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nearly identical. We have noted that the barriers are
approximately 0.5 V different in height, which is
probably a large fraction of their total height. If the
barriers were the rate-limiting step in the tunneling
process, one would expect a very strong asymmetry in
the characteristic on this account. The symmetry of the
characteristic is strong evidence that the current is bulk
controlled rather than electrode controlled.

Another rather conclusive evidence for the bulk
process is in the voltage required for a given current in
the forward and reverse directions. Plotted in Fig. 11
are the forward and reverse voltages for a number of
units of diAerent thicknesses. The straight line with
unity slope and intercept at twice the difference in work
functions is to be expected from a bulk field ionization
process. The curve for electrode tunneling would be
steeper by the ratio of the barrier heights.

The value of V as calculated from Fig. 10 is about
twice that obtained from the temperature data in
Fig. 9 but detailed comparison is difficult due to the
uncertainties in m* and V, in Eq. (2).

CONCLUSIONS

This author can see no way in which the usual
electrode-controlled processes can be made to explain the
observed experimental characteristics. Although all of
the work reported here has been done with tantalum
oxide films, many other films exhibit very similar
characteristics and the above considerations un-
doubtedly apply in some cases. It should be emphasized
that with the experimental evidence at hand, it is
impossible to establish a complete model of the current
Row processes in these films. However, it is believed that
the mechanisms proposed are the rate-limiting processes
involved and should be carefully considered in the
construction of any complete analysis.
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Expressions for the wave-number-dependent dielectric function are derived for various models of a semi-
conductor. The calculation is carried out for the diagonal part of the dielectric function at zero frequency. It
is found that calculations based on plane wave models (such as the free electron model) give poor results for
small values of the wave number due to neglect of both Bragg refiections and Umklapp processes. ~e use
instead an isotropic version of the nearly free electron model in which dielectric function depends on only
one parameter J~'g representing an average energy gap that can be determined from optical data. It is noted
that for small wave numbers Umklapp processes give the major contribution to the dielectricfunction, where-
as for large wave numbers normal processes dominate. The dielectric function is evaluated numerically for
a value of E, appropriate to Si.

I. INTRODUCTION

HE interaction between an external electric field
and the electrons in a solid can be described by

the relationship

V(r, t) = X(r, r.', t t') V, , (r', t')d—r'dt',

dcodq p X(q q+K ~ &)&rs {r—r'l —tK r' cg(r ')r— —

K
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where V, & is the potential due to the external field, V is
the total microscopic potential, and X describes the
response of the solid to V,„~.For the case of a solid with
a, periodic lattice we can write

X(r, r', t —t')

where K is a reciprocal lattice vector. A general dis-
cussion of the inverse dielectric function, X, has been
given by Falk. '

The formalism can be used to treat the screened
electron-electron interaction in the crystal by letting
V, & be the coulomb potential of the electron in the solid.
Hubbard' has used the dielectric function to derive
expressions for the ground-state energy of a medium,
Quinn and Ferrelis have shown how X can be used in
computing quasi-particle energies, and Phillips4 has
shown how it can be employed in forming a screened
exchange operator.

Calculating X(q, q+K; to) for arbitrary K and co is
generally very dificult. However, under certain circum-

' D. Falk, Phys. Rev. 118, 105 (1960).' J. Hubbard, Proc. Roy. Soc. A244, 199 (1958).' J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958)." J. C. Phillips, Phys. Rev. 125, 420 (1961).
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stances, we need only consider values of X for which K
or ~ equal zero. In the case of a free electron gas, X
vanishes for E~O due to the complete translational
invariance of the system, and several authors' ' have
derived expressions for X. Phillips has suggested that
even for Si, which is characterized by strong covalent
bonding, X(q, q+K; o)) is small compared with

X(q,q;o)), and further, for the purpose of forming a
screened exchange-potential, it is sufIicient to set co=0.

In this paper we calculate X(q) =—X(q,q; 0) =—1/e(q)
for the case of a one-parameter model of a semicon-
ductor. Our results shed light on the feasibility of
calculating X for crystals having more complicated
energy spectra than a free electron gas. Numerical
results are given using the value of the parameter
appropriate to Si.

IL DISCUSSION OF SEMICONDUCTOR MODELS

The expression for e (q) is given by several authors, s "

e(q) =1—(47re'/q') 2 I (kfl e "'Ik+q, l') I'
k, 1,1'

where K is a reciprocal lattice vector. The second term
of (2.2) represents virtual transitions, induced by l',„,,
between the states k and k+q+K. Those transitions
for which K=O are referred to as "normal" while those
for which K&0 are termed "Umklapp. "

Because dielectric screening involves all the valence
electrons and hence is comparatively insensitive to
details of the band structure, one would attempt to
describe the screening on the basis of a relatively simple
model. Two crude approximations to e(q) may be
suggested. If e(0), the static dielectric constant, is
much greater than unity, we may approximate e(q)
by its value for the free electron gas' 4:

e(q) =1+„(ha) /qEp)'
XL1+(C-'--'.q) l (l2+ql/I2-ql) j, (2.3)

where q= q/Kp, —~„'=—4z.lVe'/m; and Ep is the Fermi
energy. A plot of e(q) is shown in Fig. 1. A somewhat
more rehned approximation has been used by Callaway'

where

+k+q, l' +kl
x , (2.1)

+k+q, l' ~kl

(k/I e ' 'lk+q, /)=— ski*(r)e ' 'fk+s, ~ (r)dr

and Xk) is the occupation number of the state k/. The
Bloch wave function fk~(r), having reduced wave vector
k and belonging to the band l, satisfies the equation

+04'kl Eklg'kl)

where Ho is the one-electron Hamiltonian in the absence
of V,,

For our purposes it is convenient to express (2.1) in
the extended zone scheme,

e(q) =1+(4~e'/q') g l(kle "'Ik+q+K)I'

KF

FIG. 2. Electron energy as a function of k for isotropic
three-dimensional nearly free electron model.

who modified the above model by inserting an energy
gap between the valence and conduction bands. The
energy spectrum with the gap is

+k+q+K +k
x , (2.2)

@k+q+K +k

Ek (5'/2m) k', (k——(KP)
Ek (fs'/2m))z'+Eg, ——(Ie)KF),

(2 4)

where 8, is a parameter to be determined. For this
model, (2.2) leads to

e(q) =1+a(~./E~q)' 1+z (Eiq)I'zG. 1.Dielectric function vs
wave number. The solid curve
refers to the free electron model
and the dashed curve refers to
Callaway's model.
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where E=E,/Er and g=q/Kp. A plot of e(q) is shown' J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat fys jn Fig
Medd. 28, 8 (1954).' P. Nozieres and D. Pines, Phys. Rev. 109, 762 (1958).' H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959). ' J. Callaway, Phys. Rev. 116, 1638 (1959).
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The value of the parameter E, which appears in
Callaway's model should be determined by the condi-
tion that e (0) as given by (2.5) be equal to the measured
static dielectric constant. However, (2.5) gives an
infinite value for e(0) independent of E,. This anomalous
behavior occurs because this model does not allow for
the formation of standing waves at the Brillouin zone
boundaries. Moreover, the neglect of Umklapp processes
leads to serious error.

For these reasons, we chose a different model, viz. ,
the nearly free electron model, isotropically extended
to three dimensions. This model is described by

Ek+ ———,(Ek'+Ek'Wl (Ek'—E ')'+E '$'"} (2 6)

(elk ~ r+& +erik'. r)/I 1+ (& +)2)l/2 (2.7)

where
E /(Ek+ Ek,0)

E'ks= (A'/2m) k' —k'—=k—2Ek k,

and E, is a parameter. The superscripts + and —on

Eg K

4EF

Fro. 4. Division of k space into sections for the
purpose of computing e(q).

determining optical properties. In spite of these short-
comings, we will see that our model gives a reasonable
value for the parameter E, in the cases of Si and Ge.
YVe point out that the isotropy of our model suggests
that it might also be applicable to a liquid or an
amorphous semiconductor.

N(Ej

III. CALCULATION OF e(q)

For our model, (2.2) can be written as

8xe' l(kle "'Ik+q)l'
e(q) = 1+ p 1Vk(1—Ek+,)

q2 E~+q+—Ek—

I (k I
e "'Ik')

I

'
+Q Ek(1—Ãk )

Ek+—Ek
(3.1)

Fro. 3. Density of states vs energy. The solid curve refers to the where k —k+q (2~ ) (kq q)/Ik+. q I
Fvalu

three-dimensional nearly free electron model and the dashed curve
refers to Callaway's model. the matrix elements gives

E~+ refer to the cases k&Eg and k&E~, respectively.
Figure 2 shows a graph of energy versus wave vector for
this model. Figure 3 gives a plot of the density of states
versus energy; our model removes states from the
energy gap and piles them up at the top of the valence
band and the bottom of the conduction band.

Unlike the two crude models, our model allows for the
formation of standing waves at the zone edge and for
the possibility of Umklapp processes. This will result in
reasonable values of e(q) for small values of q, whereas,
for q/E/ greater than unity, e(q) is essentially the same
for all three models.

Of course, our model is only a erst approximation to
a real semiconductor. %'e have replaced the actual
rather complicated band structure by a much simpler
one. Involved in this simplification is the neglect of
degeneracies; these degeneracies sometimes occur at
points in the Brillouin zone which are important in

(k I
e
—'&'I k+q)
(1+rrk rrk+s+)/[1+ (rrk )s]r sL 1+ (cr +)211/2

(k I
e-'&'I k')

= (~"+~k )/L1+ (~k )'j'"Ll+ (~k') j'" (3 2)

In order to evaluate the sums in (3.1) we introduce
the following approximations for E~+:

L~k =(5'/2m) k', —

Ek =(A'/2m) (1—-',E)'Kp', —

Ek+= (A'/2m) (1+-,'E)'Eps,

Ek+ = (hs/2m) k',

(k/Ep (1——,'E)
(1—gE(k/E'p (1)

(3.3)
(1+-,'E&k/SC & 1)

(1+-,'E(k/Ep)

where again E=E,/Er. These approximations consist
of replacing the peaks shown in the density of states
plot (Fig. 3) by delta functions. This will introduce an
error in e(q) that is of order E,/E~.

AVe now divide the Srillouin zone into sections as is
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TABLE I.Contributions to c as a function of 9/E$'. «r and e2 are the
contributions to e arising from regions 1 and 2 shown in Fig. 6.

F'-7

c (q)

FIG. 5. Dielectric func-
tion vs wave number.
The solid curve refers to
our calculation and the
dashed curve refers to an
interpolation formula.
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pictured in Fig. 4. Then, (3.1) can be written as

8~.2
e(q) =1+ Q 5»'

q2 ki ~i
(3 4)

where 8»' ——1 if k lies in region i and 8»'=0 otherwise,
and Mi is the appropriate matrix element. The E; are
given by

Ei (A2/2m) [k——"—(1—-'E)'E2'g, E,,=E,=I:„
Es= Es——(A'/2m) [(1+r~E)2E22 —k' I,

E.= (A2/2m) [(k+q)2 —12j,

E,= (A'/27~) [(1+ q) —(1—-'E)2z,sj

where k'—=k+q —2E'F(k+q)/Ik+ql and E=E,/P~'„.

Ke shall next approximate the matrix elements

by an interpolation formula. From (3.2) we find that
l&kle ' 'Ik+q)l and l&kle '«'lk'&I both approach
2E2q kj/E, E2 as q ~ 0. Using this result and the fact
that we must get free electron behavior as q~~
leads to

l&kle "'Ik+q&l = l&kle ""Ik'&I
=(2&E./W3E, Z,) [1+(2~E./W3E, Z.) ]-. (3.5)

Combining (3.4) and (3.5) gives the final expression for
e(q) which is written out in the appendix.

For the special case of q=0, we get

(0) =1+(A~,/E, ) [1—(E,/4E, )+-', (E,/4E, ) ]. (3.6)

Neglecting the small quantity E,/EF we have

e (0)=1+(Ao7~/Eg) 2.

& now determine E, from (3.6) by using the values
e (0) = 12 and 16 for Si and Ge, respectively, and we find
that I'f', =4.8 and 4.2 eV. These values are in good
agreement with the peaks observed in the optical
absorptivity, '

Phillips' suggestion that c(q, q+k) is in general
small compared with e(q, q) has been verified explicitly
for our model by Wiser. "

IV. NUMERICAL RESULTS

AVe have evaluated e(q) for Si as shown in Fig. 5. Also
plotted is the simple interpolation formula

e (q)
—1+ (Ao7 /E )2p[1+ (EF/E ) (q/I~F)2pl/2g —2 (4 1)

where P= 1 si(E,/Er—) =—1. This formula derives from
the fact that as q

—+ 0, e(q) ~ 1+(fur„/E, )2 whereas for
large q, the effect of E, is negligible and

c(q) ~ 1+(Ao7„/Ep)2(Ep/q)2.

From (3.1) it is seen that e(q) is made up of contribu-
tions from two parts of the Brillouin zone (see Fig. 6);
these two parts correspond to normal and Umklapp
processes. For small values of q the Umklapp processes
make the largest contribution to e(q) whereas for large

q, normal processes are dominant. Table I lists the
contributions from each part of the zone for various
values of q/E7.

'

I'"rG. 6. The Fermi
sphere is divided into
two parts. Part '1

corresponds to the
region in which Um-
klapp processes con-
tribute to e(g) while
part 2 corresponds to
the normal process.
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APPENDIX

By approximating E4 Es Es E7 by Es=(A'/2m)
&([(k+q)2—k'+E, j we greatly ease the problem of

' H. R. Philipp and E. A. Taft, Phys. Rev. 109, '/62 (1958).
'" H. R. Philipp and E. A. Taft, Phys. Rev. 120, 3'7 (1960).
'",N. Wiser (private communication).
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solving for p(g) which is now

p(a) =1+p (q/E)'L1+ ~ (q/E)'] '(~i+~ p+4p+~p)
(A1)

where 2,= (8~e'/q')g~(b~'/E, .;), q=q/K», E=I-'p/Ep,
and b~'= 1 if k lies in region i and is zero otherwise.

The A; are now given by

A i= 4 (A(p„/Epq)'( 1 4E—j—(2bp —p)q

+L(b./ )+b"]1
I (2+4Q)/(2+q)]

—(bi+~'bp)»L(k+Q) (2+q)]), (q&P') (A»)

where

Q=q/E, a=1 ,'E, b—p —4+q+——$4 a']q ',—

b =4+-'q+ (6—-'u')q ' bp=1+ (3/q), bp= 1/2q,

A = ,'(h „/E q)' -—,'E+-,'(5——,'E)Q '

(-'+Q) (2+q —lE)
+ (bi4a'bp) ln

(l+Q) (2+q)

before and

ci——2cp ——(1—a')/q,

(q&lE)
Ap ——

pP (Sip„)'(EpE„) 'q 'L1—(1——,'E)'7',
(-',E&q &1——,'E)

2 3= ', (Api~/-Ei&q)'( 1+-',—E $q-
+ (1+lE)»L(2+4Q)/(2 —q)]
+-:(Q-+q) lnL. (-:+Q)(2-q)», (q&-.E)

~ p= p(&~./E~q)' —pE —sQ '+(1/64)Q '

(-'+Q) (2—q+lE)
+(-', +-',E) ln

(-'+Q) (2 —q)

(l+Q) (2—q+lE)—4i (Q-'+q) ln
(l+Q) (2—q)

+pQ '(1—sE) lnI:(4+Q)(2 —q+4E)]

(A3b)

(A4a)

(l+Q) (2+q)
+ah p ln—

(-:+Q)(2+q-'E)-
-"l L(-:+Q)(2+q--.E»

+ (ci/~) lnf (l+0)/(2+q —lE)],

(-,'-E &q &1—~E) (A4b)

3 =-,'(her„/I' q)'f1+Q 'L-,' —In(1+2Q —Qq)]

+(—lQ '+(1—4Q ')q ' —4q)

&»nL(2+q+Q ')/(-' —q+Q ')]),
(O&q&1 ——,'-E). (AS)

(-,'E&q &1——,'E) (A2b) Although A2 can be simplified somewhat by neglect-
ing E compared to 1, this cannot be done for A~, A ~,

where Qb, p, bi, b2, bp, and a are defined as they were or Ap.


