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We have generalized Kubo’s treatment of isolated nonequilibrium systems to open systems in contact
with thermal reservoirs. When the system is in contact with one reservoir and is subject to a weak external
field, the deviation of the average of any quantity from its equilibrium value is related to a time-correlation
function which incorporates the effect of the reservoir. A corollary is an isothermal fluctuation-dissipation
theorem, which gives an explicit expression in terms of a time-correlation function for the rate at which
energy flows from the driving field into the reservoir via the system. As an application, we compute the
complex conductivity of a Lorentz gas. We also obtain an expression for the stationary nonequilibrium
distribution of a system in contact with several reservoirs at slightly differing temperatures and chemical
potentials. The Onsager coefficients, which relate the heat and particle fluxes to the differences among the
reservoir parameters, are then explicitly expressed in terms of suitable time-correlation functions and their
symmetry is exhibited. The validity of perturbation theory in finding the linear deviation from equilibrium

of the I'-space ensemble density is also discussed.

1. INTRODUCTION

IN this paper the general problem of investigating the
nonequilibrium properties of a system in contact
with reservoirs will be simplified in two ways. First, we
shall consider only those nonequilibrium states which
are in some clear sense ‘“close” to equilibrium. And
second, we shall employ a model which gives an ideal-
ized but very convenient representation of the inter-
action between the system and the reservoirs.

The model has been described in detail by Bergmann
and Lebowitz,! and a brief recapitulation of its proper-
ties will suffice for our purposes. Each reservoir is
assumed to consist of an infinite number of non-
interacting components distributed prior to interaction
with the system according to a Maxwell-Boltzmann
distribution at a temperature characteristic of the
reservoir. Each component is assumed to interact with
the system at most once, and the interaction is im-
pulsive. It follows from these assumptions that each
reservoir always presents the same statistical appear-
ance to the system. The interaction of the 7th reservoir
with the system can therefore be represented by a
stochastic kernel K,(x,x’), where K.(x,x")dxdt is the
conditional probability that a system located at the
point x’ in its phase space will interact with the rth
reservoir during an interval d¢ and as a result arrive at
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a phase point in the volume element dx. K,(xx") is
assumed to be a differentiable function of the tempera-
ture T of the rth reservoir, but to be independent of
the temperature of the other reservoirs. The evolution
of the distribution function u(x,) in the system phase
space is the result of both the natural motion of the
system and the interactions with the reservoirs, and
therefore the equation governing this evolution is

ou (x:t)
ai

={H (x),u(x,)}

43 (K o ) — Ko (& ()l (L)

r=1 )/

Here R is the number of reservoirs, H (x) is the system
Hamiltonian, and the curly brackets in the first term
on the right represent the Poisson bracket operation.
The assumption that a Maxwell-Boltzmann distri-
bution is maintained in each reservoir, together with
considerations of mechanical time reversibility in the
system plus reservoirs, imply the following ‘time-
reversed symmetry condition’:

exp[—8-H () JK - (+' %) = exp[ —B.H (') JK - (Z,8"). (1.2)

In this equation 8,= (kT,)™, and & is the point corre-
sponding to x under time reversal, i.e.,  has the same
position coordinates as x but momentum coordinates of
opposite sign. It is assumed here that H(x)=H (%).
Finally, if the volume of the system is kept constant,
it is natural to require that the canonical distribution
Z ;™ exp[—B-H (x)], where Z,= S exp[—B.H (x) Jdx, be
a stationary distribution when the system interacts only
with the rth reservoir. By (1.1) this requirement implies
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the “integral condition”
/exp[—ﬁrﬂ(x)]Kr(x’,x)dx’
=/ exp[ —B-H (&) K (x,2")dx’. (1.3)

A simple but powerful method for treating irreversible
processes in the neighborhood of equilibrium has been
developed by Kubo.2 The method is essentially a
perturbation treatment of the Liouville equation, and
it is therefore directly applicable only to closed systems,
in which the total Hamiltonian (including terms due to
external mechanical disturbances) completely deter-
mines the evolution of a distribution in phase space.
We shall adapt Kubo’s method to Eq. (1.1), which is a
stochastic modification of the Liouville equation, and in
this way we may obtain information about the behavior
of open systems without explicitly considering the
Hamiltonian of the environment.

In Sec. 2 we assume that the system interacts only
with one reservoir and that the deviation from equi-
librium is due to an external mechanical disturbance.
A macroscopic quantity of the system is related to the
external disturbance by a “response function,” and it is
shown that response functions can be expressed in the
familiar form of time correlations in the equilibrium
ensemble, and that under certain circumstances they
satisfy reciprocal relations. In Sec. 3 a fluctuation-
dissipation theorem is demonstrated, i.e., a theorem
relating certain time correlations in the equilibrium
ensemble to the rate at which energy is dissipated into
the reservoir when the system is driven by a periodic
external field. The theorem is similar to results of
Callen and Welton? and of Kubo,? but differs from those
results since contact of the system with the reservoir is
explicitly considered here; in other words, the theorem
of Sec. 3 is an isothermal rather than an adiabatic
version of the fluctuation-dissipation theorem.* In Sec.
4 we consider the stationary nonequilibrium state of a
system in contact with a number of reservoirs at
different temperatures. Explicit expressions are derived
for the coefficients relating the heat flow into the various
reservoirs to the reservoir temperatures, and it is shown
that the cross coefficients satisfy the Onsager reciprocal
relations. Section 5 outlines an extension of this result
to the situation in which the reservoirs can exchange
particles as well as energy with the system. In Sec. 6
we shall make several applications of the general
formulas to the calculation of electrical conductivity
and the rate of dissipation in some simple systems.
Section 7 briefly discusses the validity of perturbation
methods in dealing with distributions in phase space.
The proofs of several auxiliary theorems are given in the
Appendix.

2 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

3 H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).

( 4 J. M. Blatt and T. Matsubara, Progr. Theoret. Phys. 21, 696
1959).
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2. RESPONSE OF AN OPEN SYSTEM TO A
MECHANICAL DISTURBANCE

We consider a system in contact with a single
reservoir at temperature 7', with which it can exchange
energy but not particles. Furthermore, we assume that
there is a mechanical disturbance of the system due to
an external field, such that the total Hamiltonian of the
system is the sum of an unperturbed part Hy(x) and an
interaction part —/4(f)A4 (x), where £(¢) is independent
of x. Some of the results below hold when 4 (x) is an
arbitrary function of position in system phase space,
but the most useful expression for the response function
presupposes a limitation on 4 (x) which will be stated
later. It will be convenient to assume that %4(¢f) — 0
as {— — oo, for then the system can be pictured as
evolving from a state of Maxwellian equilibrium in the
infinitely distant past, i.e.,

(2.1)

w(o, — 0)=po(x),

wo(x) =Z71 exp[—BHo(x)],

where
(2.2)
Z= / exp[—BH(x) Jdx.

Since there is only one reservoir, the subscripts in
Eq. (1.1) may be dropped, and this equation becomes

O (w,1)/ 9t =Ko (,t) — ()T u (1), (2.3)

where X and & are linear operators such that for an
arbitrary function ¢ on the phase space

Kb (%) = {Ho(x) ¥ ()}

+ / LK (w0 (o) — K (o ) () Jdoe’,  (2.4)

and
Y (%)= {4 (%) (x)}. (2.5)

Equation (2.3) and the initial condition (2.1) imply the
integral equation

t

w(@)=po(x)— [ d' h(t) exp[ (¢—2)KIFu(x,t), (2.6)

-0

as can be checked by differentiation. An infinite series,
which is obtained by an iteration process beginning with
wo(x), is a formal solution to Eq. (2.6). The term in this
series which is obtained for the first time at the ith
iteration will be designated by u;(x,£). In particular,

pa(wt) = — f d’ (') exp[ ((—1")KJ{A () 10 ()}

= / dt' h(t—1") exp(V'K)
0

X / da’ 3 (x—a ) {A (@), (6)}.  (2.7)
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The distribution exp(#X)é(x—«") is the probability
density that the system at time ¢’ will be located at point
x in phase space, if at time O it is located at point «’
and if the external field were not present; this is evident
from Eq. (2.3), if the second term on the right is set
equal to 0. We shall therefore use the transition prob-
ability notation

Pz’ |)=exp(R)d(x—2') (20). (2.8)

Using this notation and the fact that exp(iX) is a
linear operator, we can write Eq. (2.7) as

pr(af)=— / “a =1
/ 0P (e | (A (W) o)) (2.9)

Because the Poisson bracket is a differential operation it
follows that {4 (x),u0(x)}=—Buo(x){4 (x),Ho(x)}. A
further simplification would be obtained immediately if
the system were closed, for then the rate of change of
any quantity of the system, in the absence of the
external disturbance, would be determined by H,,
specifically, A (x)={4 (x),Ho(x)}. In an open system,
however, the rate of change of 4 at the phase point « is
not uniquely determined, because of the possibility of
interaction with the reservoir. Consequently, we let
A (x) designate the average rate of change of 4, i.e.,

4 (x)EI:g—t / i’ A (x’)P(x’,x[t)] (2.10)

=0
By (2.8) and (2.4) we find
A(x)={A(x),Ho(x)}

—l—/dx’K(x’,x)[A *N—A®)], (2.11)

which shows that in the limiting case of a closed system,
when K (x,2")=0, the standard expression for A (x) is
recovered. Furthermore, if 4 (x) is a quantity which is
not instantaneously changed by an interaction with
the reservoir—e.g., if 4 (x) is a function of position in
configuration space only—then again one obtains the
equation

A@)={4(=),Hox)}. 2.11)

Since interactions between the system and components
of the reservoir were assumed in Sec. 1 to be impulsive,
A(x) can change instantaneously if it depends upon
the momenta of particles in the system, as in the case of
a disturbance by an external magnetic field. However,
if the interaction between the system and the reservoir
is weak, or if A (x) is essentially a volume-dependent
quantity while the reservoir affects the system directly
only at its boundaries, then the second term on the
right-hand side (rhs) of Eq. (2.11) may be negligible
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even though it does not vanish. In the remainder of
Sec. 2 and in Sec. 3, 4 (x) will be assumed to be such
that Eq. (2.11’) holds, so that (2.9) becomes

= "W 1)
X/dx’P(x,x’lt’)A(x’)po(x’). (2.12)

In the Appendix it is proved that
P (| po (&) = P (& & o (1),

which enables us to obtain from Eq. (2.12) the alter-
native formula

(A2)

() = o ()8 f dt' h(—1)
0
X / dx' P(«' E|1)A(F). (2.13)

Now let B(x) be any dynamical variable of the
system, and consider the average of this variable in the
ensemble representing the perturbed system:

(B(t))= / B(@)u(x,0)dx. (2.14)

The contribution to this average from the ith term in
the iteration expression for u(x,t) is

(B())i= / B(@us(0)dr, (2.15)

and it may be called the itk order response. Substitution
of (2.12) into (2.15) yields for the first order or linear
response the formula

BO)= / @ h=Dena(t),  (2.16)

where

b4 () =B/dx/dx’ B(®)P (x| DA e(x). (2.17)
If we introduce the usual notation for a time-correlation
function in the equilibrium ensemble, namely

(R(%)S(0))o
E/dx/dx’ R(x)P(x,2"|£)S (x)uo(x), (2.18)

then
é54()=B(B(t)A(0))o.
The function ¢p4(f) is known as the linear response

Sfunction, and Eq. (2.16) together with (2.17) or (2.19)
constitute the response function theorem for a classical

(2.19)
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open system. The theorem expresses the first-order
response of a system to an external mechanical disturb-
ance in terms of a correlation function in an equilibrium
ensemble. It is clear that formal expressions can be
written for the higher order response terms (and, in
fact, in Sec. 3 we shall find such an expression for the
second-order response quite useful), but these expres-
sions do not have the intuitive physical meaning of the
expression for the linear response. Equation (2.19)
agrees with Kubo’s formula (3.20) for a response
function in a classical system,? but its range of applica-
bility is wider, since we have considered systems which
interact with a reservoir. It should be emphasized,
however, that Eq. (2.19) is valid only for those quanti-
ties 4 (x) which satisfy (2.11).

A valuable concept in considerations of systems
subject to external disturbances is the complex ad-
mittance Xpa(w), which is defined as

Xpa (w)=hn[} / dBa (t)e_i“”—“dt. (2.20)
€ 0
If 2(¢) has the form
h(t)=ho coswtest for t<0
=hocoswt  for (20, (2.21)

then in the limit of e— O we can express the first-order
response as

(B(t))1="b(w) expiwt, (2.22)

where
b (w) = }L() ReXpy (w).

The factor expef provides that the periodic disturbance
is gradually “switched on”, and it guarantees that
h(t)— 0 as t— — o, which would not be the case if
h(#) were strictly periodic.

The results above, with the exception of Eq. (2.13),
do not depend upon the time-reversed symmetry
condition (1.2). It is desirable, however, to establish a
reciprocal relation between ¢s4 and ¢4z, and any such
relation depends on the time-reversal theorem (A2),
which is derived in the Appendix from Eq. (1.2). We
suppose that both 4 and B satisfy (2.11’), and that
both have definite signs under time reversal, i.e.,

A(IE):EAA (x), €A=:f:1

(2.24)
B(CE)';'GBB(.’)C), EB=:|:1.
It will be shown that
¢54 ()= eaenpan(l). (2.25)
To prove this, first note that because of (2.11)
A(@)=—es4 (x) (2.26)
and
B(Z)=—ezB(x). (2.27)
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Using (2.26), (A2), and (A7) we have
/ dx / dx' B(x) P (2, | ) A (& )o ()

=——eAeB(d/dt)/dx/dx' A(x")P (' x|t

XB(®)uo(x). (2.28)
Similar reasoning, using (2.27), yields
/dx/dx’ A(x)P(x,2" | )B () o (2”)
— — (d/di) / da / & AP ] D)
XB(#®)uo(®). (2.29)

The reciprocal relations (2.25) follow immediately from
(2.28) and (2.29).

3. THE FLUCTUATION-DISSIPATION THEOREM

Since the system considered in Sec. 2 is coupled both
with an external field and a reservoir, it is possible for
energy to be dissipated from the field into the reservoir
via the system. Particularly simple and useful expres-
sions can be found for the average heat flow when the
external field is periodically varying.

The average rate of increase of energy of the system
when it is located at point x in phase space will be
denoted by j(x), and it follows from the meaning of
the stochastic kernel K (x,x") that

)= / & K@ )[HE)~H@] (1)

[The same expression follows from Eq. (2.11) if j(x)
is identified with Ho(x).] The heat flow into the system
at time £, denoted by J (), can be expressed as the
ensemble average of j(x) at time ¢,

T()= / i (). (3.2)
The contribution to J(£) from the term u;(x,t) is
T)=(i ()= / dx (). (3.3)

It follows immediately from the integral condition
(1.3) that

Jo(t)E/dx F(@)po(x)=0. (3.4)
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By (2.16) and (2.19) Now let %(¢) = ko coswt [ the limit of (2.21) as e— 0] and
calculate the average of J»(t) over a period 7,

]1(t)=ﬁ/ at h(t—1)(G(¢) A (0))o, (3.5) ° i -
0 (]Z)av:" —'2-—h02ﬁ/ dt / dt’ cosw (t—t')
us £y (1]

which in general is nonvanishing. However, if (%) is the

asymptotically periodic function given in Eq. (2.21), w0
then in the limit of e — 0 the time average of J (¢) over X / dt'’ cosw(t—1t'—1t")
a period vanishes, i.e., 0
totr ar (x7x, ] tl)
(D=7 / J1(t)dt=0, (3.6) X / dx / o’ Ho(x)——a——atl
o
where
r=2r/o. (3.7) X a4 p@a10)
The lowest order contribution to the heat flow which XA @ o). (3.11)

does not vanish on the average when the external field
is periodic is J2(¢). To obtain an expression for this
quantity we first return to (2.6) and carry out the
iteration process to second order, making use of (2.8),
(2.9) and (2.11"). We obtain

! (J2)av= —%ﬁhozjw cosaot/dx Hy(x)
o () =— / dt’ h(¢') expl (t— ¢ ) K ]Fu1(x,t) 0

The integrations with respect to ¢ and # in (3.11) can
be performed, yielding

0 00 d U ! 0 __P /
=—ﬁ/ dt’h(t—t’)/ 2 et —t") X/ ' [P(x,2'| 0)—P(x,4'|0)]

X / o' {A(),P(& " | 1))

X/dx’P(x,x’It’)/dx” {A),P' x|}
XA (@ wo(x").  (3.12)

XA o). (3.8)
P(x,4'| ©)=uo(x), since it has been shown that in the

From (3.3), (3.8), and the relation absence of the disturbance the stationary distribution
is approached asymptotically regardless of the initial
distribution.! Therefore, in the term containin

dx Ho(x) (9/90) P (0 | ’ . &

/ % Ho(®) /0P (v,4'|1) P(x,x’| ) the integrand of the integration with respect

to x is a Poisson bracket, and hence this term vanishes.

Furth )P>’0=3‘—’.C tl;
= / dx Ho(x)3/01 exp (1) (x— ') urthermore, P (x,a’|0)=8(x—1). Consequently

(J2)av=13Bho / dt coswt
=/dx/dx"P(x,x']t)K(x”,x) o

X[Ho(&'")—Ho(x)], (3.9 e
we obtain LG @169 X/dx/dx’ Ho(x){A4 (x),P (2,2 | )} A (& o (')
J:()=8 / dt h(t—1) / at’ h(it—1'—t") = —10h¢ / dt coswt{A () A (0)Y. (3.13)

0 0 0
X [ dx’' f dx Ho(x) (8/0¢) P (%, | ¢) It is convenient to have a notation for the average

rate at which heat flows from the system into the

reservoir, and in order to emphasize that this quantity

% / & {A(),P(x 2" |[¢)) is a function of the frequency of the external field we
shall denote it by Q(w). In the second-order approxi-

XA (&Nue(x’). (3.10) mation Q(w) is evidently the negative of (J2)aw. It is
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also convenient to introduce a notation for the Fourier
cosine transform of (4 (¢)4 (0))o,

Glw)= / aodt coswt(A (£) A (0))o. (3.14)

We can now express the second-order approximation to
the average heat flow into the reservoir as

Q(w)=hiG(w)/2kT. (3.15)
This formula is a form of the fluctuation-dissipation
theorem: Q(w) expresses the dissipation of energy,
while G(w) is related to the fluctuations of the system
in the absence of the driving field, for the auto-
correlation function (4 (#)4 (0))o expresses the strength
and mode of relaxation of spontaneous fluctuations of
the quantity 4 (x).

We may also derive the fluctuation-dissipation
theorem by another argument. The rate at which
energy passes into the system from the driving field,
when the system is at phase point #, is

—[dR()/di]A ().

When %(¢) is asymptotically periodic, as in Eq. (2.21),
the total average energy passing into the system in a
single period is

tot+r
—-/ dt/dxu(x,t)
to

Since p(x,f) is asymptotically periodic with the same
period as %(f), the ensemble average of the energy of
the system will be the same at the end as at the
beginning of a period, and, therefore, the expression
(3.17) represents the heat dissipated into the reservoir.!
As (3.17) contains a factor %£(£)4 (x) in the integrand,
the lowest order contribution to the average heat
flow into the reservoir will be obtained by using

Mo (x) +/‘1 (xrt) :

(3.16)

dh(2)
A (x). (3.17)
dt

w [T dh(t)
Qw)= o /c., dt/dx [ro(x) +,u1(x,t):|-—dt—A (%)

WB [t dh(t) [
dt ——

21 J ¢ dt Jo

i’ h(i—1t')

X/dx/dx’ Py |£)A @) A (@ )po(x').  (3.18)

Taking the expression (2.21) for %(?), letting =0,
using the fact that the factor expe(t—¢') is virtually
unchanged in a single period and almost equal to
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exp— e’, and integrating by parts, we obtain

Q(w):%wﬂho?{ |:—~w"’ coswl exp— et / dx / da’

X P (! |04 (x) A (x')#o(x')]

0

+ow / coswt exp— el / dx / dx’
0

0 .
Xs—t(x,x’ [)A () A (" )aao (2)

——w—le/ coswt exp—et/dx/dx’
0

X P (0 [ ) A (%) A (3o (2) } (3.19)

The first term on the rhs receives no contribution at
= o because of the exponential damping factor; nor at
0 because P(x,x'|0)=6(x—='), and 4 (x)A (x) changes
sign under the transformation x— Z. The third term
goes to 0 as e— 0. The second term can be simplified
by means of formula (A7) of the Appendix, so that in
the limit of e— 0

h 2 0
Q(w)=—f—— / dt coswt f dx / dx’
2kT Jo

X P (@' | ) A () A (¢ )uo(&'),  (3.20)
which is identical with the fluctuation-dissipation
theorem, Eq. (3.15). Using (2.19) and (2.20) we can
also rewrite Eq. (3.18) as

Q(w)=—3wBhe® ImX 44 (), (3.21)

thus expressing the rate of dissipation of energy in
terms of the imaginary part of the susceptibility.

It should be noted that the name ‘“fluctuation-
dissipation theorem” is used by Callen and Welton?
and by Kubo? to refer to a result which is essentially the
Fourier-transformed version of Eq. (2.19) and to the
quantum mechanical generalization of this Equation.
Their use of this name is justified by the fact that the
response function ¢44(f) determines the susceptibility,
which in turn determines the rate of dissipation of
energy. However, it seems equally or more appropriate
to refer to (3.15) as a “fluctuation-dissipation theorem”,
because in this formula the rate of dissipation of energy
is explicitly given. The nature of the dissipation of
energy is somewhat obscure in the work of Callen and
Welton and of Kubo, since the systems they consider
are closed systems. Roughly speaking, dissipation in
the situations which they consider is the transfer of
energy from a few macroscopic degrees of freedom to
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very many microscopic degrees of freedom of the
system. Such a process cannot be isothermal, and the
assumption which is implicit in their formalism, that
after the removal of the driving field the system would
relax to equilibrium at its initial temperature, is not
rigorously true.* It is a justifiable assumption in many
practical problems, however, because the energy
absorbed by the system in the time intervals which are
relevant may be much smaller than the internal energy
of the system.’ The advantage of the derivation given
above of the fluctuation-dissipation theorem is that
the obscurity regarding the dissipation of energy is
removed. The energy is dissipated into an infinite
reservoir, and the entire process is isothermal.

4. HEAT FLOW IN THE PRESENCE OF
SEVERAL RESERVOIRS

It has been shown' under very general conditions
that when the system is in contact with several reservoirs
at different temperatures, as described in Sec. 1, the
distribution approaches a stationary distribution which
is independent of the initial distribution function. We
shall now examine the stationary distribution under the
condition that the reservoir temperatures 7', differ only
slightly from each other.® The meaning of this condition
depends upon the physical quantities which are under
consideration. If these quantities (e.g:, the heat flow
from each reservoir into the system) are expressed as
power series in 3,—f,, and if truncating the series after
the first-order terms provides sufficiently good approxi-
mations to these quantities, then the temperatures may
be said to “differ slightly” from each other. It will be
convenient in the following calculations to choose some
T close to the T, and possibly equal to one of them,
and to express all series expansions in powers of (3,—8),
where =1/kT.

In particular, the kernels K,(x,2") can be expanded
about B,=g. If only terms to first order in (8,—p3) are
retained, then (1.1) becomes

Iu(x,0)
O (M) ()}
—l—Zf: .[Kr(x,x’)y(x’,t)—K,(x’,x)u(x,t)]dx'
R 0K, (x,x")
+3 68 / [»————u )
r=1 - aﬁr
IK, (' x)
—————u(x,t)] dv'. (4.1)
T Br=B
where

KT (x;xl) =K, (x;x,) ! Br=8>

5 U. Fano, Phys. Rev. 96, 869 (1954).

6 This problem has also been considered by J. A. McLennan,
Phys. Fluid 3, 493 (1960), who does not adopt a special physical
model, but instead makes certain simplifying mathematical
assumptions.
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and where H(x) is written in place of H (x), since no
interaction with an external field is assumed. It is
convenient to rewrite (4.1) in operator notation as

du(x, i
u(x t)=CK’,,u(x,t)+ 3 (B:—B)F-(x,1),

at r=L

(4.3)

where & and &, are linear operators such that for an
arbitrary function R (x)

KR (x)={Ho(x),R (x)}

+2 / (K (2 )R(&)—K. (&' 2)R(x)Jde!, (4.4)

and

F.R(x)= / l:a—K;gé@R(x’)

K- (')

—R (x):| dx'. (4.5)
98, Br=B

The operator X of (4.4) is essentially the same as the
operator X introduced in Sec. 2, for when all the
reservoirs have the same temperature T, they constitute
a single composite reservoir, and the stochastic kernel
K (x,2") of this composite reservoir is simply > K, (x,x’).
By the result cited at the beginning of this Section, if
u(x,t) is any solution of (4.1) with an arbitrary initial
condition, then it asymptotically approaches the unique
stationary solution u®(x) as ¢ increases to infinity. In
particular, therefore, we may specify wu(x,0)=puo(x),
where po(x) is defined in (2.2). We shall seek only an
approximation to the true stationary solution p*(x) by
investigating the solution to the approximate equation
(4.3). By (1.4) and the properties of the Poisson bracket
it follows that

Kuo(x)=0. (4.6)

It may be checked by differentiation and the use of
(4.6) that a formal solution to (4.3) which satisfies the
initial condition u(%,0)=uo(x) is

p () =po(ax)+ ‘E (BT—B)/ dr

r=L

Xexp[ (1=1)K]Fu(x,t).  (4.7)

The first-order term in the iteration solution of this
integral equation is

R t
w@)= % 6:—F) / ar / d' P’ | )5 uo(a), (4.8)

r=1

where &,/ is the linear operator of (4.5), except that it
operates on functions of %', and where the transition
probability notation of (2.8) has been used. We now
proceed to find a simple expression for F.uo(x). By
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(2.2) and (4.5)
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a3 1 1
i) = {a—ﬂ: / & [Kxx,x'); exp[—8,Ho() 1=K () expl =B ()] }}

r

r Br=B

0 1 .
—(— —) / 0 (R, (/) exp[—BHo ()]~ R () exp[ —BHo(®)T]
Br=8

B Z»

+/ da’ [K,(x,0")Z7 exp[ —BHo(o') JHo(2') — K, (&' 2) 27 exp[—BHo(%) JHo()].  (4.9)

The first two terms on the rhs of (4.9) vanish by (1.4),
and therefore

Fopto() = / da [ Yo (&) o)

— K, (2! )po () Ho(x) .

This equation may be transformed by using (1.2),
(1.4), and Ho(Z)=H,(x) to

(4.10)

10 (1) = o (1) / R, 2 Ho)— Ho(@ il (411)

Generalizing the notation of Sec. 3, we express the
average rate of increase of the energy of the system due
to interaction with the rth reservoir, when the system
is located at phase point #, as

)= / dx' K, (& o) [How) — Ho@@)]. (4.12)

When the 7th reservoir has the temperature 7', we shall
use the notation

Jr@)=47()|s-8
=/dx’I?,(x’,x)[Ho(x’)—Ho(x):]. (4.13)
From (4.8), (4.11), (4.12), and (4.13) it follows that

() =3 (B.—F) / a / &

XP (' |£) ] (@ o (o). (4.14)

An expression for the first-order term w;*(x) in the
stationary solution p?(x) is obtained by letting {—
in Eq. (4.14):

@) =5 (B—p) / i / o
X P |07 @ o). (4.15)

Using (A2) of the Appendix, we obtain an interesting
alternative expression for p,°(x) (which will not,

however, be used in the following considerations):

w2 () =po (%) 22 (ﬂr—ﬁ)/:dt/dx'

XP@ E|) 7). (4.16)

We shall now consider the heat flow from the rth
reservoir into the system when the stationary state has
been attained, which may be expressed as the ensemble
average of j7(x):

JTE/jT(x)u’(x)dx. (4.17)

Because of the flow of heat in the stationary non-
equilibrium state, there will be a steady rate of entropy
production. The entropy of the system itself is constant,
because the distribution does not change, and hence the
entropy production is due entirely to the exchange of
energy among the reservoirs through the medium of
the system. If a quantity of heat AQ, passes into the
rth reservoir, the entropy increase is

AS,= (1/T ) AQ,= kB,AQ,. (4.18)

Since J7 is the rate of heat flow from the rth reservoir
into the system, the rate of entropy production in the
system plus reservoirs is

o=—3 kB J". (4.19)

Since > J'=0 in the stationary state, (4.19) can be
rewritten as

o=—2 k(B.—pB)J". (4.20)

In Onsager’s treatment of irreversible thermodynamics?

the thermodynamic “forces” ¢, and “flows” J* are

related to the rate of entropy production by the relation
o= ¢, J".

Clearly this relation is satisfied in (4.20) if the thermo-
dynamic force ¢, conjugate to the flow J7 is taken to be

¢r=_k(.3r_18)- (421)

Onsager’s theory of irreversible thermodynamics is
concerned with phenomena in which the flows are
approximately linear in the thermodynamic forces, and

7 L. Onsager, Phys. Rev. 37,405 (1931) ; 38, 2265 (1931).
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his reciprocity theorem applies to the coefficients of this
set of linear relations. Bergmann and Lebowitz! have
established previously that in the present model the
Onsager reciprocal relations hold when the Jr are
expressed as linear functions of the ¢, We shall now
derive their result in a new way, which has the ad-
vantage of providing explicit expressions for the
coefficients.

We first return to Eq. (4.17) in order to find the
first-order term in an expansion of J” in powers of
(Bq—RB). It is clear that for this purpose we may
substitute wo(x)+ui°(x) for the exact stationary
distribution u*(x). Furthermore, by expanding the
kernel K,(x,x") about 8,=8 we may use (4.12) and
(4.13) to obtain

Jr (@)= 7" (x)+ (ﬁr—ﬁ)/dx’ [Ho(x")—Ho(x) ]
JEEA L

]
B dg—p

From (4.15), (4.17), and (4.22) we find, to first order
in (ﬁq_ﬂ))

Jr=(B,—B) / dx / a2 po(@)[Ho(w')— Ho()]

K, (x'x) R 0
x[ —] +3 (ﬁq—ﬁ)/ dt/dx/dx’
Br g ot 0

X jr (@) P (x| ) JH @ Do) (4.23)

The first term in (4.23) can be transformed by the
method of (4.9), and the second term can be written
compactly by introducing for arbitrary R(x) the
notation

Ryr (x) =R (Ci?), (4.24)

(where the subscript tr denotes “time reversed”) and
by using the time-correlation notation of (2.18). Hence,
to first order,

Jr= (Br—ﬁ)/dx/dx’
X o () (' 35) Ho(5) CHo (o) — o)

+5 (B—B) f 0t (70 7ut(O))o.  (4.25)

Using (4.21) and (4.25) we can express the linear
relations between the J” and the ¢, by

R
Jr= Z Lq"ﬁq:

r=1

(4.26)
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where the coefficients of these linear relations are

1 00
Li=—] / (OOt [as [as
><n0<x>1€,(x',xmo(x)[m(x')—Ho<x>]}. (4.27)

Using the time-reversal theorem (A7) we obtain

=L (4.28)
Thus, the Onsager reciprocal relations hold in the
situation which we are considering. There is an analogy
between Eq. (4.28) and Eq. (2.25), and in particular
both of these reciprocity theorems rest upon time-
reversal invariance. However, it does not seem correct
to call Eq. (2.25) a generalization of Onsager’s theorem,
as sometimes is done, since the thermodynamic forces
considered by Onsager cannot in general be represented
as mechanical disturbances.

5. HEAT AND MATTER FLOW IN THE PRESENCE
OF SEVERAL RESERVOIRS

The model described in Sec. 1 has been generalized
by Bergmann and Lebowitz! in order to represent a
system which exchanges particles as well as energy
with several reservoirs. When there are # particles in
the system, the state of the system can be specified by
a point x, in a phase space of 2xf dimensions, where f
is the number of degrees of freedom of each particle.
The phase space will be taken to be a generic phase
space, in which microstates differing by a permutation
of particles are considered to be identical. The grand
ensemble density is represented by a family of functions
pn(2n,t), one in each 2nf-dimensional generic phase
space, and the evolution of the ensemble is governed by
the following generalization of (1.1):

I (n,t)
u—iﬁz {H(xn);ﬂn(x'"at)}

R «
+ 202 | dxd [Kni™ (n,x ui(z ,f)

r=1 i=0

—Ki,.'(xi’,xn)yn(xn,l)]. (5'1)
Here K" (xa,2;") is the probability per unit time that
the system at x;” will make the transition to x, (which
involves gaining #—1 particles) due to interaction with
the rth reservoir. The rth reservoir is assumed to be
characterized by a temperature 7', and in addition by a
chemical potential »,. If the volume of the system is
kept constant, it is natural to require that the following
grand canonical distribution be stationary when the
system is in contact only with the rth reservoir:

uno(xn) = 3.7 exp[—B.H (xa)+vm],  (5.2)
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where
= 2, | dx,exp[—B-H (x.)+vn],
n=0

and
71‘5511’1' = (kTr)_lVr-

In order to satisfy this requirement, an obvious generali-
zation of (1.4) is required. Furthermore, the ‘“time-
reversed symmetry condition” (1.2) can also be
generalized.

If the temperatures 7' are all close to each other, and
hence close to some temperature 7', and if in addition
the chemical potentials », are all close to some v, it is
possible to obtain generalizations of all the results of
Sec. 4. The procedure is exactly the same as before
except somewhat more cumbersome, and it suffices here
to write down the main results.

The first-order term in the stationary solution
un®(x,) is found to be

R 0 0
mﬂm=2@ijz d!

r=1 =0

X P @, | ) 77 (& i ()

- 215 (%-7)/ dti dx’

r=1 =0

(5.3)

Here y=0», P(xn,x/|f) is the transition probability
density in time ¢ from x;’ to x, when all the reservoirs

XP (! | (& pa(as).
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have temperature 7 and chemical potential », and
77(x.) has the same meaning as the similar expression
in Eq. (4.13) except for an additional specification that
the chemical potential of the rth reservoir is set equal
to ». Similarly g"(x,) is the average rate of increase of
the number of particles in the system due to interaction
with the rth reservoir, when the system is at phase
point x, and the temperature and the chemical potential
of the 7th reservoir have, respectively, been set equal
to T"and v, i.e.,

2 (n) =[g"(®n) Jor=p,7r=r

:i di Kin (6 )i—n].  (5.4)

=0

The heat and particle flows in the stationary state are
the grand ensemble averages of j7(x,) and g’ (x.),
respectively:

Jr= i:;o 7 (o)t ()i, (5.5)
G= 3% | ¢ @t (o) dicn, (5.6)

n=0

where u.®(x,) is the exact stationary distribution in the
presence of the reservoirs at different temperatures and
chemical potentials. The approximations to J" and G*
which are correct to first power in (8,—8) and (v,—7)
are obtained by substituting wuno(®s)+uni®(x,) for
un®(x) and by expanding j"(x,) and g"(x.) about g
and v. The results are

T7=(8,—B) é) dcn é dcd o) Roon G o) H (o) CH (o) — H (262) ]

0 © R ol
(=N X | den X [ dxi pno(@n)Kin (& w)n[H (%)= H(x:) 1+ X (8,~8) / dt (77 () 7%:(0))o
n=0 =0 g=1 0

R
= % =) [ a7 OpON, 6D
o
and
G'= (ﬂ"_ﬁ) i dn i dx :U'ﬂ0(xn)K‘inr(xil,xn)H(xn)[i_n]
n=0 =0
0 0 - R i
— (=) X | dan 2 A pnowa)Kin™ (i )l i—n ]+ ZI (B,—B) / dt (g () 7%(0))o
n=0 =0 = 0
R 00
~ % o) [ e @Oro) G3)
o= 0
The thermodynamic forces will be taken to be
¢r=—k(B,—B), r=1,---, R, (5.92)
¢r=k(ys—7), r=R+1, ---,2R and #'=r—R, (5.9b)
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and we introduce the notation
Jr=G", for r=R+1,--+,2R and '=r—R. (5.10)
We can then express the rate of entropy production by
2R
o= 2 ¢J".

r=1

(5.11)

It is clear that linear relations hold between the J7 and
the ¢, (for r=1, ---, 2R),

2R
Jr= Z Ly bq,

q=1

(5.12)

where the coefficients L,” can be read from (5.7) and
(5.8). Finally, it can be checked that

=L, (5.13)
so that the Onsager relations hold in the present model

when there are simultaneous flows of heat and matter.

6. APPLICATIONS TO KINETIC THEORY

We can apply the formal results of Secs. 1-3 to the
following problem considered by Chang and Uhlenbecks?
and others.® A particle of mass M and charge e is bound
harmonically to a fixed center, with potential 1 Mw2R2.
It is subject to elastic collisions with a gas of neutral
molecules of mass m, and this gas is assumed to be
unaffected statistically by collisions with the particle
and always to have a Maxwellian distribution at
temperature 7. Finally, there is an alternating external
electric field E(f)=FE,coswt in the X direction. The
particle is driven by the field and dissipates energy by
colliding with the gas molecules. In a number of
important cases Chang and Uhlenbeck calculate Q(w),
the rate at which the dissipation of energy occurs, by
finding solutions to the Boltzmann equation. We shall
rederive two of their results by use of the fluctuation-
dissipation theorem, and in addition we shall give a
proof of a sum rule which they noticed but did not

prove.
In Sec. 3 we found that
0= [ wcossk ADAO)  (6.1)
w)= t coswi{A (1) A . 0.
2RT /o ’

In the present problem the perturbation term of the
total Hamiltonian is — XeFE, cosw?, so that we can

8 G. E. Uhlenbeck and C. S. Wang Chang, Proceedings of the
International Symposium of Transport Processes in Statistical
Mechanics, edited by I. Prigogine (Interscience Publishers, Inc.,
New York, 1958). C. S. Wang Chang and G. E. Uhlenbeck, “The
Kinetic Theory of a Gas in Alternating Outside Force Fields,”
University of Michigan Engineering Research Institute, Technical
Report, October, 1956 (unpublished).

®J. H. Van Vleck and V. Weisskopf, Revs. Modern Phys. 17,
227 (1945); E. P. Gross and J. L. Lebowitz, Phys. Rev. 104, 1528
(1956), and references cited there,
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write
ho=eE, and A(x)=X. (6.2)

Since the position of the particle is not instan-
taneously changed by a collision with the gas molecules
(which constitute the reservoir) the condition (2.11')
is satisfied, and we have

A={X,H}=Vx (6.3)
Hence, the correlation function of interest is
(A1)A(0))= (Vx(®)Vx(0))o. (6.4)

The first case we shall consider is the Brownian
motion limit, in which #m/M<<1. The correlation func-
tion (6.4) in the case of a harmonically bound Brownian
particle was found by Wang and Uhlenbeck® to be

kT °  dww? coswt

2
V)V x(0))o= , (6.5
xOVxOn=—2[ e 69
where 7 is a friction constant depending on the density
of the gas and the law of interaction between the
particle and the gas molecules. [Tt has been convenient
in Eq. (6.5), and also later, to change their notation
slightly.] From (6.1)-(6.5) we have

EEd w?

(@)= )
0 M (—wd) 2w

(6.6)

which agrees with the result of Chang and Uhlenbeck.?

The second case we shall consider is that in which
m/M>>1 (the “Lorentz limit”), the interaction between
the particle and the gas molecules is a hard sphere
collision, and wo=0. We calculate the correlation
function (6.4) as follows:

(Vx(®)Vx(0))

= / Vx'P(V ,R"; VR )V xuo(V,R)dV'dR'dVAR

= / Vx'W(V,ns(V—=V)s(R'—R—Vi)

XV xuo(V,R)AV'dR’dVdR. (6.7)

The second equation of (6.7) results from writing

P(V' R'; VR|?) as

PV R; VR[)=W(V,)5(V—V")s(R"—R—Vi)
+P'(V,R; VR, (6.8)
where W (V,) is the probability that the particle with
velocity V will not suffer a collision with a gas molecule -
in time ¢, and P’(V,R’; V,R|?) the transition prob-
ability density from (V,R) to (V/,R’) in time ¢ if at least

' Ming Chen Wang and G. E. Uhlenbeck, Revs. Modern Phys.
17, 323 (1945).
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one collision has occurred in the interval; the contri-
bution of the second term on the rhs of (6.8) to the
correlation function (6.7) is zero, because there is zero
“correlation of velocities” when a small hard sphere is
scattered by a very large one.!! From the assumption of
hard-sphere scattering

W (V,t)=exp(—Vi/N), (6.9)
where X is the mean free path of the particle. Therefore

(Vx®)Vx(0))o
- / AV Vx? exp(— Vi/N) (2wkT/M)-312

Xexp(—MV?2/2kT) =§1r(21rkT/M)~3/2f v

0

XV*exp(—Vi/X) exp(—MV2/2kT). (6.10)
From (6.1), (6.4), and (6.10) we obtain
32E02T0 0 CE
Qw)=4%r"172 / dc exp(—¢?), (6.11)
M Jo Tt

where 7o= (M/2kT)*2\. Again this agrees with the
result of Chang and Uhlenbeck.

We can go one step beyond the work of Chang and
Uhlenbeck by proving (to second order in accuracy) a

sum rule which they noted without proof. From
(6.1)-(6.4) we have

€

0 2E02 0 o
/;w Q(w)dw= ZkT/;wde dt COSwt(Vx(t)Vx(0>>o

= (we?Eo*/2kT)(Vx®)o. (6.12)
But by the equipartition theorem
(Vx¥e=kT/M. (6.13)
Hence,
/ ) Q(w)dw=me?Es*/ M. (6.14)

Related sum rules have been proved by Kubo.?

The above calculation can be used to determine the
conductivity of a slightly ionized gas, in which only
collisions between electrons and neutral molecules need
be taken into account, and in which the electrons are
represented as small hard spheres and the molecules as
large hard spheres (the Lorentz model). If the density
of electrons is N, then the current density in the X
direction is

Jx()=eN(Vx(0)), (6.15)

1 S, Chapman and T. G. Cowling, The Mathematical Theory of
Nonuniform Gases (Cambridge University Press, New York,
1939), p. 99.
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where the average (Vx(f)) is taken in the perturbed
ensemble. The complex conductivity ¢(w) is defined by

Jx()=0(w)Ee, (6.16)

where Ey expiwt is the electric field in the X direction.
If the quantity B of Sec. 2 is identified with eV x, and
the quantity 4 with eX, then clearly

o(w)=xpa(), (6.17)

where x4 (w) is the susceptibility defined in Eq. (2.20).
From Eq. (2.19) and Eq. (2.20) we then have

o(w)=eNB / w<VX(t) Vx(0))oe—tdt.  (6.18)

Inserting the expression for (Vx(f)Vx(0)) from Eq.
(6.10) yields

8Netry [ ct
3xti2M Sy

exp(—¢?). (6.19)

o(w)=
ct+itow

This formula agrees with a result of Margenau,” but
our derivation uses a more specialized model than the
one which he assumes.

7. VALIDITY OF THE PERTURBATION PROCEDURE

Approximate solutions of a modified Liouville
equation were found in Secs. 2 and 4 by means of a
perturbation procedure. No attempt was made in those
sections to justify the procedure rigorously, nor shall
we undertake to do this now. In particular, we shall not
deal with the difficult problem of the convergence of the
iteration solutions of the integral Eqs. (2.6) and (4.7).
However, we wish to discuss a particular difficulty
which arises from the fact that u(x,f) is a function in
phase space, which in the case of a system with many
degrees of freedom is a space of high dimensionality.
When the phase space has many dimensions, it is very
likely that the first approximation 5 (x,f)= uo(x) 1 (x,2)
will be a very bad approximation to u(x,f), in the sense
that 5(x,f) will have negligible values at those phase
points at which u(x,t) is large and conversely.®® A more
formal expression of this difficulty is that the functions

{ [tutzozas }_I/Zuoc,t), { [ [n(x,t)?dx}_mn(x,t)

[which are, respectively, the distributions u(x,f) and
n(x,{) normalized so as to be square integrable to

12 /{, Margenau, Phys. Rev. 69, 508 (1946).

13 This difficulty and its consequences were pointed out to the
authors by Professor E. P. Wigner. Similar problems occur in the
quantum mechanical many-body problem, see, e.g., Van Hove,
Hugenholtz, and Howland, Quantum Theory of Many-Body
Systems (W. A. Benjamin Inc., New York, 1961).
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unity ] may very well be almost orthogonal to each
other, i.e.,

f ) ()

{ / (o) Tl f [n(xmzdx}m

The difficulty may be illustrated by a simple example.
Let the system consist of NV noninteracting harmonically
bound Brownian particles, each as described at the
beginning of Sec. 6: i.e., each of charge e and mass M
and bound with a potential $Mwi®R? where R;
= (X,,Y:,Z;) is the displacement from the ith binding
center. The reservoir, consisting of neutral gas molecules
of mass m<<M, will also be as described in Sec. 6.
Instead of an alternating external field, however, we
now assume a constant uniform field of strength E in
the X direction. A phase point x in the system phase
space is a point in a 6/V-dimensional space, but because
the N particles are noninteracting, the physically
significant distributions are products of single-particle
distributions. Thus, the equilibrium distribution in the
absence of the external field is

«l1. (7.1)

N P2 M - -
wo(x) Hexp{ —5[5]1—[-*‘;&0 z]} (7.2)

=1

The distribution in the presence of the external field at
time =0 (when the field has been present and constant
for an infinitely long time, so that equilibrium has been
established) is

1 (x,0) < exp{ —B[Ho(x)— 2 i eEX]
=Hz exp{ —6[(P¢2/2M)+%MwozRf— CEXJ}, (73)
while

7(%,0) = po (%) [14-BeE 2_,X; 1. (7.4)

1957
It follows that

f (5,000 (x,0)d

{ [wutsorras [ [n(x,on?dx}m

{ 1+ (eE/wo):NB/2M }’ (1.5)
exp[ (e /w0)N8/2M ]

Hence, for given E, and sufficiently large IV the ratio
in (7.5) is <1, thus confirming (7.1).

Although in the foregoing example u(x,0) and n(x,0)
are almost orthogonal for large N, there is nevertheless
a clear sense in which the latter is a good approximation
to the former: namely, the single-particle distribution
W (x,t) derived from 5 (x,0) is close to the single-particle
distribution u® (x,¢) derived from u(x,0), at least when
E is sufficiently small. Thus,

w® Ry, P1,0)

= / dRydP,- - - / Ry / APy u(x,0)

« exp[ —B(P2/2M+3MwiR2—eEXy)], (7.6)
because of Eq. (7.3), while
70 (Ry,P1,0)
=/dR2/dP2' . '/dRN/dPN n(x,O)
« exp[ —B(P#/2M +3Mwi®R?) ]
X (14+8eEX,), (1.7)

from Eq. (7.4).
One sees that for a field sufficiently weak that

(eE/wo)'8/2M K1,

the functions u® (Ry,P1,0) and »® (R, P1,0) are very
close to each other, i.e.,

/n(l)(RI,PI,O)p“)(R;,Pl,O)dedPl

~1. (7.8)

[ / [1® (Ry,P1,0) J:dR.dP; / [4® (R, P, 0) FdR P,

Similarly, all the n-particle distributions derived from
u(x,0) and 7(x,0), for small #, are close to each other.
Since physical quantities of interest, such as energy,
heat flow, entropy, depend most strongly on the #
particle distributions with # small, the deviation of the
N-particle distributions from each other causes no
serious difficulty in interesting calculations.

Caution is necessary, however, in adopting this
solution to the difficulty. In the example considered

1/2

above it was easy to demonstrate that the single-
particle distributions are close to each other, since the
system consists of noninteracting components. In more
realistic situations, in which there is interaction
between the components, the question of the character
of the single-particle distributions would have to be
re-examined, and, in general, it would be a difficult
question. It is reasonable that when the physical
characteristics of the system do not change radically
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in the presence of the disturbance (whether thermal or
mechanical) the single-particle distribution obtained by
the perturbation method in first order is indeed a good
approximation to the exact single-particle distribution.
On the other hand, in the neighborhood of a critical
point or a phase transition, the perturbation method
may be extremely inaccurate, not merely in the sense
of (7.1), but in the sense that the first-order approxi-
mation to the single-particle distribution will be very
inaccurate.
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APPENDIX

We wish to state and prove several theorems concern-
ing the transition probability density P(x,+’|#) and the
time-correlation function (R (£)S(0))o.

The first theorem is that P(x,x’|f) obeys the
Chapman-Kolmogoroff equation

Paa |41 = / dx’ Plag [HP "2 |0), (A1)

for ¢ and #>0, where P(x,x'|?) is the transition proba-
bility density for a system in contact with a single
reservoir. This follows directly from the definition

Pz |t)=exp(tK)d(x—x), (2.8)

by using the properties of the & function and the fact
that & is a linear operator on functions of .

The second theorem is that P(x,x'|£) has the time-
reversal property

P (0" [ Dpo(+) = P (&', | 1o (#)- (A2)

This is an integral form of the “time-reversed symmetry
condition” given by Eq. (1.2) and states that in an
equilibrium ensemble as many systems move in a time
interval from the region dx’ to dx go from di to di’.
The reason for this “detailed balance” is clearly the
basic mechanical reversibility of system-reservoir
combination and the assumption that the reservoir
components have a Maxwell-Boltzmann distribution
prior to collision, which are the properties assumed by
Bergmann and Lebowitz! in order to establish conditions
(1.2) and (1.4). To prove (A2) we first rewrite Eq.
(2.8) as
P (a0’ | 1) = exp[tX (w,2") ],

where the matrix element & (x,x") is defined in terms of
the operator & (operating on functions of y) as

SC(x,x’)E/dy 8 (y— )35 (y—2').
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Then

K (x,2") = {0 (y—2"),Ho(3)} y=s

+K(x,x’)——é(x—x’)/K(x”,x’)dx”. (A3)

A formal expansion of P in powers of ¢ is then

P(x' |5 =58(x—x")+K (x,x")

—i——%—ﬁ/&c(x,x”)ﬁc(x”,x’)dx”+- ... (A4

The symmetry relation (A2) may now be shown to hold
for the coefficient of ¢* in (A4) for each =0, 1,2, ---.
This is obvious for #=0. For n=1 we must examine
each of the three terms of (A3) separately: The in-
variance of {8(y—'), Ho(y)}y=aio(x’) under (z,2") —
(@',%) follows from time reversal of a trajectory in the
isolated system (in the absence of the reservoir); the
validity of (A2) for the second and third terms of (A3)
follows from conditions (1.2) and (1.4). Finally, the
validity of (A2) for the coefficients of ¢ with 722
follows recursively from the case of n=1.

A time-reversal theorem for time-correlation functions
follows immediately from (A1) and from the definition
of time-correlation functions: By (A1) and the change
of variables ¥ — T, &’ — &', (2.18) becomes

(R(HS(0))o= / dx / dx' R(E)P (x| S (# )uo(x). (AS)

Using the notation of Eq. (4.24), we obtain the theorem
(R(®)S(0))o= (St (O)Re(0))o.

Finally, we can show that

(A6)

d
;fR S ©))o=(E(®)S(0))o, (A7)

by using (A1) as follows:

* (e [ 2 REIP 2 195 o)
Et/x/x %) P (2,5 | £)S (& Yo (

d
= lim — /dx/dx’ R(x)P(x,x | t+7)S (& Yo (")

0 dr

d
= lim — dx/dx’fdx”
™0 dr

XR@)P (" | 7)P (2" 0 | DS (& )pwo ()

- / dx / dx” B(")P (" & | S (& Yo ().



