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Stability of Force-Free Magnetic Fields~
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(Received March 23, 1962; revised manuscript received August 20, 1962)

A formalism for treating the stability of force-free magnetic Gelds (VXB=nB) based on the energy
principle of Bernstein et ul. is derived. An example is given to shown that force-free fields with constant n
may be unstable, though previous papers give arguments in favor of the stability of such 6elds. It is found
that the cylindrically symmetric force-free Geld given by Lundguist is unstable if and only if nrp (where rp

is the radius of the cylinder) exceeds the critical value 3.176. The unstable displacements have small growth
rates. They are of the screw or kink type, their wavelengths along the axis having a minimum of about
seven times the critical cylinder radius.

The results are applied to the arms of spiral galaxies, correcting Trehan's statement that some force-free
fields with constant u have a stabilizing eRect on gravitational instability.

I. INTRODUCTION

A N important special class of hydromagnetic equi-
libria are those characterized by the vanishing of

the Lorentz force. The magnetic fields of such configura-
tions obey the equation

curlB =nB,

where u is a scalar function of space satisfying

(1b)8 glade —0

Because of the great interest of force-free fields in
astrophysics and, more recently, also in experimental
plasma physics, their hydromagnetic stability has been
examined by many authors. It has generally been found
that the case O.=const plays a particular role, as it
seemed to be most favorable for stability. Until now no
case of instability had been discovered for constant n
except those due to self-gravitational forces. In most of
these investigations, more or less general configurations
with constant o. are proved to be stable against more or
less wide classes of perturbations.

Lundquist' showed that the cylindrically symmetric
field

B„=O, B„=BpJI(nr), B =BpJp(err) (2)

(r, p, s cylindrical coordinates, Jp, JI Bessel functions)
is stable against perturbations of the form

$=(c cosbxsinas, 0, c' sinbx cosgs)

(x, y, s Cartesian coordinates).
Trehan' states that the gravitational instability of

the arms of spiral galaxies is decreased by the presence
of a certain type of force-free magnetic fields which
contain Lundquist's field (2) as a special case. However,
his proof is not complete since he considers a very re-
stricted class of perturbations, namely, axisymmetric
and irrotational ones.
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The stability of general force-free fields with constant
n against spherically symmetric expansions has been
shown by Woltjer. ' He further proves that equilibria
with axial symmetry are stable against all axisymmetric
perturbations, the normal component of which vanishes
on the surface of the field-containing region.

In another paper, 4 Woltjer states that for the case of
constant e the first-order variation of the magnetic
energy with an appropriate constraint vanishes for
closed systems. He concludes in a later article' that this
means stability for the lowest possible value of n corn-

patible with the geometry considered. The other possible
values of n correspond to extrema of an unknown nature.
Only by determining the second-order variation of the
energy can it be established whether these extrema are
relative minima and thus stable to small perturbations.

In view of all this evidence, one might be tempted to
conclude even in the absence of a rigorous proof that
force-free fields with constant o. are stable. However,
this is not true at all and, in fact, it is the purpose of this
paper to show that there is a rather wide class of force-
free fields with constant n which are indeed unstable.

II. THE SECOND-ORDER ENERGY VARIATION
FOR FORCE-FREE FIELDS

We consider a plasma in static equilibrium enclosed

by a perfectly conducting rigid wall, on which the
normal component of the magnetic field vanishes. The
plasma has infinite conductivity and is treated in the
hydromagnetic approximation.

According to the energy principle of Bernstein et al. ,
'

the system is stable if and only if the second-order
energy variation

1
6R'=—

2
L&'—i &&&(+vp(divK)'

+(divg)(g gradp) jde (3)

is positive definite to perturbations ( whose normal

3 L. Woltjer, Astrophys. J. 128, 384 (1958).
4 L. Woltjer, Proc. Natl. Acad. Sci. U. S. 44, 489 (1958).' L. Woltjer, Proc. Natl. Acad. Sci. U. S. 45, 769 (1959).'I. B. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M.

Kulsrud, Proc. Roy. Soc. (London) A244, 17 (1958).
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1
PVi= — [(curlR) ' —aR curlR]dw,

2
(5)

component vanishes on the surface. [Q=curl((XB),.
& denotes the current density, p the pressure, and p the
ratio of the specific heats. The integration is extended
over the plasma volume. ]

For force-free fields given by Eq. (1), where a need
not be a constant, this expression becomes

5W= 8Wi+8W2,
where

The condition (8) is not a normalization in the usual
sense as it excludes all R which give the integral in (8)
another sign than that of the constant on the right-hand
side of this equation. However, the value of the constant
does not enter into the Euler equations (9) which there-
fore are generally valid, regardless of the sign of the
normalization constant. We may consider this constant
to be —1, as we are interested in finding possible cases
of instability.

Note that in our variational calculation we may
replace condition (8) by the normalization

8W2 yp
—(—div() 2dw, (6) [curlR]2dv =X, (12)

R=(XB.

In order to find the most unstable displacements g,
QV should be minimized under a normalization condi-
tion which makes 65' bounded from below, thus
guaranteeing that a minimum exists.

The Euler equations resulting from the energy princi-
ple usually form a system of sixth order. In our case we
can reduce it to fourth order by limiting ourselves to
minimizing only the magnetic part and by choosing a
variational constraint which contains only R and not (
explicitly. This involves no essential loss in generality,
for if the minimum of 88'& is positive, the system is
stable since the additional term QV2 is always positive.
If the minimum of QV~ is negative, we must take into
account the stabilizing term to determine whether the
system is really unstable. In many cases, this term may
vanish already since QV&; is attained for a divergence-
less displacement (. In the other cases there is some
critical value p, of the constant pressure below which
there is instability. Thus each magnetic con6guration
for which 8S'~;. is negative is unstable when the
pressure is suKciently small.

Let us minimize 8Wi [Eq. (5)] with the constraint

aR curlRdv= const/0,

for which 8$'& is obviously bounded from below. YVe

thus obtain the Euler equations,

BX[curl curlR —(X+1)acurlR]=0,

where the constant Lagrangian multiplier X corresponds
to (8). It has to be determined as an eigenvalue of
Eq. (9) under the condition

R B=o,
which comes from (7) and the boundary condition

(10)

nXR=0 (11)

(n is the unit. normal vector to the surface). Equa, tion
(11) means that on the surface the displacement has to
be tangential to the rigid wall,

since this yields Euler equations which differ from (9)
by a simple transformation of the eigenvalues. Der ote
by p the Lagrangian multiplier corresponding to ~12).
I'hen we have the relation

(X+1)(p+1)= 1, (13)

which states a one-to-one correspondence between the
eigenvalues ) and p, belonging to the same eigenfunction
(p= —1 and X= —1 should be excepted; however, for
these cases 8Wi,.does not become negative).

Let Rs be a solution of (9) satisfying conditions (8),
(10), and (11).Then we find with the help of (13) that

BWi= —p [curlRs]'dv = —plV.

The system therefore is unstable if and only if the
largest eigenvalue y is positive.

By introducing two vectors n& and n2 perpendicular
to 8 and by defining

Rin i+R2n2

we can write Eqs. (9) in the following manner:

(15)

RXB)
8 grady=div

/8/'I
'I

has a solution g in the interior of the plasma volume.

7 W. A, ¹wcomb, Phys. lluids 2, 362 (1959),

ni {curl curl(Rini+Rsns)
—[a/(@+1)]curl(Rin, +Rsns) }=0,

(16)
ns. {curl curl(R, ni+Rsns)

—[a/(p+1)] curl(Rini+Rsns) }=0.

These equations are independent of the component
R~

~

of R parallel to the magnetic field. R~
~
may be chosen

to make ~divg~ as small as possible. However, it is
possible to make divg—=0 if and only if the "magnetic
differential equation" (Newcomb')
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The condition that this equation have a solution is

pBXR
div~ dl=0,

where the integration is over each closed line of force.
Equations (16) are still valid if a is not constant and

may be a starting point for the general treatment of
force-free stability problems. In the next section we
shall solve them exactly for the special case of a cylindri-
cally symmetric magnetic 6eld and constant n.

equations (16) lead to an infinite set of independent
ordinary differential equations:

where

dsgm

fern
—gkmSkm =0,

dr dr
(19)

r(kr Jp+ mJk)'

k'r'+m'

1 (k'+a' —P')r'+m' —1
ga~=- (krJp+m Jr)'

ksr'+m'

(20a)

(k'r'J s mp'J )—&

(ksr2+m2)2

2k(a —P)mr
+ (krJp+mJ&)' (20b)

(k'r'+m') '
P= /(~a+1)

The connection between SI, and qA, is given by

(21)

iqk —(——r(kr Jk—m Jp) sk„'
k'r'+m'

+I (a P)r(kr Jp+—mJr) —(krJk+m Jp) jskm) . (22)

III. SPECIAL CASE OI CYLINDRICAL GEOMETRY

Ãe take the model of an infinitely long plasma
cylinder. This may be considered as the limiting case
of a very thin torus or a very long plasma column with
electrodes at the ends. By assuming the magnetic field
to be axisymmetric and to have no radial component,
we obtain Lundquist's solution (2) of Eqs. (1) for con-
stant n. The radius ro of the column wall being fixed, cx

can still take continuously all values from zero to
infinity, contrary, for example, to the case of spherical
equilibria.

In applying Eqs. (16) to the magnetic configuration

(2), choose

nk= —Jp(ar)lip+ Jk(ar)ll, lip= n„

where n„, n„, n„denote the cylindrical unit vectors.
By the Fourier representation

R&= p sk (r)e'& k+ m&', Rs= g qk (r)e""+m&& (18)

It is interesting to compare the expressions for fk
and gI, with those in the equations which Nevrcomb'
has derived for the general case of stability of cylindri-
cally symmetric hydromagnetic configurations. If in our
equations we take &p;=0 then P equals a, and they agree
exactly with Newcomb's equations for our special case.
This is to be expected since Newcomb does not apply
a normalization.

With the transformation

sk„yk ——/(krJp+mJ&),

Eq. (19) becomes

(23)

m' 2mPk
+y. (&&'

' —+ —. (24&
r' k'r'+m'

The general solution of this equation is

Pi:m= r(8' —k') "'Z Lr(P' —k') "']
—k

-+mZ„tr(P k) & ~. (2—5)

Here Z and Z, are linear combinations of the Hessel
and Neumann functions:

Zm —1 C&km Jm &+Cskm+m-
Zm ClkmJm+Cskm+m

(26)

' W. A. Newcomh& Ann. Phys. (New York) 10& 232 (1NO).

With the help of (23), (25), and (22), the Fourier series

(18) can now explicitly be written down.
We see from (14) and (21) that instability occurs if

and only if there are solutions R&(r, p, z) and Rs(r, p, )s
which belong to values of P with 0&P&a. If Rk is such
a function, it is clear that each of its nonvanishing
Fourier harmonics must be so, too. Thus it is possible
to determine stability directly from (23) and (25).
Due to condition (11) sk must vanish at r=rp (the
wall).

However, the situation is not completely straight-
forward. We note that from (23) sk will have a singu-
larity wherever the denominator vanishes. The corre-
sponding values of r define "singular surfaces" which
divide the cylinder into a finite number of concentric
zones. The integrations in (5) and (8) would diverge if
they were extended over the singular surfaces. In order
to apply the results of our variational calculation
separately to the different regions between the singu-
larities, we make use of the following theorem:

For Axed values of k and m the whole system is stable
if and only if (a) each region between. two singular
surfaces and between the last singula, r surface and the
mall is stable to perturbations whose radial component
vanishes in its interior for at least two values of r, and
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(b) the region within the first singular surface is stable
to perturbations which vanish in its interior for at least
one value of ~.

The "only if" part of this theorem is almost trivial.
The "if" part can be proved by calculating 85 & from
formula (5) for the single Fourier components in (18).
The resulting integration may be carried out with re-
spect to s and p, thus yielding a quadratic form in sI, ,

SI, ', and qI, . Suppose now that 68"~ be negative for
some s~ and q~, . Splitting up the integral according to
the different regions between the singularities, one has
clearly at least one region which gives the integral a
negative contribution. In general, the corresponding
perturbation (a part of the initial perturbation defined
in the whole cylinder) does not satisfy the conditions
formulated in (a) or (b) of the theorem. But we can
use this perturbation to construct a new one by two
steps: First keep SI, the same and replace q& by the
expression (22) with P=n. As this means a minimization
of 8W&, the integral, which is now a quadratic form in
sA, and sI,

' only, will still be negative. The coeScient
of s/, "is f/, as given in formula (20a) and it has second-

order zeros at the singular surfaces. The latter fact
enables us to carry out the second step, i.e., to change
sI, in an arbitrarily small vicinity of the singular point
in such a way that (1) s/, vanishes inside the region and

(2) BVi is changed by a suKciently small amount that
it remain negative. (s/, remains the same everywhere
else in the region. ) Thus bWi would still be negative for
perturbations as described in (a) and (b), Q. E. D.

In view of this theorem, we have to examine, for each
couple (k,m), the stability of all the intervals which are
de6ned by the singular points of the Euler solution (23).
In each case we must find out whether there are values
of P(n for which the conditions stated in (a) and (b)
can be satisfied by a function equal to the Euler solution
with an appropriate choice of c~~ and c2~ between the
two values of r and zero elsewhere. If P(n is possible
the situation is unstable, otherwise stable.

I.et us first examine whether the interval between the
axis and the first singularity may be unstable, if k and
m is properly chosen. 7Ve see from regularity at the
origin that c2~ must vanish. Thus we obtain from
(23), (25), and (26)

Skm=
[k/(P —k) jy(P2 —ks) &/2J [y(P2 k2) i/2/+/I J [y(P2 k2) i/2]

krJ ( r)+yNJ ( r)
(27)

x=o/y, «=k/n, b=P/o/, (28)

and examine separately for each integer m, for which
regions of ~ the smallest value x& defined by

«x~Js(x//)+m Ji(x//) =0

is larger than the smallest value xz defined by

(29)

Further, we have the instability condition that sj,
vanish once in the interval considered, i.e., that its
first zero lies before its first singularity. To take this
into account, we introduce the dimensionless quantities

«= —0.237, x=4.744. Between these points «(x) is on
the left of «(x~) except at the point «=0, x=3.832,
where the two curves are tangent to each other.

The diA'erence xz—xN is very small in the region
where it is negative, and great precision is needed to
determine the region of instability. However, one can
see by a series expansion that for small ~, xz is indeed
less than x//. Equations (29) and (30) can be explicitly
solved for x~ and xg in the neighborhood of ~=0. The
first nonvanishing term of the expansion of the diBer-

x (b2 «2) 1/2J [x (b2 «2) 1/2j

b —~
+mJ [x (b' —«')i/')=0 (30)

X "X
( m= ~} (m=2.)1- 2

The definition of xz still contains the parameter b

which for the unstable cases must take values between
0 and 1. For the regions of ~ where xg may be less than
x/y, the smallest xz occurs for b= 1 (marginal stability).
It follows from the properties of the Bessel functions
with pure imaginary argument that expression (27) has
no zeros for rc'&b', except r=0. If therefore there are
any cases of instability they can only occur for z'&1.

In Fig. 1 the functions «=«(x//) and «=«(xz) as de-
fined by (29) and (30) have been drawn for the cases
m= 1 and m= 2. The diagram shows that only for m= 1
is there a small region for which xz&x~ holds, thus
indicating instability. The dashed curve «(xz) cuts the
curve «(x//) at the two points «=0.272, x=3.176 and

6

Xz kg

p5 -1

FxG. 1.A plot of the first zero xz and the first singularity x~ of
expression (27) for m=1 and m=2 as functions of «. The solid
lines represent the singularities and the dashed lines the zeros.
(Note that the ordinate is ff: and the abscissa is x~ or xg.) ~ has a
diferent scale for m 1 and m=2. The unstable range of ~ is the
range for which the dashed line lies to the left of the solid line.
This occurs for m=1.
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ence is quadratic and negative:

1&z &x ggiyK ) (31)

where j» is the first zero of Jt(x).
For the case m=0, which is not represented in Fig. 1,

one gets stability. This is almost trivial, as for b &1
the first zero of Jjj(x) is always less that the first zero of
JtLx(b' —jr')'j']. For the cases fthm&2 one gets stability,
too, since the curves jr(xz) in Fig. 1 are more and more
displaced to the right as m grows and therefore have
no more intersections with the corresponding curves
jr(xjjr). For the first interval we thus find instability
only for fjs= &1j

~

a
~

&0.272, ' and only if the radius of
the plasma column is so large that the 6rst zero xz of
(30) can lie in the interior of the plasma or at the wall.

The least value rp, of the radius for which the in-

stability can occur is given by

urp, =3.176. (32)

At the point rp, the azimuthal component of equilibrium
current and of magnetic field still have the same direc-
tion as in the neighborhood of the axis, while the longi-
tudinal component has reversed its direction. Since

(1 1
j'dr — jj'di),

2
(33)

fnsfofjlljtlf rsfjionsI///yI for m:I ~for. m= -1

kg j)

//////////

I"iu. 2. Instability diagram irr terrors uf k ju and av„ ior vs= &1.

' The cases m, k and —m, —k are syrIImetric to each other anft.
ha, ve the same stabiHty properties.

where the numerator is proportional to the mean square
current density, and the denominator is the magnetic
energy, Eq. (32) defines a critical value for the mean
square current density above which the plasma is
unstable.

So far we have investigated only the interval between
the axis and the first singular point. Now there is the
question whether by extending our treatment to the
interval between the first and the second singularity we

might obtain a smaller critical value nro, instead of (32).
This would be the case if for some k and m the constants
c» and c» could be chosen in such a way that s&

has two zeros between its first and its second singularity,
where the larger zero must still be less than the critical
radius ro, as defined by (32). However, this is never

possible as can be shown for f~.'&1 with the help of
Fig. 1. The proof can be given first for the special case
c» =0 and next by taking into account that two solu-
tions yj,„of (24), one with c» ——0 and the other with

c» &0, are linearly independent and thus have
mutually separated zeros.

The latter fact enables us to extend the proof to the
case ~'&1. Since y& for c» =0 and imaginary argu-
ment of the Bessel functions has the only zero r=0, it
also has only one zero for c» ~0. Thus for ~')1
instability never occurs.

After knowing that the critical value (32) is not
affected by possible instabilities of other intervals than
the first one, it still might be possible that they enlarge
the unstable f~: region found from the first interval. We
were able to prove that this is not the case for erp&6;
furthermore we found much evidence to believe that
the situation does not change even for values of nrp) 6
up to infinity.

It should benoted that it is not very important to
know the stability conditions for large values of nrp

since the corresponding equilibria have little chance to
be attained because of earlier instabilities. If one con-
tinuously increases the mean current density, the equi-
librium becomes unstable when orp reaches the critical
value (32), thus not being realizable for values of nro
much larger than the critical one.

We see from Fig. 2 that when arp reaches the critical
value, instability only occurs to wave numbers
~=&0.272. Then, with increasing current density the
unstable ~ region becomes larger and larger. Finally,
from nrjj=3.832 the plasma is unstable to all ~m~ =1
perturbations with

~

jr
~

&0.272.
Because m= &1 all unstable perturbations are of the

screw or kink type. As can be seen from the example
represented in Fig. 3, the r-dependent part ss (r) of the
radial component of the perturbation is nearly constant
throughout the whole plasma, falling to zero only in
the immediate vicinity of the rigid wall. The r-depend-
ent part of the q component has nearly the same value
as st. (r) except near the wall, where it reverses sign
and increases very steep/y to 280 times this value. The
r-dependent part of the s component is zero at the axis,
increases slowly, but in the immediate vicinity of the
wall it reaches the value 140.

We note that the above-described perturbations differ
completely from the localized perturbations which lead
to Suydam's condition and against which force-free
fields are stable for trivial reasons.

We still must find out whether divg can be made to
vanish identically by an appropriate choice of the com-
ponent of R parallel to B (corresponding to the remarks
a,t the end of Sec. II). It is clear from the mathematical
point of view that this is possible because the infinitely
long cylinder does not contain any closed line of force.
However, as we wish to consider the cylinder as the
limiting case of a very thin torus, the perturbations are



''I'ABI LIT Y OV & ORCE-I'REL MAGNE'l. 'I C FIELDS

subject to the supplementary condition that they must
be periodic in the s direction. It can easily be shown for
our example that the vanishing of divg can be attained
Lat least for $'s satisfying conditions (a) and (b) above)
by specifying the component of g parallel to B to have
the same period 2u/k in the s direction as the two com-
ponents perpendicular to B. Thus, in view of the con-
siderations in Sec. II, we find that our stability condi-
tions are valid for aH pressures p,

m ~1
&. 145

b «O. N'7
ocr = 3.4

2.0 3.'0

—26+
7/!

perdu f)
(34)

(p being the mass density) with respect to all admissible
perturbations, we may find a lower limit of the growth
rate by calculating (34) for our unstable perturbations. '
Furthermore, we may expect that this limit is close to
the real growth rate since Fig. 1 shows that there is
only a narrow region for the unstable perturbations.

Taking values for the parameters estimated to be
near the maximum growth rate from Fig. 1 (rs ——3.4,
le=0.145, b=0.997), we calculated numerically the ex-
pression (34) for a hydrogen plasma. The result is
uncertain to a factor of 2 because of some approximation
we applied to simplify the calculation of the denomina-
tor. We obtained for the growth time r = 2m/co

7 =3)c', 10 '$r (e)'~'/8] sec, (35)

where the radius ro has to be taken in cm, the particle
density e in cm ', and the magnetic fieM strength 8
in gauss.

In comparison with growth times of pinch instabilities
the values (35) are rather large.

Evaluating (35) for the arms of spiral galaxies"

"The rigid wall model for laboratory plasmas must naturally
be replaced by the mathematically equivalent assumption that
n )=0 at the boundary. If we take Trehan's (see reference 2)
model (speciaed for P =0), which prescribes that at the boundary
the equilibrium magnetic 6eld must be again parallel to the
cylinder axis, we are in the unstable case since all the zeros of
J&(nr) lie beyond our critical value (32).

IV. THE INSTABILITY GROWTH RATE

The constraint (8), though yielding much analytical
simplification in calculating 58'~;„does not allow us
to calculate the instability growth rates directly as
would have been possible with the usual normalization
of g itself. However, as the growth rate is given by the
maximum of the expression

FIG. 3. A plot of s&, the radial variation of the r component of
the perturbation. The parameters have been taken to make the
perturbation unstable and to be near that of maximum growth
rate. Since m = 1 the perturbation represents a rigid displacement
up to about mr=3.

(re=250 parsec, I=1 cm ', 8=7X10 ' G) w«nd
7 10' years which is of the order of the age of the
universe. This value has been calculated without taking
into account the gravitational forces. However, follow-

ing Chandrasekhar and Fermi" we assume that the
density in the unperturbed state can be treated as
roughly constant, so that the gravitational energy is
not changed because of n )=0 and div(=0. Thus, the
calculated value for 7. gives the right order of magnitude
for our special perturbations. Obviously, one must
expect still larger growth rates if one allows for a de-

formation of the boundary.
The minimum wavelength of our unstable m= 1

perturbations is smaller than the critical wavelength for
gravitational instability (calculated for m=0 modes").
Thus the presence of force-free fields has, indeed, a
destabilizing eBect.

The reason that Trehan' found a stabilizing eGect is
due to the fact that he restricts himself to m=0 modes.
However, the destabilizing effect found in this paper is
probably not too important because the growth rates
are so small as long as one considers only perturbations
which do not move the boundary.
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