slater approxirna-
tion is based on the deficiencies of this latter atomic
approximation, which runs directly counter to the
Thomas-Fermi-Slater method. The atomic approxima-
tion gives especially poor results for the average part
of the crystal screened exchange potential. As we em-

phasize, the average part must be calculated separately,

"F. Herman, ProceeChttgs of the Ittterttotiolot Conferettce ott
Semicoedlctor Physics, Prague, 1960 {Czechoslovakian Academy
of Sciences, Prague, t961); F. Quelle {private communication).' H. Khrenreich, H. R. Philipp, and J. C. Phillips. Phys. Rev.
Letters 8, 59 (1962),

and to it must be added Bo, which these authors neglect
entirely.

APPENDIX

We summarize here the various approximations that
were made in evaluating the matrix elements of the
exchange operator A and the screened exchange
operator B.

(1) The sum over occupied band states throughout
the Brillouin zone was replaced by a sample of the 32
states at I', X, and 1. (Th.e same sample was used to
evaluate the Coulomb potential in reference 7.) Except
for the singular terms coming from the self subzone this
sample should give results accurate to 10%. The
singular terms are estimated to be accurate to 20%. As
they constitute about half of the contribution to A,
the error from this source is estima, ted to be about 15%.

(2) Each wave function at the symmetry point P, X,
or I. was expanded only to the first two symmetrized
combinations of plane waves. The cross terms between
these SCPW had been found' to give the Coulomb V~~~

to within about 15%. Because of the great similarity
between the Coulomb and exchange potentials, we
believe this approximation causes an error of only 15%.

(3) The most serious approximation lies in replacing
the dielectric matrix e(tI/q+E) by its diagonal element

e(tI/II) =e(II), and then evaluating e(tt) by a,n isotropic
band model which contains only the average energy
gap. '0 The oG-diagonal matrix elements of c represent
(speaking semiclassically) the periodic variation of the
Debye screening length because of the variation in
charge density in the unit cell. This is quite large in a
diamond-type lattice (Fig. 3 of reference 5). We now
show that terms of this sort are not so large as they, at
first, appear.

It is well known that the Debye screening length X

is proportional to r, '~', that is, to p '~'. Inserting p~

from (4.6) and linearizing, we see that

and, with hp/p=1, hX/II. gives errors of order 20%
arising from the neglected off-diagonal elements.

The isotropic band model replaces the energy gap
throughout the zone (which varies" from about 3 to
6 eV in Si) by an average band gap (about 4.5 eV). This
may also lead to errors of order 20%.

We conclude that the approximations made to the
dielectric matrix are the most drastic, and they may
produce an error of order 30% in our final estimate of
the screened exchange matrix 8. On the other hand,
errors of this sort wouM probably change the magnitude
of the o6-diagonal elements 8~2 in the same way for
F~q, F~5, and Xq. Thus, they would remain approxi-
mately equal. Our chief conclusion, that the screened
exchange operator resembles a nonlocal potential for
states near the energy gap, would be unchanged.


