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By giving up the unrenormalizable Lagrangian theory, the problem of weak interactions was studied by
means of the unsubtracted dispersion relations. In this formalism the selection rule

~

tlI
~

= 1/2 in the non-
leptonic decays of strange particles is shown to be a consequence of the charge independence of strong
interactions. The unsubtracted dispersion relations further serve to determine the coupling constants in
strong interactions as eigenvalues. Reasonable agreement with experiment was found for the nonleptonic
hyperon decays for the even ZA parity.

I. INTRODUCTION

'N the past several years much experimental evidence
- has been accumulated in favor of the selection rule

~hI~ =1/2 in the nonleptonic decays of strange par-
ticles."Since this is one of the few selection rules rather
well established for weak interactions, we feel that there
must be a deep reason why it is obeyed. If we take this
point of view for granted, this selection rule must be a
manifestation of the laws of nature underlying the yet
unrevealed dynamical structure of weak interactions.
This paper will be devoted to the study of the possi-
bility of explaining or even deriving this selection rule
starting from first principles alone. The first question
immediately raised is what the first principles are, and
it is one of the main subjects to answer this question.

First, it is clear that the Lagrangian formulation of
weak interactions cannot give a solution to the above
problem, since, in order to write down the interaction
Lagrangian for the nonleptonic decays of strange par-
ticles, this selection rule must be built in from the
beginning. In other words this rule must be assumed in
the Lagrangian theory, and there is no possibility of
explaining it. Thus, from our point of view, we must
inevitably give up the Lagrangian formalism for weak
interactions.

Although we have thus far denounced the Lagrangian
approach, there are many reasons to believe that the
Lagrangian approach is not very bad after all. We have
no definite evidence against the Lagrangian theory,
mainly because of the lack of our knowledge on the
reliable solution of it for strong interactions. Also, the
positive aspect of the Lagrangian theory should not be
forgotten in connection with the brilliant successes in
quantum electrodynamics. For this reason we shall take
a rather conservative stand that strong interactions are
described by renormalizable Lagrangian. There are
people of the opinion that the difFiculties associated with
unrenormalizability occur only in the perturbation
theory and that unrenormalizability does not give rise
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2 M. Schwarz, Proceedings of the 1060 Annual International Con-
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to serious troubles in better approximations. We think,
however, that even in better approximations the diS-
culty would remain in one way or another. Thus, we are
led to a very naive stand that strong interactions are
represented by a renormalizable Lagrangian. This is
perhaps the only way to keep the connection between
quantum field theory and classical theory.

This naive point of view fails, however, in an eGort to
formulate the theory of weak interactions by means of
renormalizable Lagrangians. It is extremely dificult or
probably impossible to describe weak interactions in
terms of renormalizable Lagrangians. For instance,
Fermi interactions are unrenormalizable, and it is not
possible to reproduce the V-A theory by combining
renormalizable Yukawa-type interactions, so that we
may conclude that weak interactions cannot be de-
scribed by renormalizable Lagrangians. We interpret
this fact as an indication that we should give up the
Lagrangian approach for weak interactions; then the
only method to describe weak interactions would be the
dispersion approach. The application of the dispersion
theory to weak interactions was initiated by Goldberger
and Treiman, and they succeeded in calculating the x-p,
decay. '4 Leaving details to later sections, we shall
emphasize one particular aspect of this approach. They
assumed an unsubtracted dispersion relation for the
decay amplitude and succeeded in reproducing the ex-
perimental lifetime of the charged pion. In this paper
we further extend this assumption to include all the
decay amplitudes, namely, we assume unsubtracted
dispersion relations for all the weak decay amplitudes.
The physical significance of this assumption will be
discussed at length in later sections, but we shall simply
assume it here.

The formulation of weak interactions in terms of
unsubtracted dispersion relations reminds us of the
dispersion treatment of bound states proposed by
Blankenbecler and Cook. ' They assumed unsubtracted
dispersion relations for vertex functions involving com-
posite particles and showed how they lead to eigenvalue

'M. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
(1958).
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'R. Blankenbecler and L. I'. Cook, Jr., Phys. Rev. 119, 1/45
(1960).
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problems. It would not be unreasonable to assume that
this formal analogy at the starting point might continue
much further and that many aspects of the bound states
are also shared by weak interactions. Take the deuteron,
for instance: we can in principle explain why it is in the
'5+'D state but not in the '5 state; determine the
deuteron mass or determine the pion-nucleon coupling
constant if the deuteron mass is given; and determine
the D state to 5 state ratio. If the analogy really con-
tinues to be valid we would be able to explain why the
nonleptonic decays of strange particles obey

l
AI

l
=1/2

but not
l

AI
l

= 3/2, determine the coupling constants in
strong interactions, and determine the branching ratios
in decay processes. Assuming that this is really the case,
we develop a theory of weak interactions and, in par-
ticular, the nonleptonic decays of hyperons will be
studied in detail in connection with the selection rule

l
AIl =1/2. In Sec. II we first transla, te the renor-

malizable Lagrangian theory of strong interactions into
an appropriate dispersion language. Then in Sec. III we
shall give a brief discussion of the problem of bound
states, since the weak interactions, as formulated in this
paper, bear strong resemblance to bound states. Then,
based on the similarity to the bound-state problem, a
theory of weak interactions is proposed in Sec. IV, and
then the nonleptonic decays of hyperons will be dis-
cussed within the realm of our dispersion theory. Also
the possibility of deriving the selection rule

l
AI

l

= 1/2
in the nonleptonic decays of strange particles will be
shown in Sec. V. In the two Appendixes, we discuss the
renormalization that we encountered in the nonleptonic
decays of hyperons and the connection between con-
served currents and subtractions.

II. DISPERSION FORMULATION OF RENOR-
MALIZABLE LAGRANGIAN THEORY

We assumed that strong interactions are described by
renormalizable Lagrangians, but we have to use dis-
persion relations rather than Lagrangians in the de-
scription of weak interactions. Therefore, in order to
describe both strong and weak interactions coherently,
it is desirable to give a dispersion description of strong
interactions, and, in this section, we shall develop the
dispersion formulation of strong interactions.

The S-matrix theory of strong interactions has been
developed on the basis of two fundamental properties of
the S matrix, namely, the unitarity and analyticity, but
these are very general properties that should be satis6ed
by any theory and in order to specify a theory it is
necessary to introduce subtractions in the dispersion
relations and specify the values of subtraction constants.
The introduction of subtractions, however, specifies the
high-energy behaviors of scattering amplitudes to some
extent, and we are yet very ignorant about them. There
are still many obscure points in the dispersion theory.

Furthermore we do not have a complete set of dis-
persion relations that replaces the Lagrangian theory,

where E,= —p,
' is the Elean-Gordon operator for the

pion field; D„=yB„+mand D, =pr8, nz are the Dirac—
operators for the nucleon field. For simplicity we assume
that the pion is neutral and expand p into a sum of all

possible invariants:
8

p(hays) =iysp. (hays)+iy~y„pg(xys)
BXp,

+igloo.„„ p, (hays). (2.2)
BgpBSy

Define the Fourier transform of p, (hays) by

p. (hays)
=

(27r)'
d pid p2d pa~(pi+p2+pa)

xpi(@12'+%2W+93z)g (pip2pa)
~ (2 3)

' K. Nishijima, Phys. Rev. 119,485 (,1960).
K. Nishijima, Phys. Rev. 122, 298 (1961).
M. Muraskin and K. Nishijima, Phys. Rev. 122, 331 |,'1.961).

' K. Nishijima, Phys. Rev. 124, 255 (1961).

and dispersion relations are known only for a relatively
simple set of scattering amplitudes. It is possible, how-

ever, to write down a complete set of dispersion relations
if we consider the Green's functions rather than the
S-matrix elements. Green's functions satisfy both the
parametric dispersion relations and the generalized
unitarity condition as has been shown in a series of
papers' ' by one of the present authors (KN), and this
Green's function approach can be a possible substitute
for the I.agrangian formulation. Since this formulation
has been already discussed in detail, we shall not
reproduce it here, but we shall base our arguments on
this formulation.

In the dispersion theory one of the most important
and dificult problems is the study of high-energy be-
havior of scattering or production amplitudes, and this
problem is closely connected with the subtractions in
dispersion relations. Since the solution of this problem
is not available to us, we shall make a heuristic assump-
tion concerning the numbers of subtractions needed in
dispersion relations. At present, neither the solution of
the Lagrangian theory nor that of the dispersion theory
is known, except in the perturbation theory, so that they
can be compared only in the perturbation theory.

Therefore it is perhaps reasonable to introduce the
following postulate:

I'ostgtate I. The subtractions in the parametric dis-

persion relations for Green's functions are fixed in such
a way as to reproduce the solution of the renormalizable
Lagrangian theory in perturbation theory.

This postulate enables us, following the prescriptions
given in the previous papers, to fix the forms of the
parametric dispersion relations completely, and we shall
illustrate this statement by a simple example of the pion-
nucleon interaction. '

Define a three-point function p(x,y,s) by

p(hays)=Z. D„D,(ol Tl v (~)P(y)g(s)hl0), (2.1)
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then g, is a function of scalar products of p's alone, i.e. ,
Pre, Ps', and Pss. This g satisfies a once-subtracted
parametric dispersion relation, and the subtraction con-
stant is determined subject to the boundary condition

g, (pts= —p,', ps'= —m', pss= —m') =g. (2.4)

This subtraction introduces the interaction igfysfy in
the corresponding Lagrangian theory. A subtraction for

g s leads to the unrenorrnalizable pseudo-vector coupling
in the corresponding Lagrangian theory so that gs is
assumed to satisfy the unsubtracted parametric dis-
persion relation. In this way, the subtractions in the
dispersion relations are fixed with reference to the
renormalizable Lagrangian.

III. DISPERSION APPROACH TO BOUND STATES

In the previous section we confined ourselves to
perturbation theory, but clearly we need a better ap-
proximation method to deal with the problem of bound
states. In reference 7 the definition of the composite
particles distinct from elementary particles was given.
Since the analogy between bound states and weak
interactions motivated the present work, we shall brieQy
recapitulate the discussions on the bound states.

In the Lagrangian theory we have a clear-cut dis-
tinction between elementary and composite particles,
since we introduce field operators only for those par-
ticles, either stable or unstable, that are supposed to be
elementary. This distinction does not have a corre-
spondence in dispersion theory, since we introduce field
operators for all the stable particles no matter whether
they are elementary or composite. In the 5-matrix ap-
proach it is to some extent a matter of convenience to
call a particle elementary or composite. We think, how-
ever, that it is still possible to make a distinction through
subtractions in the parametric dispersion relations. In
order to study this question, let us assume that the
nucleon and pion are elementary and the deuteron is
composite; then all the parameters related to the
deuteron such as the rest mass, magnetic moment, etc.,
must be determined as functions of more fundamental
parameters of the theory such as the nucleon mass, the
pion mass, and the pion-nucleon coupling constant.
This leads us to the following definition of the composite
particles:

If no arbitrary parameters are introduced through the
parametric dispersion relations for all the Green's func-
tions involving a certain Geld operator q,. for a stable
particle c, we call c a composite particle.

As has been discussed before, ' this definition does not
necessarily exclude subtracted dispersion relations for
Greens functions involving a composite particle. In-
deed, if the subtraction constants are not arbitrary, they
may satisfy subtracted dispersion relations. For example,
the two-point Green's functions or the propagation
functions satisfy twice-subtracted dispersion relations,
but the subtraction constants are determined subject to

the renormalization condition. Another example is given
by the Green's functions corresponding to the electro-
magnetic vertex functions. In this case the subtraction
constants are given by the universal charge, and we
were led to the conclusion that the distinction between
elementary and composite particles cannot be made by
means of the universal electromagnetic interactions. A
similar idea has been expressed by Feynman" in con-
nection with the universal vector coupling in the Fermi
interactions.

When no such universality is available, however, it is
natural to assume that Green's functions involving
composite particles satisfy unsubtracted dispersion rela-
tions. This certainly imposes a severe restriction on the
high-energy behavior of composite particles, and there
emerges a possibility of making the distinction through
the measurements of high-energy cross sections.

Rigorous mathematical discussions on the Green's
functions are rather difficult, since too many variables
are involved, and we shall switch from Green's functions
to 5-matrix elements. The connection between these two
approaches is not yet very clear; in particular we do not
know whether an unsubtracted dispersion relation in
one case necessarily requires an unsubtracted dispersion
relation in the other. But, in order to make a heuristic
argument on this subject, we will assume this corre-
spondence whenever it is felt convenient.

First we would quote the work of Blankenbecler and
Cook' who showed that the combination of an unsub-
tracted dispersion relation with unitarity leads to an
eigenvalue problem thus enabling us to compute the
binding energy of a bound state in principle. It is not
clear in their approximation whether or not an unsub-
tracted dispersion relation always leads to an eigenvalue
problem, but it perhaps does if an appropriate boundary
condition is imposed upon the integral equations.

The second point we would like to emphasize is that
the above-given definition of composite particles is con-
sistent with our intuitive picture that particles with high
spins would be composite. In order to prove that a
particle is composite, we have to show the absence of
subtractions in dispersion relations for all the Green's
functions involving this particle, but, since it is rather
hard, we shall give a plausible argument on the absence
of subtractions in the dispersion relations for vertex
functions and scattering amplitudes involving a high
spin particle. We base our arguments on the unitarity
condition and analyticity properties of such amplitudes.
Lehmann, Symanzik, and Zimmermann" have shown
that the pion-nucleon vertex function should be a de-
creasing function of the momentum transfer when
nucleons are on the mass shell.

They started from the Kallen-Lehmann integral

"R.P. Feynman, Proceedings of the 1960 Annua/ International'
Conference on Hsgh Energy Physi-cs at Rochester (Interscience Pub-
lishers, Inc. , New York, 1960), p. 501.

»H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
cimento 2, 425 (1955).
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representation of the two-point Green's function and
assumed that the dispersion integral in this representa-
tion converges without subtraction. This already poses
a severe restriction on the high-energy behavior of the
weight function or the absorptive part of the propaga-
tion function. If we combine this restriction with the
(generalized) unit:arity condition for the propagation
function we arrive at their result. In the application of
the unitarity condition, the spins of particles in the
intermediate states serve to determine the kinematical
multiplicative factor, and the higher the spins, the more
severe the restriction imposed on the high-energy be-
havior of the vertex functions as discussed in reference 7.
The same argument appeared in the renormalization of
Green's functions in perturbation theory. 9

Froissart" studied the high-energy behavior of scat-
tering amplitudes satisfying the Mandelstam repre-
sentation and reached the conclusion that only a limited
number of subtractions, and hence free parameters, can
be introduced. In this case, too, the unitarity condition
will give more and more severe restrictions on the high-
energy behavior of the scattering amplitudes as the
spins of particles in the intermediate states become
higher and higher. Thus, vertex functions, as well as
scattering amplitudes, involving high spin particles
would satisfy unsubtracted dispersion relations. This
argument renders support to the intuitive picture of
composite particles that particles with high spins would
inevitably be composite, and, at the same time, it
suggests that Green's functions corresponding to un-
renormalizable interactions will satisfy unsubtracted
dispersion relations in the sense discussed in Sec. II.

IV. INTRODUCTION OF WEAK INTERACTIONS

As discussed in the previous section, it seems reason-
able to assume unsubtracted dispersion relations for all
the weak decay amplitudes, and we shall really assume
it later. Instead of assuming the unsubtracted dispersion
relations from the beginning, however, we shall develop
our own arguments in quite a different way.

Postulate I in Sec. II fixed the possible form of the
fundamental set of equations in the dispersion approach,
and, if we solve it in the perturbation theory, the only
solution will be given by that of the renormalized
Lagrangian theory for strong interactions. Various in-
variance requirements met by the Lagrangian theory of
strong interactions will be shared by the solution of the
dispersion theory. In order to include bound states,
however, we have to solve the fundamental set of
equations in better approximations than the perturba-
tion theory. This gives rise to some difhculties in the
dispersion theory due to the lack of uniqueness of the
solution of the dispersion equations as shown by
Castillejo, Dalitz, and Dyson. "

"M. Froissart, Phys. Rev. 123, 1053 (1961)."R.L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev.
101, 453 (1956). This difhculty is related to the fact that the

g= go+"gr+'gs+ (4.1)

(2) bs is given by the solution of the Lagrangian
theory for strong interactions.

Let us assume that there are many invariance prin-
ciples satisfied by the Lagrangian theory of strong inter-
actions or equivalently by gs. These invariance prin-
ciples are not necessarily satisfied by g&, bs, etc. , and, if
the introduction of a certain g violates an invariance
principle, its lowest-order term gs will vanishidentically.
In other words we are trying to destroy certain invari-
p,nce principles by making use of the nonuniqueness of
the solution of the dispersion theory.

The idea of finding noninvariant solutions of an
invariant set of equations was first proposed by Heisen-
berg's and followed by Nambu and Jona-Lasinio. ' 'r
Our approach is close to theirs in the basic ideas, but
also differs from theirs in that violations are introduced
only in weak interactions and also in that Lagrangian
theory was given up to give ample room to accomodate
noninvariant solutions.

The postulate I implies that weak-decay amplitudes,
violating invariance principles and being unrenor-
malizable, should satisfy unsubtracted dispersion rela-
tions, or gr, g&, and further terms should satisfy
unsubtracted dispersion relations.

First, we write down unsubtracted dispersion relations
for gr and then write down the unitarity condition in
the first order of ). Both dispersion relations and uni-

dispersion theory is incapable of accommodating unstable particles
in the fundamental set of equations.

'4 This could be a several-parameter group of solutions as we
shall see later, but this difference is irrelevant in the present dis-
cussion. Physically this parameter denotes the weak-coupling
constant."W. Heisenberg, Revs. Modern Phys. 29, 269 (1957)."Y.Nambu and G. Iona-Lasinio, Phys. Rev. 122, 345 (1961)."G. Jona-Lasinio and Y. Nambu, Phys. Rev. 124, 246 (1961).

One possible way to overcome this difhculty and
select a unique solution is to assume that the right
solution is given by the renormalized Lagrangian theory
provided that we can develop a better approximation
method than the perturbation theory. Up to this point
there is no essential bene6t of formulating 6eld theory in
terms of dispersion relations, and we have not yet
deviated from the conventional Lagrangian theory. A
drastic change is introduced when we try to accommo-
date weak interactions into our formulation.

The Lagrangian theory is perhaps too restrictive to
allow more than one solution, as we assumed above, but
the dispersion theory is certainly more relaxed on this
point. Therefore, we introduce our second postulate:

Postulate II. The fundamental set of equations in
dispersion theory allows a one-parameter group of solu-
tions, "and if we denote an arbitrary Green's function
by 8

(1) g can be expanded in powers of a small parameter
X, i.e.,
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tarity condition are linear and homogeneous in gi. These
equations have only the trivial solution, all g& ——0, if
solved in the series expansion in powers of the strong
coupling constants. This feature bears a strong re-
semblance to the case of bound states, and we shall
utilize this resemblance as a guide to formulate the
theory of weak interactions.

If we solve the singular integral equations in an ap-
proximation better than the series expansion, however,
there will be too many solutions in general, and we are
forced to introduce further boundary conditions to
select the physically acceptable solutions. I or the time
being, it is not clear what kind of boundary conditions
we should employ, but, temporarily, we shall utilize the
similarity of weak interactions to bound states. Take a
simple Schrodinger equation for a radial wave function
N(r) and solve it for negative energies; then, as is well

known, the function u(r) increases exponentially for
large values of r, but for special values of the parameter,
i.e., the energy in this case, u(r) falls off exponentially
for large values of r, and the boundary condition in this
case may be given by the requirement of rapid decrease
of the amplitude or the wave function. Ke adopt this
condition to our problem.

Postulate III. The first-order Green's functions gi
satisfy the following boundary conditions:

(1) gi can survive only when the corresponding in-
variant" cannot exist in strong interactions because of
its convict with some of the invariance principles valid
in strong interactions. In other words, g~/0 only when
gp=0.

(2) Among many other solutions of the singular
integral equations for bi, the physically realizable solu-
tion is the one that falls off most rapidly at high
energies, or for large values of invariant variables, e.g. ,
the scaling parameter $.

(3) Time-reversal invariance is valid even in the
presence of weak interactions.

Since the theory of weak interactions is formulated
based on the formal analogy to bound states, weak
interactions will share various important properties with
bound states. One characteristic feature of weak inter-
actions is that the weak decay amplitudes shouM satisfy
unsubtracted dispersion relations. Goldberger and Trei-
man'4 assumed an unsubtracted dispersion relation for
the x-p decay amplitude and calculated the pion lifetime
in accord with experiments. In the present approach,
we generalized their assumption and assumed that all
the weak decay amplitudes satisfy unsubtracted dis-
persion relations.

In the case of bound states Blankenbecler and Cook5
suggested the possibility of deriving eigenvalue equa-
tions from unsubtracted dispersion relations. Although
this has not yet been justified mathematically, this con-
clusion seems plausible on physical grounds, and, if the

' See Sec. II.The invariant corresponding to g, is given byi-p„.

g =pi/~+$3/2+ (4.2)

where gi/2 transforms as a component of an isospin
doublet (I= 1/2), g3/2 transforms as a component of an
isospin quartet (I=3/2), and so on. Corresponding to
the strangeness change

~
65~ = 1, there occur only half-

integral isospins in this expansion. Next, write down
unitarity condition and unsubtracted dispersion rela-
tions for the Green's functions gi/2, g3/2, etc. Then since
strong interactions are charge-independent and all the
equations are linear in gi/9 g3/2 etc. , the equations for
gi/2 s, those for g3/2's, etc., are completely decoupled
from each other. Thus we can solve "1/2" equations,
"3/2" equations, etc. , separately. From the discussions
given previously, each set leads to its own eigenvalue
equations which serve to determine the strong coupling
constants as eigenvalues. Generally, different sets of
eigenvalue equations require diferent values for the
same strong coupling constant, and they are incom-
patible with each other. Therefore only one set of equa-
tions will have a nontrivial solution other than zero. In
order to answer the question of which set will have a
nontrivial solution, we have to know precisely the strong
interactions which enter as the kernels into the integral
equations to determine the weak decay amplitudes, and,
if we knew them, we could determine which one of the
amplitudes in gi/2, g3/2, etc. , would survive. Since such
detailed knowledge is not available we will assume that
gi/Q is the nonvanishing one; then this implies the selec-
tion rule

~
dI

~

=1/2 in the nonleptonic decays of strange
particles. The above arguments show that the selection
rule thI~ =1/2 is likely to be a consequence of the
charge independence of strong interactions in the pres-
ent scheme, and we realize that it is just in the realm of
weak interactions, where an axiomatic dispersion ap-
proach reveals itself to be more capable of dealing with

fundamental problems than the Lagrangian theory does.

above analogy continues to be valid, the unsubtracted
dispersion relations for the weak decay amplitudes will
also lead to eigenvalue equations. %e will discuss this
point in the next section.

The structure of weak interactions as formulated here
manifests itself in the way various invariance principles
are violated. The conservation of such dichotomic vari-
ables as charge conjugation and parity is violated by the
presence of weak decay amplitudes of the opposite
transformation properties, and our formulation has very
little to say about this in general. However, the isotopic
spin does turn out to be violated in a particular way in
our formalism.

The strong interactions are known to be approxi-
mately charge independent, and, for simplicity, let us
assume that this is strictly true. First let us consider
nonleptonic decays of a strange particle obeying

~

AS~
and then expand the corresponding first-order

Green s function g, into isospin eigenfunctions, i.e.,
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The problem of deriving the selection rule
~

AI
~

=1/2
Will be discussed in more detail in the next section.

The scheme as described above should be able to be
applied not only to nonleptonic decays, but also to
leptonic decays as well. However, we encounter great
complications in applying the unsubtracted dispersion
relations to leptonic decays consistently. The reason for
this difFiculty is as follows: If we take, for instance, the
decays

7r —+ p+v, E +p,+v,— (4.3)

"Consider the coupling between the x-p, decay and the axial
vector part of the capture, then the derivation of the Goldberger-
Treiman relation between the x-p decay constant and the axial
vector coupling constant from the Postulate III is relatively
simple, but, in order to derive another linear relation between
these constants, the introduction of electromagnetic interactions
and other charge-dependent effects is indispensable.

these processes require the study of the three-point
Green's functions, or three-point vertex functions. It is
customary, however to assume that p and v are emitted
from the same point in the Feynman diagram, since they
must both arise simultaneously from the weak inter-
action. This makes the three-point Green's functions
behave as if they were two-point Green's functions as
far as high-energy behavior is concerned. As we know,
the high-energy behavior of two-point Green's functions
are much worse than those of three-point Green's
functions. Therefore, as long as we take the above
customary approach, the introduction of subtractions
seems to be indispensable in order to avoid divergences,
but this does not convict our basic philosophy of de-
scribing weak. interactions in terms of unsubtracted
dispersion relations. If we introduce the electromagnetic
interactions through which leptons can interact with
other particles strongly, the three-point functions be-
have really like three-point Green's functions and their
high-energy behavior is improved. This problem of
introducing electromagnetic interactions is particularly
serious to x-p and E-p, decays and also for the vector
part of the Fermi interaction since they necessarily re-
quire subtractions if the electromagnetic interactions
are neglected. In Appendix II an explanation will be
given of why a conserved vector current requires a
subtraction.

For the complication due to the electromagnetic
interactions the derivation of eigenvalue equations for
leptonic decays is extremely difficult" and we shall not
attempt it here, but perhaps we may make speculations
on this subject. If we take p-e decay, then to a very good
approximation we can neglect all the strong interactions
except the electromagnetic interactions that are well
known. For this process we write down two sets of equa-
tions corresponding to vector and axial vector couplings.
If everything goes all right, we could determine two
parameters as eigenvalues. There are two parameters
involved in this problem, namely, the fine structure
constant and the p-meson to electron-mass ratio, and
we might be able to determine them by solving eigen-

value equations. Unfortunately the equations involve
infrared divergences, and we do not know how to over-
come this difficulty within the framework of dispersion
theory; we shall now stop our speculation. "

is described by the amplitude,

N„, (p)Jr(s) = (2p,q,/m)-:(iV~( —) ( j&(0) ~0), (5.1)

where s= —I'y' is the square of the center-of-mass

energy, po is the 6nai-state nucleon energy, qo is the
final-state pion energy, and m is the nucleon mass. jz is
defined by

jr(x) = (—yr 8+nsr)pr(x).

From the general invariance arguments, J may be ex-
panded into a sum over various invariants as

zp'I g
Jr(s) =Fg(s)+ F2(s)

gs
( iy Fr

+y l
F (s)+ F (s)). (5.2)

gs

The question of charge states will be dealt with later.
The above rather arbitrary looking choice of invariants
was made in order to simplify the decoupling of the
integral equations which result from the dispersion rela-
tions. Application of the LSZ reduction formula to
Eq. (5.1) yields, after neglecting an equal-time com-
mutator,

Jr(s) =i(2qo)'~' d'x e '~'(~((gN(x), jr(0)}8(xo)(0),

(5 3)
where j& is defined by

j~(x) = (7 8+m)p~(x).

Equation (5.3) is used to deduce the analytical prop-
erties of the amplitudes Il,. We shall write down the
dispersion relations for the invariant functions Ii; with-
out proof:

F,(s) =- ImF;(s')
ds' . (i =1, 2, 3, 4.) (5.4)

s —s—z6

In what follows we derive the integral equations for Il;
in the one-pion approximation. If we had defined the
functions F; in (5.2) without the factor gs, these
functions are analytic in the complex s plane cut along

"In addition to the problem of p-e decay there seems to be a
close connection between the Gne structure constant and lepton
masses. See Appendix II for details.

V. NONLEPTONIC DECAYS OF HYPERONS

In this section we discuss the vertex functions for non-

leptonic decay of hyperons along the line described in
the previous section. The decay of a hyperon V (A or Z)
into a nucleon and a pion,
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I'&G. 4. Diagrams kept in the calculation of the absorptive part
of the functions F;(s). S stands for strong interactions and W for
weak interactions.

the positive real axis from the physical threshold

(ns+ p)' to ~, but because of the choice of the invariants
in Eq. (5.2) we have introduced a left-hand cut from
—oo to 0 in Fs and F4 due to the fa,ctor Qs. Since, how-

ever, the branch point s=0 of the left-hand cut is far
from the physical threshold s= (ns+ p)' we may neglect
the left-hand cut in the one-pion approximation.

In order to calculate ImF;(s), we make use of the
absorptive part of J given by

A(s)=-,'(2qp)'Is d x e ')"&m.
l f j)v(x), jr(0)}I0), (5.5)

which we find from the time reversal invariance may be
written

zy Py
A (s) = ImF, (s)+ ImFs(s)

zp IQ
+v l

ImF, (s)+ ImP (s)). (5.6)
l e

In this calculation we shall treat both of the relative ZA

parity cases, but calculations are explicitly shown only
for the even parity case.

If we insert a complete set of intermediate states in

Eq. (5.5) and use translational invariance, we obtain

A (s) =-', (2qo)'"(2s.)'Q &gr I j)vl n)

X& I j I0&f)(p.—P ), (5.7)

where p„ is the energy momentum of the intermediate
state e. In what follows we employ the Goldberger-
Treiman trick' and write the sum over states

I n) as one-
half the sum over "out" plus "in" states in order to
insure reality of A (s) in any approximation.

In Fig. 1 we indicate what terms will be kept in the
calculation of A (s).

Upon insertion of the contributions shown in Fig. 1 or
in the one-pion approximation, we obtain

In the first integral &m I
j)((I7r'iV') is proportional to the

pion-nucleon scattering amplitude and (s.'1V'Igrl0) is
the original vertex; when the coeScient functions are
inserted into the dispersion relations, we therefore get
integral equations for F,(s).

A few remarks are necessary about keeping only the
contributions of Fig. 1. %e have first of all neglected
E-meson couplings since baryon conservation implies
that the smallest mass state containing E mesons is the1' state which is far above the threshold s= (re+a)'
for the rescattering term. We also omitted single-baryon
intermediate states since they do not contribute to E&';

when the initial hyperon is on the mass shell as we shall
discuss in the Appendix I."

In this calculation we neglect the ZA mass difference
and treat the inhornogeneous Born term [Fig. 1(b)j by
perturbation theory, since its contribution begins at
s= (M+p)', where 3f is the averaged hyperon mass
which is above the threshold by at least one-pion mass.
This is about the same position as the neglected %2'
intermediate state would begin to contribute, anyway,
which is further reason for not attempting a better
means of calculating the Born term than perturbation
theory. The diagrams used in the calculation of the
inhomogeneous Born term are shown in Fig. 2. The
perturbation calculation of the Born term is supposed to
give an overestimate, since we approximate the un-
known hyperon decay vertices by constant values, while
the true vertex functions are assumed to fall of7 at high
energies.

In writing down the integral equations for Ii; we
have tn know the pion-nucleon scattering amplitude
(s.

l j)vl~'1P), but, since the precise form of this scat-
tering amplitude is not known at high energies, we
decided to use the form given by perturbation theory.
This makes the result of the present calculation unre-
liable quantitatively, but we hope that it will be reliable
qualitatively.

In the inhomogeneous Born term, we dropped the
single-baryon intermediate states, which means that we

are concerned with the amputated vertex functions F;
but not with three-point Green s functions Ii; including
the vacuum-polarization-type corrections. In order to
write down the integral equations for the amputated
vertex functions consistently we have to be careful in
dropping contributions involving bubbles in the dia-

gram, and in the present calculation we kept only the

A (s) = —,
' (2q())'"

(2~)'-
~'p'dsq' &~ I j~ I

~'1(1')

&&& 'w'I j lo&~(p'+q' —z )

+ d'pr d'q'( I~~I~'I"& FIG. 2. Diagrams used to calculate the inhomogeneous Born
term in Eq. (5.8).

"The inclusion of the single baryon states certainly changes the
functions F.;(s) hut it does not change the values of F's on the
mass shell.



DYNAMICAL APPROACH 'IO SELECTION RULE ~nIi =1/2 1977

N~VVV'
1r

N () 71

~N ~N

(b)

With these preliminaries we can manipulate Eq. (5.~)
and get

ImF {")(s) =C„g K,, (s) ReF;{"'(s)8(s—(m+y)')
FIG. 3. Feynman diagrams for pion-nucleon scattering in the

lowest order. The first graph (a) was kept and the second one
(b) was dropped in the calculation.

diagram in Fig. 3(a) but dropped Fig. 3(b) for the pion-
vucleon scattering, since the latter always gives rise to
bubbles when connected to the hyperon decay vertices.

B&.fore proceeding, we must take up the question of
charge states. For this purpose we note that the ampli-
tude J, in general, may be written for A decay

with

M(s) s')'E(s) 0

G' q s'"E(s) M(s)
K;, (s) =

16m 8' 0 0 M(s) —s')'1V(s)

+G ") (s)8(s—(M+@)'),

(x=0, 1, 3) (5.13)

J.' '(s) =J"'(s)r.(1—rs)/2, (5.9) 0 0 —s'I'X(s) M(s)

J(3)—J(+) J(—) (5.11)

The integral equations for these amplitudes are un-

coupled since the pion-nucleon scattering is diagonal in

the isospin. Here we are concerned with decay ampli-
tudes obeying

~

AI
~

= 1/2, which as has been discussed
in the previous section are decoupled from all others not
obeying this rul. e.

In writing down the inhornogeneous Born term repre-
sented by Fig. 2, we assumed the following egectiee
Lagrangians":

for decay of A into a nucleon and a pion in charge state
n. For Z decay we may write

J-e{"(s) = (I")(s)~-e+I{ ) (s) sLr-, reJ)
&&(1—rs)/2, (5 1o)

for decay of a ~ in charge state P into a nucleon and a
pion in charge state e. If we dehne amplitudes J") and
J(3) proportional to the amplitudes for decay of a Z into
pure I= 1/2 and I=3/2 states, respectively, then

J{1) J{+)+2J{—)

(5.14)

P'
ReF {"'(s)=—P

(m+V) '
IS

C„K;;(s') ReF;(s')+G {"'(s')8(s'—(M+p)')
X . (5.15)

s s

where C„=—1 for N=O, 1, and+2 for N=3. G is the
pion-nucleon coupling constant, and. g/W is the center-
of-mass momentum over total energy. The form of
K,, (s) indicates the obvious fact that there is no

coupling between parity conserving and nonconserving
amplitudes, and the functions M(s) and E(s) involve
kinematical factors and the 5- and P-wave pion-nucleon
scattering amplitudes. The important point is that they
depend only on the st;rong interactions. The G,{")(s) in

Eq. (5.13) denote the contributions from the inhomo-

geneous Born term and are linear in the a's and b's.

The insertion of Eq. (5.13) into the dispersion rela-
tions (5.4) yields a set of coupled integral equations of
the singular Omnes type.

(1—rs) (1—rs)
~Z QN (~Z+~ZY5)$~Z'~+IN~

2 2

g (az'+bz'ps) Qz~(q+Herm. collj. , (5.12)

The matrix in Eq. (5.14) which we call I;;(s) is diago-
nalized by

1 0 0

(1—rs)
Zz= pN~ (aa+b~ys)p~q+Herm. conj. ,

2

1 —1 1 0 0V=-
&2' 0 0 1 1

(5.16)

where the boldface symbols represent vectors in charge
space. This does not mean that we assumed the existence
of Lagrangians describing weak-decay interactions, but
rather the a's and b's are the values of vertex functions
on the mass shell. These Lagrangians are consistent
with (AI( = 1/2 rule.

so that

, 0 0 —111

G' q G' q
UK(s)U '= UL(s)U '= —D(s) (5.17)—

16m 8' 16m 8'

is a diagonal matrix. After first uncoupling the Eqs.
(5.15) by the diagonalization procedure we can write

(Kyoto) 7, 67 (1959). down the solution in terms of linear combinatipns Of
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the F;.""
Q U;, ReF, &"&(s)

ZA relative parity Even Odd

TABLE I. The numerical values of the coupling constants
gzh. z and gzz~

C„U;,G, &"& (s)D, (s)8(s (M—+p)')

1+C ~D '(s)
gz~. '/4~
gzz, '/4w

7.1
1.2

3.8
0.25

with

g3

+—
[1+C,2D,2(s)]'" m.

g
—s 'i '& P, U, ,G.( & (s')

(5.18)
sr+„) ~ (s' —s)[1+C 'D '(s')]'"

00

V'(s) =— tan —'C„D;(s') ds'
(5.19)

s s

and, thus, we get

P U,,: ReF, i"&(s)

C„U;,G, '"' (s)D, (s)
0(s—(M+@)'-)

1+C„zD '(s)

Q;U, ;G &~&(m) F " ds'

[1+C,'D 2(s)]' m. &sr+»' s —s

(~+ )2
—(1/wi tan {C„G i16w&

X (5.21)
s' —(m+p)'

In order for Ii; to satisfy unsubtracted dispersion rela-
tions in a more accurate calculation, we must have
D,(~)=0 and we dropped it. This calculation makes
sense if in all cases

(1/ir) tan 'C„G'/16m) 0. (5.22)

It is apparent from Eq. (5.21) that this makes the
integr'al converge but also leads to the divergence of
F, (s) at infinity. However, this was not unexpected
since in the inhomogeneous Born term we approximated
decay amplitudes of hyperons by constants, and we be-
lieve that actual vertex functions are well behaved at
infinity. "Since the arc tangent is a many-valued func-

23 N. I. Muskhelishvili, SirIgular IrIt'egral 2&'qua]ions (Nnordhoff,
Groningen, Holland, 1953).

'4 R. Omnes, Nuovo cimento 8, 316 (1958).
'5 The solution of the singular integral Eq. (5.15) is by no nieans

unique, but it is impossible to improve the convergence of l",(s) at
infinity. In other words, the solution (5.18) is the right one that
falls oR most rapidly at infinity in accord with the boundary
condition given in Postulate III.

Since we are assuming unsubtracted dispersion rela-
tions for P;, the high-energy behavior of the solution is
important and we approximate D, (s) and G;&"&(s) by
their asymptotic values which are constants. Then

1 &rC„G') —s —(m+ p)'—
p, (s) —q;(s') —tan '~

~

In, (5.20)
&16~) s' —(m+p, )' '

For the odd-parity case we obtain a similar set of
equations. These equations may be written in the form

8 bg ——0, (5.25)

where zf and 8 are 3 by,3 matrices whose matrix ele-
n~ents are functions of G, g~~, g~~, and the masses
M, m, p. We can find nonvanishing solutions of (5.25)
if and only if

detA =detB=O. (5.26)

tion, we can choose an appropriate branch for each case
to satisfy (5.22).

When we put s on the hyperon mass shell, we get

J(M') =Fi(M') —F~(3P)+yg[F3(M2) —F4(M')], (5.23)

which just involves two of the linear combinations
U, ,F, (3P) in Eq. (5.21), and they can be expressed in
terms of the effective coupling constants c's and b's in
(5.12). Both a's and b's are slightly complex, but, be-
cause of the small phase shifts in pion-nucleon scat-
tering at the energy corresponding to the hyperon de-
cays, we may regard them as real. Then for s=3P the
right-hand side of Eq. (5.21) can be expressed in terms
of the strong-coupling constants 6, g~~, and gg~„, and
the weak-decay amplitudes on the mass shell which are
just the a's and b's. After carrying out the integral in
Eq. (5.21), we find for the even ZA parity case

a,i=0.23 (gzg. /167r)

X[G(az—az~)+2gzz az —gzx a~],

az —a,'= 0.25{(gzg./16~) [2Gag —gzg. (a +az')]
+ (gzz./16ir) [G(a-—az')

I'5.24a)
+gzz~(2az+az )—gzxAx)}&

az+2a-'=0. 23{(g» /16ir)[ —Ga&+gz& (2az' —az)]
+ (gzz. /167r) [—2Gaz
—2gzz (az —az)+ 2gzAn QA] }.

b~ =0.35 (gzg /16')
X [G(2bz' —bz)+2gzz. bz' —gz~.b~],

b, —b '= 0.65{(gzg. /16~) [—2Gbn —gz,i.(bz+bz')]
+ (gzz./16ir)[G(bz —3bz')

(5 2 h)
+gz,.(2hz+- bz') —gzii. bii]},

bz+2bz' =0.35{(gzg /16ir) [Gbg+gzg (2bz' —bz)]
+ (gzz./16m) [2Gbz

+2gzz. (bz —bz')+2gz~ b~]}
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TasLE II. Z-decay constants.

Relative
ZA parity

(~-)
r(Z+)

(Z+ ~ P+.rro)/(Z+ ~ I+ s.+)
n(&+ ~ P+~')

Sol. 1

0.8X10—co

0.4X10 "
3

0.33

Even
Sol. 2

2.3X10- o

1.3X10 'o

3
0.98

Sol. 1

0.7X10-»
0.7X10 "

10
0.004

Odd
Sol. 2

4X10 "
5X10 "

10
0.026

Exp.

1.6X 10-~o
0.8X10 'o

0.78.

' See reference 29.

'these two equations are sufficient to determine the two
unknown parameters gzs and gzz . Thus Eqs. (5.25)
may be looked upon as eigenvalue equations to de-
termine the two unknown strong-coupling constants
g~~ and g~~, while 6 was assumed to be known, i.e.,
G'/4rr = 15. The simultaneous equations (5.26) were
solved numerically, and the solutions are tabulated in
Table I.

In both cases we find a rather interesting common
result

g.s.'/4s-))gzz. '/4s-, (5.27)

ss J.J. Sakurai, Phys. Rev. Letters 7, 426 (1961).
'7 R. W. Birge and W. B. Fowler, Phys. Rev. Letters 5, 254

(1960)."J.Leitner, L. Gray, E. Harth, S. Lichtman, J.Westgard, M.
Block, B. Bruckner, A. Engler, R. Gessaroli, A. Kovacs, T.
Kikuchi, C. Meltzer, H. O. Cohn, W. Bugg, A. Pevsner, P.
Schlein, M. Meer, N. T. Grinellini, L. Lenainara, L. Monari, and
G. Puppi, Phys. Rev. Letters 7, 264 (1961)."E.F. Beall, B. Cork, D. Keefe, P. G. Murphy, and W. A.
Wenzel, Phys. Rev. Letters 7, 285 (1961);8, 75 (1962).

which is in contradiction with global symmetry but
consistent with the R invariance recently proposed by
Sakurai. "

Once the eigenvalues are known, we may proceed to
solve Eq. (5.25) for the eigenvectors or the ratios of Z
to A decay constants. Since the equations are linear in
the decay constants we cannot fix the normalization,
and this is generally the case as required by the existence
of one parameter group of solutions in Postulate II. At
this point the analogy between bound states and weak
interactions breaks down, since the problem of bound
states is essentially a nonlinear problem and the nor-
malization of the solution is uniquely determined by the
nonlinear dynamical equations.

In the present case we determine the normalization
of the decay constants with reference to the experi-
mental values, namely, the lifetime r(A) and asym-
metry parameter n(A). Before doing this, however, there
is one quantity which may be determined independently
of the A data, the sign of the ratio n(Z+ —+ P+ss)/n(A).
We Gnd that, irrespective of the Z-A relative parity
assignment, this ratio is negative, in accord with
experiment. ""

All of the decay amplitudes are of the form a+bys
and, when they are expressed in the two-component
form, both the lifetime and asymmetry parameter are
symmetric in the S- and P-wave amplitudes, Therefore,

comparison with experimental values gives generally
two solutions for a~ and b~ corresponding to S-dominant
and P-dominant solutions.

Solution 1:

Solution 2:

~9 2X 10
p bg &4 6X 10

(S-dominant solution)
(5.28)

~ R. D. Tripp, M. B.Watson, and M. Ferro-Luzzi, Phys. Rev.
Letters 8, 175 (1962).

a~= ~2.4X10 ', bg ——~1.8X&0 '.
(P-dominant solution)

We used the experimental lifetime r(A) =2.5X10 "sec
and n(A) = —0.67" to determine as and bs. Once aq
and b~ are determined we can compute ag, b~ and a~',
b~', and, hence, all the parameters related to the Z
decay.

For the even relative parity case, the agreement with
experiment is not bad in view of the roughness of our
calculations, whereas for odd relative parity there is
strong disagreement. On the basis of this calculation
then, we obtain evidence in favor of the even ZA relative
parity assignment. This is in accord with the recent
experimental assignment of the even relative ZA. parity
by the Berkeley group. "However, it must be stressed
that, due to the drastic approximations involved, we
consider the agreement with experiment as rather for-
tuitous and should not be taken too seriously.

In the present calculations we found

(Z+ I+~+)=n(r, —~ I+~-)=n(Z+ p+~')

for both solutions. Experimentally, the first two are
nearly zero and thus in conQict with experiment. This
seems to be a manifestation of the roughness of our
approximations.

In connection with the inequality (5.27) we shall
make a brief remark. In the absence of the K-meson
coupling the ™decay amplitudes are decoupled from the
ZA. decays, but the structure of the equations for decay
amplitudes would be almost the same as that for the
decays treated here provided that strong interactions
are symmetric between nuclear and cascade particle and
their mass difference does not play an important role.

Indeed the equations for the ™decay problem are
obtained by replacing the nucleon wave function by the
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cascade wave function in our calculations. Therefore if
R invariance holds we will find almost the same values
for gag and gag in this problem. If the E-meson
coupling is introduced, these two problems are no longer
separate, but the new coupled set of equations will give
again almost the same values for g~~„and g~- provided
that the E-meson coupling is relatively weak because of
the higher threshold energy. Then the decay amplitudes
will still keep the approximate R invariance, and, hence,
we will get lr( ) —n(A) as predicted by Sakurai. so

This is also consistent with experiment. "
Our final remark is concerned with the selection rule

I VIII =1/2. We assumed the existence of the decay
amplitudes obeying

I

AI
I

= 1/2 and determined the
coupling constants g~~ and g~~ as eigenvalues. Then
from the arguments given in Sec. IV amplitudes not
obeying this rule will identically vanish at least in the
present approximation. In other words, the presence of
the amplitudes obeying

I
AII =1/2 excludes other am-

plitudes not obeying this rule, and this is a consequence
of charge independence of strong interactions.

functions obey the Kallen-Lehmann representation:

a'„,(x) = p C,,(e)a, (*,m, s)
k=1,2

+ d~' p "(~')Z p(OO, lt'), (I3)

where both C;;(k) and p, , ( 'a) are 2-by-2 Hermitian
matrices. We are particularly interested in the matrices
C,;(1) and C,, (2) that are given by

c'(u)" (olo'(0)le &9"Io '(o)lo
=(oI o '(0) l&~)«l ~ (o) I&.&*, (I4)

where E ~ denotes a one-nucleon state for k = 1 or a one-
hyperon state for k=—2.

If the field operators are properly normalized or
renormalized to satisfy the asymptotic condition, we
find

(2I NO)'(0
I (pl(0)

I
S,&= (2PYO) (0

I
to2(0) I

Jvs&= 1, (IS)

and, consequently,

APPENDIX I. RENORMAIIZATION IN
HYPERON DECAYS

Cl, (1)=Css(2) =1. (I6)

The problem that we encountered in hyperon decays
is how to renormalize the cross self-energy represented
by the Feynman diagram in Fig. 4. We dropped the
contribution of this diagram for the reason that it would
vanish when the hyperon I' is on the mass shell. V e
shall explain this statement in what follows.

Without loss of generality we assume that all the
particles in this problem are scalar, and we use the
notation:

O N(~) = ~1(~), O Y(~) = Os(~);
mN =~nl, SnY m. . (I1)——

The two-point Green's functions are defined by

A'Y' (~—y) =(o
I
Tl:o"(~),e,"(y)] I 0), (I2)

FIG. 4. A cross self-energy-type Feynman diagram.

and follow the Kallen-Lehrnann representation.
We consider this problem in the first order of weak

interactions and treat hyperons as if they were stable
since their instability is introduced in second order. If
weak interactions are introduced, there are no quantuni
numbers with which to distinguish between a nucleon
and a hyperon of the same charge and the propagation

This condition does not determine the matrices C,;(1)
and C,, (2) uniquely, since the asymptotic condition
does not give further conditions to determine the non-
diagonal elements. In the presence of quantum numbers
to distinguish between a nucleon and a hyperon there
were no nondiagonal elements, and now we have no
conditions for determining them. This corresponds to
the fact that. in field theory there is no one-to-one
correspondence between field operators and particles, "-

e.g. , if we take appropriate linear combinations of q~
and p& in such a way as to satisfy

pl lrllgl+1112p2) P2 1121tol+1122V Oy (II)

(01~1' ~v,&=(olo lie', &, (olo, 'lx, )=(olo, lJv, ), (Ig

then the primed operators are as useful as the unprimed
ones in the dispersion theory and the coefficients a;; are
quite arbitrary except for (I8). All the physical results
should be independent of the choice of a' s, however. For
this reason we will employ such a gauge that makes the
calculations simplest, i.e., we choose a special gauge, by
imposing additional conditions

(o
I o, (o)

I
~v, & = (o I t, (0) I

lv, &
=o.

The choice of such a gauge is indispensable in the per-
turbation theory in order to renormalize self-energies
corresponding to the diagram in Fig. 4.

Otherwise we would have to introduce gauge-de-
pendent divergent constants into the calcu1ations since
the above gauge is the only one that is free from the
cross self-energy type divergences.

"W.B.Fowler, R. W. Birge, P. Eberhard, R. Ely, M. L. Good,
W, M, Powell, and H, K. Ticho, Phys. Rev. Letters 6, 134 (1961), 'o See, for instance, K. Nishijima, Phys, Rev. 111,995 (1958),
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I
= I/2

In the above gauge we find

A'v;;(x) =S;;S,(x,~, )+ dh' p, , (~') A v (x,~'), (I10)

If q, (x) denotes the field operator of a charge multiplet
with an isospin I, then Q() satisfies the commutation
relation

Lb .(x),3e(y)]=6'(»—y)~. bv»b(y) «r xe=ye, (II5)
and the structure of the pole term is completely
determined. "

It is clear that the contribution of the erst Feynman
diagram vanishes when the hyperon is on the mass shell
since,

(0 I &r(0) liV) =O. (»1)
Several authors kept the Feynman diagram in Fig. 4
on the basis of the argument that the pole term domi-
nates in the neighborhood of the pole, but the result is
gauge-dependent unless the vertex corrections of the
same order are properly included. In our special gauge
we can discard the contributions from the cross self-
energy-type diagrams when the hyperon is on the mass
shell and we kept only the vertex-type diagrams in
Sec. V.

APPENDIX II. CONSERVED VECTOR CURRENTS
AND SUBTRACTIONS

In the text we discussed the necessity of subtractions
for such leptonic decay amplitudes as

~ —& I),+v, K +ib+v, -
when the electromagnetic interactions are neglected.
The reason was that the three-point vertex functions
behave at high energies as badly as two-point functions
do because of the currently accepted structure of weak
interactions that the lepton pair is emitted from the
same point in the Feynman diagram.

The conserved vector part of the P-decay amplitude
is given by

(p I3„t(0) I
~)u.y„(1+~,)~„(I11)

where the matrices o)i, (os, and (os are the (2I+1)-
dimensional irreducible representation of I~, I2 and I3.
The subscripts (b and b run from I to—+I. Taking the
Hermitian conjugate of (II5), we get

I:('(x),3o(y)]= —~'(» —y)~.b*b b (y)
for x()——y(). (II6)

By making use of the technique developed in reference
(6) we can easily show
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As a special case of (117) we get
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where

(oITL( (3)( b'(s)]lo)=&.b'av'(y —s).

Now define the p function by
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then p satisfies the equation
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If we rewrite this equation in momentum space and
adopt the arguments in reference 7, we get

except for a multiplicative constant. We shall study the
dispersion relation for the nuclear vertex function here
in the approximation of neglecting all the charge-
dependent effects.

We introduce the isotopic spin current density ~~„,
which is conserved, i.e.,
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The boldface denotes a vector in charge space and the
isospin I is defined by

where 0. is the Kallen-Lehmann weight function for 4p'

and 0„is defined by

I= d'x Qe(x).

The current density 3„t in (II1) is given by

(II3) g„(xys)~b= d pd q
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"A similar conclusion was obtained in the study of the decay
process X+~ x++e++e by N. Cabibbo and K. Ferrari, Nuovo
cimeuto (to be published). where Sz and Qz are functions of scalar products p', q',

We can write Q„ in the following form:
(II4) @.(p,q).b=f(p+q) N~+Dp+q). (p q)'—
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and (p —q)'. Inserting (II13) into (II11),we find

S~= —1+(p'+nP) (q'+nP)

0'(K )dK
X

(P +K $E) (q +K t6)
(II14)

This result shows that Sz cannot satisfy an unsub-
tracted parametric disperion relation no matter whether
S~ satisfies an unsubtracted dispersion relation or not,
since S~ is independent of (p —q)'.

On the mass shell, where p'+m'=q'+no'=0, (II13)
reduces to

N. (p,q).~= ~.~(p—+q).
X{1—(p —q)'S~L(p —q)')}. (1115)

In this Appendix we showed that, if the vector part of
the P decay amplitude is proportional to the isospin
current ~„t, we need a subtraction if the electromag-
netic interactions are discarded. In other words the
decay amplitude partly involves the two-point function
like structure as was the case for ~ —+ p+v and K —+ p
+v, and this diKculty is supposed to be removed by the
introduction of the electromagnetic interactions. It is
clear, however, that the third component g„q is still
conserved in strong interactions and, hence, requires a
subtraction. This probably forbids the existence of a
decay amplitude of the form

Q„a (0)u,y„(i+y,)u„,

which is unfortunately unobservable.
The isospin current density certainly satisfies the

dynamical equations in the dispersion theory in the
absence of the electromagnetic interactions, since the
equations are exactly the same as those for the electro-
magnetic form factor. The remaining question is whether
the introduction of the electromagnetic coupling be-
tween the isospin current density and the charged lepton
really makes the decay amplitude fall off more rapidly
at high energies than all other possible solutions. Unless
this problem is solved, we cannot understand why the

vector part of the P-decay amplitude is universal and
proportional to the isospin current density.

There are further complicated problems concerning
leptonic decays. In those leptonic decays that are
described by means of unsubtracted dispersion relations
even in the absence of the electromagnetic interactions
we can understand the symmetry between p, mesons and
electrons, since the eigenvalue equations are inde-
pendent of the lepton mass in this approximation, i.e.,
if the p-decay mode is allowed then the electron decay
mode is also allowed and the strong interaction part of
the decay amplitude is common to both modes. When
the introduction of the electromagnetic interactions is
needed in order to avoid subtractions, the eigenvalue
equations will involve the fine structure constant, as well
as the lepton mass, and, hence, the observed symmetry
between p, meson and electron will not follow auto-
matically. But instead, the eigenvalue equation for the p,

mode and the electron mode will be different and serve
to determine more fundamental constants.

In the discussions of the selection rule
~

BI
~

=1/2 in
Sec, V we assumed the presence of both the S-wave and
P-wave decay amplitudes since they are phenomeno-
logically necessary, but we have no deeper reason for
doing this. The same thing occurred in the leptonic
decays and we simply have to assume that, if the p,

mode of decay is present, the electron mode is also
allowed without explanation. Perhaps we have to put
this symmetry into our postulates.

The derivation of the linear equations for the leptonic
decay constants is relatively easy if the amplitudes
satisfy unsubtracted dispersion relations in the absence
of the electromagnetic interactions. The Goldberger-
Treiman relation falls into this category. However, it is
extremely hard to derive such relations for those ampli-
tudes that require the introduction of the electromag-
netic interactions, since we have to deal with equations
with a larger number of independent variables or with
three-body problems. Therefore in practice we will be
able to derive only part of the complete set of linear
relations, i.e., those which are independent of the fine
structure constant and lepton masses.


