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Ferromagnetic Resonance of Single-Domain Particles*
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University of 3ArlrIesota, Minneapolis, Minnesota

(Received July 9, 1962)

The ferromagnetic-resonance spectra of powders containing single-domain particles have been studied
experimentally and theoretically. The theory is based on the Stoner-Wohlfarth model. The line shapes were
calculated with the aid of a high-speed digital computer. Measurements were made on y-Fe203 powders, both
with and without an applied steady magnetic field. For zero applied steady field, the theoretical line shapes
agree well with the experimental ones provided the particle shape distribution, the crystalline anisotropy,
and the particle interactions are taken into account. With an applied field, the theoretical curves with only
the shape distribution considered do not agree with the theoretical ones. It is found that the anisotropy
constant IC& and the relaxation time r of y-Fe&O& are approximately —2.5X10' ergs/cm' and 2.0)&10 "sec,
respectively.

INTRODUCTION

A N extensive theoretical and experimental study of
ferromagnetic-resonance phenomena in suspen-

sions of single-domain particles, with and without an
applied steady magnetic field, has been conducted. The
theory is based on the Stoner-Wohlfarth' model and
takes into account cubic crystalline as well as shape
anisotropy; it was assumed that the particles are
essentially single crystals of uniaxially symmetrical
shape and that the orientation of the particle axis with
respect to the crystallographic axes is random. The
measurements were made on y-Fe~03 powders because
these can be produced with high purity and diferent
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FIc. 1. Electron photomicrograph of powder 1.
Magnification 16 150X.
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shape distributions. Three powders, which differed from
each other by shape distribution and particle size, were
investigated. In powder 1, the particle shape was very
close to spherical (Fig. 1) and the size ranged from 0.03
to 0.2 p, the average size being about 0.12 p. Powders 2
and 3 had acicular particle shapes. Their approximate
size and shape distributions had been determined by
means of electron photomicrographs previously, in
connection with other work. ' The particle length in
these powders ranged from 0.1 to 1.5 p, with a mean
between 0.5 and 0.6 p. In powder 2 the average axial
ratio was about 3:1, and in powder 3 it was about 6:1.

Experiments with acicular single-domain particles
which involve irreversible changes of magnetization' '
lead to results which disagree strongly with the Stoner-
AVohlfarth theory. The hypothesis that these discrep-
ancies are due to incoherent magnetization reversals' is
supported by the work presented in this paper, where it
is shown that ferromagnetic-resonance experiments
with single-domain particles, for which nonuniform
reversal modes are not likely to be important, yield
results which are in reasonably good agreement with the
Stoner-Wohlfarth theory even when magnetocrystalline
anisotropy and particle interaction are neglected. The
agreement is improved by taking into account crystal. —

line anisotropy and particle interaction, the latter by
introducing an equivalent change in shape distribution.

From the data, values of the first-order magneto-
crystalline anisotropy constant, the relaxation time, and
the g factor of y-ferric oxide are estimated.

THEORY

AVe first consider an isolated single-domain particle.
'I'he problem of ferromagnetic resonance in this par-

'A. H. Morrish and L. A. K. Watt, Phys. Rev. 105, 1476
(&957).' C. E. Johnson, Jr. , and W. F. Brown, Jr., J. Appl. Phys. 29,
313, 1699 (1958).

4 A. H. Morrish and S. P. Yu, Phys. Rev. 102, 670 (1956);
A. H. Morrish and L. A. K. Watt, J. Appl. Phys. 29, 1029 (1958).

s C. E.Johnson, Jr., and W. F.Brown, Jr. , Suppl. J.Appl. Phys.
30, 136 (1959}.

6 F. E. Luborsky, Suppl. J. Appl. Phys. 32, 171 (1961).
r W. P. Osmond, Proc. Phys. Soc. (London) 865, 121. (1952).

W. F. Brown, Jr., Phys. Rev. 105, 1479 (1957); E. H. I rei,
S. Shtrikman, and D. Treves, ibid. 106, 446 (1957).
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M,j =78F/Brj,

M, r) = y8F/8$. — (2)

Expanding F about the equilibrium position, we have

F=Fo+k(FHP+2Fhobl+Fop/') (3)

where F~~, F~„,and F» are the second derivatives at
the equilibrium position. Using exponential time de-
pendence for & and r), the equations of motion become' "

j piM, $=y(Ft„$+F„„r}),
jpiM, r}=y(F—tt( jFt„r}). (4)

The set of homogeneous equations (4) has a nontrival
solution only when ~ is equal to the resonance frequency

coo
——(y/M, ) (FttF„„—Ft„s)'t'

= (y/M, sin8p) (FggFgg Fggs)ii'. (5)—
Let us now introduce a small alternating field, h, as

well as damping. h exerts a torque MXh on the ma-
netization. Hence, neglecting second-order terms,

m„=y(8F/8rl) 7M,h„—m /r, —
m„= y(8F/8$)+yM, h—„—m„/r, (6)

7 being the relaxation time. By using exponential time
dependence for m and h, and on solving for m, „andze„,
we get

psF g

m„= ysFggh + —yM, Z ~h. ,
~o'+Z' sin8o

(7)
1 — y'Fpg v'F~~

m„= +yM, Z h + h. ,
coo'+Zs sin8p sin'8o

' J. Smit and H. G. Beljers, Philips Research Repts. 10, 113
(1955).

"H. Suhl, Phys. Rev. 97, 553 (1955)."H. Zeiger (unpublished).

ticle is solved in two steps. First, the orientation of the
magnetization at static equilibrium is found by mini-
mizing the free energy, F, and then the dynamic part of
the problem, the small precessions of the magnetization
about its equilibrium orientation, is considered.

If damping is neglected, the equation of motion of the
magnetization is

dM/dk= yT,

where T is the torque acting on the magnetization vec-
tor. Let us define a right-handed coordinate system
(N, s,r) such that the r direction is in the equilibrium
direction of M, which is given by the azimuth Po and
the polar angle 8p (Fig. 2). Let the other two axes be
oriented in such a way that dl= —M, sin8odg and ds
=M,de, M, being the spontaneous magnetization.
Small time-dependent deviations of M from its equi-
librium orientation result in small time-dependent
components of M in the I and s directions, m, „andm„
corresponding to small angles of deviation g and rl, re-
spectively, whereas the r component of M will remain
very nearly constant at M, . We have then the equations
of motion:

FIG. 2. Small deviations of M from its equilibrium
orientation, (Po,so).

where Z=r '+jcd The. extrinsic susceptibility tensor,
which relates m to the external high-frequency field, h,
is defined by m=y. h. Hence,

-X„„X„„0.
X„„X„„0
.0 0 0.

&'Fee

~ 2+Z2

1 y'F ggx,= —yM, Z i,
&ops+Z' sin8p

XVQ

trv'F gg v'F gg
+yM, Z, x„„=

oips+Zs k sln8p (coos+Zs) sins8

Fg gms 2Fgglm)
x=

I
Fggl+ +

cops+Z'( sin'8p sin8p i

l=h./h, m=h. /h.

Suppose now that the x, y, and s axes in Fig. 2 are
the principal cubic axes and let us de6ne directions
with respect to this coordinate system by azimuths
and polar angles as shown in Fig. 3. We find then

l= sinp sin(po —X),

m= slllp cos8p cos(Po —)i)—cosp sin8p.

When discussing ferromagnetic resonance in a single-
domain particle and neglecting strains, three contribu-
tions to the free energy must, in general, be considered":
the contribution due to a steady field acting on the
particle,

Fir —H M-—
= —HM, /sino sin8 cos (f—Q)+cosa cos8$; (12)

"N. Bloernbergen, Proc. Inst. Radio Engrs. 44, 1259 (1956).

The "scalar" susceptibility, X, is defined by mI, =Xk,
where m~, is the component of m in the direction of h,
1.e.)

x= (1/h') (h* m) = (1/h')(h* x h) (9)

We find then
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Particle a.i..

[oio]

I.' IG. 3. Azimuths and polar angles de6ning the orientations of
H, h, M, and the particle axis.

the demagnetizing energy,

Jlii=-,'M N M=-', M,2NI,

—t~M, 2tlLsin'P sin'8 cos'(n —Q)+ cos'P cos'8

+-', sin2p sin28 cos(ct —Q)], (13)
where N is the demagnetizing tensor, S, the axial,
and Eg the transverse demagnetizing factor of a
spheroid, and where we have defined the shape factor
p=E&—X; finally, the magnetocrystalline anisotropy
energy,

I X It 1(~1a2 +o 2 ~8 +&3 &1 )
=—„'Ei(sin'2g sin'8+sin'28) (14)

where higher-order terms are neglected and where 0.~,

oI2, and n3 are the direction cosines of M with respect to
the principal cubic axes.

To find the susceptibility of a powder consisting of
single-domain particles, one must make some assump-
tions concerning the orientation of the particle axes and
the crystallographic axes in space. Suppose a suspension
of the powder has been prepared in such a way that
one can assume random orientation of the particle axes
in space. For powder 1, it is reasonable to assume that
the particles are single crystals. However, electron
diffraction experiments with acicular y-Fe203 particles
carried out by Campbell" seem to indicate that the
particles are polycrystalline, although there is no con-
clusive proof. On the other hand, acicular particles were
considered as single crystals by Wohlfarth and Tonge. "
Campbell" found that most of the particles have a
definite crystallographic direction along the particle
axis, but that there may be random orientation about
the particle axis. The crystallographic direction along
the particle axis was usually of low order, e.g. , $111],
L211], $221], L331], etc. , but there was no indication
that any one direction predominates. Hence, when the

' R. B. Campbell, "Report of A.I.E.K. Conference on Magne-
tism and Magnetic Materials, " Boston, Mass. , October, 1956
l A.I.E.E. Publication T—91 (unpublishedlj; p. 128.

'4 E. P. Wohlfarth and D. G. Tonge, Phil. Mag. 3, 536 (1958).

etr 2'
X,= dct sinPdP dP

0 0

2 IT

sino. do.

X dX sinpdp XC (q)dq, (16)

bulk properties of the powder are considered, random
orientation of the particle axes with respect to the
principal cubic axes is a reasonable assumption. Further-
more, we consider the particles to be essentially single
crystals.

Kith random particle orientation, the individual
particle can be regarded as being located at the center
of a spherical cavity in a homogeneous, isotropic medium
with intrinsic susceptibility X„.Some of the particles
of the powder will be so close to the one under considera-
tion that they must be considered as lying inside the
spherical cavity. If the shape of the powder sample is
ellipsoidal, the time-varying Geld and magnetization
outside the cavity, h„and m„,are homogeneous. The
time-dependent field acting on the particle is then

h=h, +cV,m„+h,,
where S, is the demagnetizing factor of a sphere and
h; is the field due to the particles inside the spherical
cavity. h; changes in magnitude and direction from one
particle to the other, the direction being random. If the
powder sample is spherical and a homogeneous time-
dependent field h, is applied to it, m=@ h,+g h;.
Now consider all particles with the same g, which is
independent of h. Their average magnetiza, tion is

g h„since the direction of h, is random; and so the
"scalar" susceptibility relating their average mag-
netization to h, is, by (9),

X= (1/h, 2)h,* g h, .
This leads to (10), where now / and m are the direction
cosines of h, . When X is averaged over all particles in
the powder, and multiplied by the volume concentra-
tion, p, one obtains the extrinsic susceptibility of a
spherical powder sample, X,. In this, one is faced with
the difliculty that H, the steady field to which the
particle is subjected, varies in direction and magnitude
from one particle to the other and that the effect of
this variation does not average out, as is the case with
the alternating field. If 8, is the steady fieM applied
externally to the spherical powder sample,

H=H, +H;,
where H; is the steady Geld due to the presence of par-
ticles inside the spherical cavity surrounding the par-
ticle considered. As far as the powder as a whole is
concerned, the direction of 8; can be assumed to be
random, but the magnitude follows a distribution func-
tion, G(H;), which must be calculated or assumed if it
is desired to take account of particle interaction.

Let us neglect particle interaction for the time being,
i.e., let us set 8=-II„then
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Zero Applied Steady Field (H, =O)

In this case, since particle interaction is neglected,
I'"JI=O. If the powder is in the demagnetized state,
Eq. (16) becomes"

~ 2 tl

C (rt) dr) dn
Fee+&'ee/sin'Ho

co02+Z2

XsinPdP. (18)

If, in addition, the particle shape is spherical (powder 1),
Fv is independent of 8 and P and

X.= fPy'/3(~s'+ Z ')]LF'xee+Fx„-/sin'Ho]. (19)

.I.et us assume that E~& 0, as is the case in y-Fe20&,
then, in the absence of shape anisotropy, the minima of
the energy surface are in the L111]directions, all corre-
sponding to the same resonance frequency, &os= (4y/3)
X (~ Eti/M, ), and (19) becomes

X,= (8/9)C PZ'
~

E, i/(coos+8')] (19a)

When the particles of a single-domain powder are
highly acicular and the crystalline anisotropy is low,
one can, in the first approximation, set Ii J;=0, so that
F=F~. Then

X = —'py'M, s
C (rt)dr)

y'M, srP+ r.'

Steady Field Applied (H„AO)

In the presence of a steady field as well as shape and
crystalline anisotropy, Eq. (16) cannot be brought into
any form that would facilitate discussion or numerical

"R. F. Soohoo, Theory and Application of Ferrites (Prentice
Hall, Inc. , Englewood Cliffs, New Jersey, 1960), pp. 92 and 262.

6 J. SInit and H. P. J. Wijn, Iiexrites (John Wiley 8z Sons, Inc. ,
New York, 1959), pp. 100—103.

J. Smit and H. P. J. Wijn, reference 16, pp. 4 and 121.
' K. P. Valstyn, Ph. D. thesis, University of Minnesota, 1962

(unpublished).

where C (rt) is the shape distribution of the particles in
the powder. Whether this is the susceptibility meas-
ured in a particular experiment depends on the nature
of the experiment. The cavity method measures the
extrinsic susceptibility of the sample. "However, aiiy
method which employs toroidal or ring-shaped samples"
determines the intrinsic susceptibility of the powder,
&„,since demagnetizing fields are absent with such an
experimental arrangement. " For a spherical powder
sample, m„=X„h„=-X,h, . Hence,

X,= X„/(1+cV,X„),
or

t.' —1+lit.—11'
pe 1= )

1+s(t.' —1)+s lt.—1I'-'

t "=t."/61+-'(t ' —1)+!-It»
—1I']

for all systems of units.

analysis. If crystalline anisotropy can be neglected, i.e.,
F=Frr—+Ftv, a not too unwieldy expression for X, can
be derived. "The conditions for stable equilibrium are
then'

alid

@p
=cr = itt',

M, rt sin2(P —He) = 2II. sinHe,

M, srt cos2(P—Hs)+II,M, cosHe) 0,

(21)

4 (r))drt

NUMERICAL ANALYSIS

The Control Data Corporation 1604 high-speed digi-
tal computer was used to obtain the theoretical results.
Three programs were prepared. Program 1 evaluates
X.' and X," for H.=O and E~=O, i.e., it is based on
Eq. (20). Program 2 computes X,' and X." from Eq.
(18), i.e., II,=O but crystalline as well as shape ani-

sotropy are taken into account. Program 3 evaluates
X," in Eq. (22); here, a steady Geld is applied and
crystalline anisotropy is neglected.

The particles in powders 2 and 3 were considered to
have the shape of right cylinders. Brown and Morrish"
have shown that, as far as behavior of the magnetiza-
tion is concerned, an arbitrarily shaped single-domain
particle is equivalent to one with the shape of a suitably
chosen ellipsoid; hence, the shape factor, q=31~—iV,, ,
can be calculated for any single-domain particle of uni-
axially symmetrical shape. The shape factors of right
cylinders with different axial ratios were obtained from
tables computed by Brown. '"

Our computed results are strongly affected by the
value used for M„the spontaneous magnetization of
y-Fe~O3 at room temperature, since Ii~ is proportional
to M,s. Birks" used 350 emu/cm' for M„whereas
Brown, Hanton, and Morrish" employed 390 emu/cm'.
In our first computations, M, was made equal to 390
emu/cm'. Later, our attention was called to what was
at that time an unpublished paper" according to which
370 emu/cm' is a better value, snd this was then used
in the remaining work.

"%.F. Brown, Jr., and A. H. Morrish, Phys. Rev. 105, 1.198
i1957).

"W. F. Brown, Jr. (private communication)."J.B. Birks, Proc. Phys. Soc. (London) 863, 65 (1950).
"W. F. Brown, Jr. , J. P. Hanton and A. H. Morrish, Suppl. J.

Appl. Phys. 31, 214 (1960).
"W. F. Brown, Jr. , and C. E.Johnson, Jr., J. Appl. Phys. M,

2752 (1962).Also see W. E. Henry and M. J. Boehm, Phys. Rev.
101, 1253 (1956).

LE(1+cos'Ho)+r) (cos28+cos 8 cos Hp)] sinPdP

PP+gr) (3 cos'9 —1)+q' cosset cos28+JJ]'+De
(22)

uhere 8=P—8&, R= (H,/M, ) cosHe, I)= (1 co 'r )—/'-
r-'y'M ' and D= 2co/ry'M '—
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In all computations, the g factor was made equal to
2. This is a reasonable assumption, since in y-Fe203
the magnetic moments are those of the Fe'+ ions, which
have a 'S ground state. It is also supported by the ex-
perimental results with an applied steady field (see
below).

EXPERIMENTS

All measurements were carried out at room tempera-
ture. For zero applied steady field, the real and imagi-
nary parts, p„'and p„",of the intrinsic permeability of
powders 1, 2, and 3 were determined as a function of
frequency between zero and 12 kMc/sec (Fig. 4). The
powders were suspended in parafhn wax, their volume
concentration being 0.15. Below 25 Mc/sec, a toroidal
coil wound on a toroidal sample of the suspension was
connected in a bridge circuit. '4" Above 200 Mc/sec,
the "thin sample" method" "was used, in which a thin,
ring-shaped sample is placed on the shorting plunger
of a coaxial line. No measurements were made in the
range between 25 and 200 Mc/sec. For the purpose of
comparison with our theoretical results, p, ,' and p,„"
were computed from the experimentally determined
values of p„'and Ir„",using Eq. (17) and the resulting
curves are shown in Fig. 5,

QF ——

&e'
Q2

-QI

Powder I

Powder 2
Powder 3

4 5 6 7 8 9 jo I I I2

Frequency In kMc

~ Powder I

5 6 7
Frequency in kMc

(b)

l

I 2 5 4 8 9 IO II I2

Pro. 5. (a) p, ' —1 and (b) p." for powders 1, 2, and 3 at room
temperature and zero applied steady field.

x Powder I

v Powder 2

0 Powder 3

The cavity method" was used to determine the
shape of X,"(H,) at two frequencies: 9480 Mc/sec and
24 116Mc/sec. Rectangular transmission and reflection
cavities were employed. "The preparation of the spheri-
cal powder samples has been described elsewhere. "

0

-Q2

Q5

I 2 3 4 5 6 7 8
Frequency in kMc

(a)

10 II I2

x Powder f

pal

j gW~~V..x
.~

Q3— Mvp

Q2 ——/ —Q
V

I'

v Powder 2
0 Powder '3

0 I 2 3 4 5 6 ? 8 9 IO I I I2
Fr equency ln kMc

(b)

&ro. &. (a) y&' —1 and (b) p„"for powders 1, 2, and 3 at room
temperature and zero applied steady field.

"R.F. Soohoo, reference 15, p. 101."J.P. Hanton, M.S. thesis, University of Minnesota, 1959
(unpublished).

26 K. E. Swanson, M.S. thesis, University of Minnesota, 1957
(unpublished).

~7 G. T. Rado, V. J. Folen, and W. H. Emerson, Proc. Inst.
Elec. Engrs. 104B, Suppl. 5, 198 (1957).

DISCUSSION OF RESULTS

Zero Applied Steady Field (H„=O)

The most striking feature of the p," curves are the
humps on the low-frequency side, which are more
prominent the less acicular the particles of the powder
are. These humps can only occur when the effect of the
crystalline anisotropy is comparable to that of the
shape anisotropy. When the crystalline anisotropy is
negligible, the resonance frequency, coo, is directly pro-
portional to r) ((op=&M, rl) and, hence, for shape dis-
tributions like those of powders 2 and 3, the low-

frequency humps cannot occur. On the other hand, when
crystalline anisotropy alone is present, there is only one
resonance frequency, rdo= ( /437) (~ E ~/rM, ). However,
when both crystalline and shape anisotropy must be
considered, the resonance frequency depends not only
on E~ and g, but also on the orientation of the particle
axis with respect to the crystallographic axes. For an
arbitrary particle orientation (see Appendix, Table
III), a particle with suKciently low shape factor has
four different resonance frequencies"; there are eight

28 E. P. Valstyn, A. H. Morrish, and C. 'Iy7. Searle, Rev. Sci.
Instr. BB, 377 (1962).

"Of course, the indidivual particle can resonate at only one of
these frequencies, since the magnetization can assume only one
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energy minima, which change their positions within
their octants as the shape factor is increased from zero;
they disappear in pairs, each pair corresponding to one
value of ~0, as p is increased, until Anally only two
minima and, hence, only one resonance frequency re-
mains. Figure 6 shows the minima of F=F~+F» for
et=0', P=30', and particles of different acicularity,
as well as the corresponding resonance frequencies
(also see Appendix, Table II). In this case, the minima
in octants 1 and 4 merge and then move together to-
wards the particle axis. From all these results it can be
seen that for ICi= —3.0X10' ergs/cm', i.e., for a com-
paratively strong crystalline anisotropy, a relatively
large number of particles with medium acicularity have
rather low resonance frequencies. This is a qualitative
explanation of the experimental results for powders 2

and 3, but not for those of powder 1. For, if the crystal-
line anisotropy is so large that it strongly afI'ects the
behavior of even the most acicular powder, it certainly
must completely dominate the small shape anisotropy
of powder 1. Hence, each particle in powder 1 should
have the same value of coo and there should be no low-

frequency hump. In fact, the line shape should be rather
narrow (see curve S in Fig. 8). But, this is true only
when particle interaction is negligible.

By neglecting interaction between particles, we have
set H; in Kq. (15) equal to zero. This will probably not
unduly inhuence the theoretical results when an applied
steady field, H„ofseveral thousand oersteds is present.
However, when H, = 0, the effect of particle interaction
will be noticeable. This point was investigated experi-

I80

I zG. 6. Minima of P=Ii~+F~ on the unit sphere for n=o',
P =30', M, =390emu/cm', X~ ———30X10'ergs/cm', and g=2.00.
The axial ratio (spheroid) and resonance frequency for each mini-
mum shown is indicated by the corresponding letter in Table II
in the Appendix.

equilibrium position. It is reasonable to assume, however, that in
a powder all resonance frequencies will occur and that none of
them will be preferred.

20

l.6

os i2
C
D

0
LO l.4 l.6 . IB 2.0 2.2 2.4 2.6

Axial Ratio

FIG. 7. Effective shape distributions for powder 1. The axial
ratios are those of spheroids.

mentally. A sample was prepared by intimately mixing
nonmagnetic acicular particles of FeO OH with A1203,
and then by reducing the particles to p-Fe&03. Such a
technique removes or reduces the clumping of the
magnetic particles, and hence decreases the interaction
effects. The maximum of the initial permeability of this
sample occurred at a slightly higher frequency than
that of a normal sample (y-FesOs powder suspended in
paraffin). As will be seen from the following discussion,
this is the resu) t expected.

A field, such as H, , acting on a spherical particle has
an effect on the free energy very similar to that of a
uniaxial shape anisotropy with q)0, which tends to
pull the magnetization vector away from the L111j
directions and closer to the particle axis. An increase
in g corresponds to an increase in H;. In order to make
use of program 2, one can, therefore, assume that the
randomly oriented field H, with a magnitude distribu-
tion G(H;) is equivalent to an effective shape dis-
tribution C (ri, ) of randomly oriented particles. In this
way, the low-frequency hump in the p,."curve of powder
1 can be explained. To show this quantitatively, several
effective shape distributions were assumed and program
2 was used to compute p, ' and p," as a function of
frequency, trying different values for Ej and 7-. The
best results were obtained with the two effective shape
distributions shown in Fig. 7 and by setting E~———2.5
X 10' ergs/cm' and r = 1.9X10 " sec. In Fig. 8, these
results, as well as some other computed curves, can be
compared with the experimental data. It will be noticed
that the theoretical curves for p, '—1 have a rather
prominent knee and that a similar, but less noticeable
knee is present in the experimental curves.

Figures 9 and 10 show the theoretical results obtained
for the acicular powders. The curves designated with X
were obtained by using program 1 and, hence, Eq.
(20), i.e., neglecting crystalline anisotropy. As could be
expected, the agreement with experiment is only very
rough, especially as far as

'

the p, '—1 curves are
concerned.

A rather strong crystalline anisotropy had to hv

assumed to make the line shape change appreuably",
setting Er ———0.5X10' ergs/cm', for instances' had
almost no effect on the shape of the curves. The com-
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puted results for Er= '—2.5X10' ergs/cm', M, =390
emu/cm', and r=1.5X10" sec are shown in Figs. 9
and 10 (curves designated with Y). For powder 2, the
agreement with experiment has been somewhat im-
proved, but this is not true for powder 3. Higher
anisotropy constants were tried, but made matters
worse; in particular, the peaks of the p,."curves moved
to higher frequencies as ~Er~ was increased. Even
when 370 emu/cm' was finally used for the spontaneous
magnetization, the low-frequency humps in the p,"
curves did not appear.

It seems that a better agreement with experiment can
only be achieved if particle interaction is taken into
account. Again, to make use of program 2, one can
assume that the effect of the interaction field, H;, on
the energy surface of a particle is equivalent to a change
in the shape factor, q. This, of course, can only be a
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1'io. 9. (a) p.' —1 and (b) p,"curves for powder 2. X:iM', =390
emu/cm', r=1.0X10 "sec, Er 0. F:M, =390 emu/cm', r=1.5
X10 " sec, If'&= —2.5X10' ergs/cm'. Z: M'. =370 emu/cm', r
=1.9X10 '0 sec, Er —3.0X10~——ergs/cm, k„=0.9.

rough approximation of the physical situation; for in
order to stimulate with some accuracy the effects of
both the actual (uniaxial) particle shape and the field
H, , the effective particle shape could, in general, not
have uniaxial symmetry and, hence, an effective shape
factor, p„would have no clearly defined meaning, since
there are now three diferent demagnetizing factors.
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FXG. 8. (a) p.' —1 and (b) p."for powder 1. The letters o and
b refer to the effective shape distributions in Fig. 4. Curve S is
for g =0, X1= —3.0)(10' ergs/cm', and r = 1.3)&10 "sec and has
been computed from Eq. (19a).
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I Io. 10. (a) p, ,' —1 and (b) p,"curves for powder 3.X:3E,=390
emu/cm', v=1.0&10 ~ sec, E1=0.F:M, =390 emujcmg, 7=1.S
X10 " sec, ICq= —2.5X10' ergs/cm'. Z: 3I,=370 emu/cm', r
=1.9)&10 "sec, IC1=—3.0)&10' ergs/cm', k„=0.7.
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I-et us, however, assume that there is an effective shape
factor for each particle. When H; lies along the particle
axis, or when the angle between H; and the particle
axis is small, then q, &g, otherwise g, &g. Hence, if one
assumes random orientation of H; with respect to the
particle axis, the great majority of the particles in an
acicular powder can be considered to have an effective
shape factor which is smaller than the actual one. One
would expect this effective reduction of the shape
factor to be the greater the more acicular the particles
are.

Again taking an oversimplified approach to a complex
problem, a reduction coefficient, k„,was introduced, by
which the shape factors of all the particles in a certain
powder were multiplied. The best results were achieved
by choosing k„=0.9 for powder 2 and k,=0.7 for powder
3. As was the case for powder 1, ~Et~ had to be made
very large in order to obtain any low-frequency humps
in the p."curves. The curves marked with Z in Figs. 9
and 10 were obtained with Et —3.0X10' erg——s/cm',
M, =370 emu/cm', and 1r.9X10 " sec. As was to
be expected after all the assumptions and simpli6ca-
tions made, agreement with experiment is not really
good. In the p," curves the low-frequency humps are
not where they should be and the high-frequency
branches fall oB too abruptly. The latter feature is due
to the fact that we have reduced the shape factor of all
the particles in a powder by the same factor, k,. This
is a very crude simplifi. cation, since for some particles,
namely, for those in which the angle between H; and
the particle axis is small, the eGective shape factor will
even be greater than the actual one. It will be noticed
the p.'—1 curves designated with Z would be very
close to each other if they appeared on the same draw-
ing, and this agrees well with experiment.

Steady Field Ayylied (H, WO)

The results obtained with the cavity method and in
the presence of an applied steady 6eld for spherical

samples of randomized powders, with a volume con-
centration of 0.15, are shown in Figs. 11 and 12. The
ine shape of powder 1 is almost symmetrical; however,
there is a slight asymmetry, the low-fmld branch of the
curve being steeper than the high-Geld branch, which
indicates a negative first-order cubic anisotropy
constant. ~

The theoretical curves in Figs. 11 and 12 were com-
puted with the aid of program 3, using M, =390
emu/cm' and r = 1.0X10 "sec. Program 3 is based on.

Eq. (22), in which crystalline anisotropy is neglected,
and this is probably the cause of the disagreement
between the experimental data and the computed
curves. All the results for H, =O indicate that, in
powders 2 and 3, the effect of crystalline anisotropy is
comparable to that of shape anisotropy and, hence,
one would expect poor agreement with experiment when
crystalline anisotropy is neglected. However, a com-
puter program taking into account both crystalline and
shape anisotropy as well as the applied steady field.

would be rather complex and was not attempted.
For a system of randomly oriented, noninteracting

spherical crystallites with cubic anisotropy, a first-
order approximation gives a resonance field'~"

IX„=((o/y)+Et/2M„

and a line width increase of
~
Er/3E. ~. Hence, since the

particle shape of powder 1 was very close to spherical
and measurements were made at two widely separated
frequencies, it was possible to estimate the g factor,
IC~, and the relaxation time, ~, of y-Fe203. The value of
7- arrived at in this way must be considered a lower
limit, since particle interaction and slight deviations
from spherical particle shape also contribute to the

~ E. Schlomann, "Report of the A.I.E.E. Conference on Mag-
netism and Magnetic Materials, " Boston, Mass. , October, 19S6
LA.I.E.E. Publication T—91 (unpublished) j; p. 600."J.H. van Vleck, Phys. Rev. 78, 266 (1950)."D. M. S. Bagguley, Proc. Phys. Soc. (London) 466, 765
(1953);Proc. Roy. Soc. (London) A228, 549 (1955).
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FIG. 12.Theoretical and experimental
results for 24 116 Mc/sec.

TABLE I. Experimental data for powder I.

f
(Mc/sec)

9480
24 116

H,
(Oe)

3050
8360

AH
(Oe)

1750
1725

CONCLUSIONS

In order to obtain agreement between theory and
experiment, a value for the crystalline anisotropy con-
stant

~
Ei

~

of approximately 2.5X 10' ergs/cm' has to
be assumed for y-Fe203. This estimate was arrived at
in two independent ways: (a) by fitting the theoretical
curves to the experimental data for P,=O, and (b) by
using Eq. (23) and the experimental results at 9840
and 24 116 Mc/sec. According to microscopic theories
of the crystalline anisotropy, the directional effects
arise because of the spin-orbit coupling. Now y-Pe~03
contains only ferric ions, which have a ground state
with L=O. Hence, our value of ~Et~ appears to be
rather large. It would be pertinent to conduct ferro-
magnetic resonance experiments on single crystals of
&-Fe203. However no one has yet succeeded in growing
such crystals. Resonance experiments on the powders
with H, =O at other temperatures would also be in-
formative. Since both the shape anisotropy and inter-

"A. H. Morrish and E. P. Valstyn, J. Phys. Soc. Japan 17
Suppl. SI, 392 (1962).

'4%. A. Yager, F. R. Merritt, and C. Guillaud, Phys. Rev. 81,
477 (1951).

kilo -Oersteds

line width. " In order to determine H„asaccurately as
possible, spherical samples of different diameters were
used and the measured resonance fields extrapolated to
zero diameter. '4

The experimental data are shown in Table I. Using
M, =370 emu/cm', one finds: g= 1.97+0.02, Ei —2.9'——
X 10' ergs/cm', r = 1.2X 1 0" sec.

l0

action energy terms are proportional to the square of
the magnetization while the crystalline anisotropy
energy is proportional to a high (perhaps the tenth)
power of the magnetization, a better separation of
these terms might then be possible. For the present, the
value of 2.5X10' erg/cm' for y-Fesos should be con-
sidered as representing a phenomenological anisotropy
constant.

With great certainty, 1.2&(10 " sec can be assumed
to be a lower limit of v for y-Fe203, the true value pre-
sumably being around 2.0X10 "sec.

For zero applied steady 6eld, there is reasonable
agreement between experiment and a theory which is
based on the Stoner-Wohlfarth' model, even when
crystalline anisotropy and particle interactions are
neglected. This is in sharp contrast to some other ex-
periments that involve magnetization reversals in the
single-domain particles, such as measurements of the
coercive force and remanence. ' ' Thus our results pro-
vide indirect support for the existence of these reversal
modes.

In the absence of an applied steady field, good agree-
ment between theory and experiment can only be
achieved when particle interaction is taken into account.
This can be done in a rough fashion by assuming an
effective shape distribution, and qualitative arguments
have been given to justify this approach. It has not
been attempted to And a way of deriving the effective
shape distribution from the actual one; but it has been
shown that, for acicular powders, the average effective
shape factor is smaller than the average shape factor
of the isolated particles, and that this effective reduction
of the shape factor is the greater, the greater the acicu-
larity of the powder. For powders with close to spherical
particle shape, good results were obtained assuming an
effective shape distribution with an average axial ratio
of 1.8:1, the effective particle shape being considered
as spheroidal.



F ERROMAGNETI C RESONANCE OF SINGLE —DOMAIN PARTE CLES 2087

Axial
ratio

1.00
1.00
1.00
1.00
1.10
1.10
1.10
1.10
1.20
1.20
1.20
1.20
1.30
1.30
1.30
1.30
1.35
1.35
1.40
1.40
1.50
1.50
1.54
1.54
1.58
1.60
1.64
1.70

Octant

1
2.
3

1 .
2
3

1
2
3
4
1
2
3

1
4
1

4

1, 4
1, 4
1, 4
1, 4

40
(degrees)

45.00
135.00
225.00
315.00
40.92

133.74
226.26
319.08
36.25

131.64
228.36
323.75
30.90

126.99
233.01
329.10

27.89
332.11

24.54
335.46

16.02
343.98

10.97
349.03

0.00
0.00
0.00
0.00

Hp

(degrees)

54.74
54.74
54.74
54.74
50.95
52.46
52.46
50.95
47.93
49.74
49.74
47.93
45.36
45.96
45.96
45.36
44.21
44.21
43.13
43.13
41.15
41.15
40.42
40.42
39.76
39.68
39.51
39.29

Label-
fp ing in

(kMc/sec) Fig. 6

2.87
2.87
2.87
2.87
3.00
2.62
2.62
3.00
2.93
2.30
2.30
2.93
2.70
1.61
1.61
2.70
2.51
2.51
2.27
227
1.56
1.56
1.08
1.08
0.27
0.64
1.04
1.43

B
C
C
C
C
D
D
D
D

G
G

I
I
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APPENDIX

Typical Minima of F= FN+Frc and Values of fs
Some typical equilibrium orientations of M and the

corresponding resonance frequencies, fs, are tabulated

TABLE II. Typical equilibrium orientations of M and
resonance frequencies, fp, fora=0', P=30'.

for two particle orientations: Table II, a=0', P=30'
and Table III, cr= 20', P=30'. The axial ratios are
those of prolate spheroids. M.=390 emu/cm', 1Cr
=—3..0X10' ergs/cm', and g=2. Only four octants
are listed, since, on account of the symmetry, octants
1 and 7 are equivalent, and so are octants 2 and 8,

TABLE III. Typical equilibrium orientations of M and
resonance frequencies, fp, fora=20', P=30'.

Axial ratio Octant
4'p

(degrees)
Hp

I'degrees)
fp

(kMc/sec)

1.00
1.00
1.00
1.00
1.10
1.10
1.10
1.10
1.20
1.20
1.20
1.20
1.30
1.30
1.40
1.40
1.46
1.46
1.48
1.50
1.60
1.70

1
2
3

1
2
3

2
3

1
3

3

3
1
1
1
1

45.00
135.00
225.00
315.00
42.49

132.43
225.45
319.84
40.08

127.56
226.14
327.19
37.91

227.25
36.03

229.41
35.04

232.78
34.73
34.43
33.09
31.97

54.74
54.74
54.74
54.74
51.25
51.61
53.22
50.72
48.76
47.82
51.37
46.85
46.88
49.11
45.43
46.13
44.71
43.30
44.49
44.28
43.36
42.61

2.87
2.87
2.87
2.87
3.15
2.63
2.62
2.83
3.33
2.09
2.36
2.34
3.48
2.08
3.62
1.67
3.70
1.07
3.73
3.75
3.89
4.03

3 and 5, and 4 and 6. (The octants are numbered from
1 to 4 with increasing azimuth in the upper hemisphere
and in the lower hemisphere from 5 to 8 such that 5
borders with 1, 6 with 2, etc.) Whenever one of octants
1 through 4 is not listed for a certain axial ratio, it
does not contain an energy minimum.




