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We have generalized Kubo's treatment of isolated nonequilibrium systems to open systems in contact
with thermal reservoirs. When the system is in contact with one reservoir and is subject to a weak external
Geld, the deviation of the average of any quantity from its equilibrium value is related to a time-correlation
function which incorporates the effect of the reservoir. A corollary is ai. isothermal fluctuation-dissipation
theorem, which gives an explicit expression in terms of a time-correlation function for the rate at which

energy Qows from the driving Geld into the reservoir via the system. As an application, we compute the
complex conductivity of a Lorentz gas. We also obtain an expression for the stationary nonequilibrium
distribution of a system in contact with several reservoirs at slightly di8ering temperatures and chemical
potentials. The Onsager coefficients, which relate the heat and particle cruxes to the differences among the
reservoir parameters, are then explicitly expressed in terms of suitable time-correlation functions and their
symmetry is exhibited. The validity of perturbation theory in Gnding the linear deviation from equilibrium
of the I'-space ensemble density is also discussed,

l. INTRODUCTION
' 'N this paper the general problem of investigating the
~ ~ nonequilibrium properties of a system in contact
with reservoirs will be simplified in two ways. First, we
shall consider only those nonequilibrium states which
are in some clear sense "close" to equilibrium. And
second, we shall employ a model which gives an ideal-
ized but very convenient representation of the inter-
action between the system and the reservoirs.

The model has been described in detail by Bergmann
and Lebowitz, and a brief recapitulation of its proper-
ties will suKce for our purposes. Each reservoir is
assumed to consist of an infinite number of non-
interacting components distributed prior to interaction
with the system according to a Maxwell-Boltzmann
distribution at a temperature characteristic of the
reservoir. Each component is assumed to interact with
the system at most once, and the interaction is im-

pulsive. It follows from these assumptions that each
reservoir always presents the same statistical appear-
ance to the system. The interaction of the rth reservoir
with the system can therefore be represented by a
stochastic kernel E,(x,x'), where E,(x,x')dxdt is the
conditional probability that a system located at the

point x' in its phase space will interact with the rth
reservoir during an interval df, and as a result arrive at

a phase point in the volume element dx. E'„(x,x') is

assumed to be a differentiable function of the tempera-
ture T, of the rth reservoir, but to be independent of
the temperature of the other reservoirs. The evolution
of the distribution function tt(x, t) in the system phase
space is the result of both the natural motion of the
system and the interactions with the reservoirs, and
therefore the equation governing this evolution is

c)tt(x, t) = (H(x), tt (x,t))

+ P $K, (x,x')tc(x', t) E,(x',x)tt(x—,t) Jdx' (1.1).
Here R is the number of reservoirs, H(x) is the system
Hamiltonian, and the curly brackets in the 6rst term
on the right represent the Poisson bracket operation.
The assumption that a Maxwell-Boltzmann distri-

bution is maintained in each reservoir, together with

considerations of mechanical time reversibility in the

system plus reservoirs, imply the following "time-

reversed symmetry condition":

exp L
—p,H (x)]E,(x',x) = expL —p,H (x')gK, (x,x'). (1.2}
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In this equation p, = (kT,), and x is the point corre-

sponding to x under time reversal, i.e., S has the same

position coordinates as x but momentum coordinates of

opposite sign. It is assumed here that H(x)=H(x).
Finally, if the volume of the system is kept constant,
it is natural to require that the canonical distribution

Z, ' expt —p,H (x)j, where Z,=J' exp/ —p,H (x)jdx, be

a stationary distribution when the system interacts only
with the rth reservoir. By (1.1) this requirement implies
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the "integral condition"

exp L
—P,H (x)7K, (x',x)dx'

expL —p„H(x')7E„(x,x')dx'. (1.3)

A simple but powerful method for treating irreversible
processes in the neighborhood of equilibrium has been
developed by Kubo. ' The method is essentially a
perturbation treatment of the Liouville equation, and
it is therefore directly applicable only to closed systems,
in which the total Hamiltonian (including terms due to
external mechanical disturbances) completely deter-
mines the evolution of a distribution in phase space.
We shall adapt Kubo's method to Eq. (1.1), which is a
stochastic modification of the Liouville equation, and in
this way we may obtain information about the behavior
of open systems without explicitly considering the
Hamiltonian of the environment.

In Sec. 2 we assume that the system interacts only
with one reservoir and that the deviation from equi-
librium is due to an external mechanical disturbance.
A macroscopic quantity of the system is related to the
external disturbance by a "response function, "and it is
shown that response functions can be expressed in the
familiar form of time correlations in the equilibrium
ensemble, and that under certain circumstances they
satisfy reciprocal relations. In Sec. 3 a Ructuation-
dissipation theorem is demonstrated, i.e., a theorem
relating certain time correlations in the equilibrium
ensemble to the rate at which energy is dissipated into
the reservoir when the system is driven by a periodic
external field. The theorem is similar to results of
Callen and Welton' and of Kubo, ' but differs from those
results since contact of the system with the reservoir is
explicitly considered here; in other words, the theorem
of Sec. 3 is an isothermal rather than an adiabatic
version of the fluctuation-dissipation theorem. In Sec.
4 we consider the stationary nonequilibrium state of a
system in contact with a number of reservoirs at
different temperatures. Explicit expressions are derived
for the coeKcients relating the heat Row into the various
reservoirs to the reservoir temperatures, and it is shown
that the cross coefficients satisfy the Onsager reciprocal
relations. Section 5 outlines an extension of this result
to the situation in which the reservoirs can exchange
particles as well as energy with the system. In Sec. 6
we shall make several applications of the general
formulas to the calculation of electrical conductivity
and the rate of dissipation in some simple systems.
Section 7 brieRy discusses the validity of perturbation
methods in dealing with distributions in phase space.
The proofs of several auxiliary theorems are given in the
Appendix.

' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).' H. B. Callen and T. A. Kelton, Phys. Rev. 83, 34 (1951).
4 J. M. Blatt and T. Matsuhara, Progr. Theoret. Phys. 21, 696

(1959).

where
u(x, —~)=~o(x),

pp(x) =Z ' expL —PHp(x)7,

Z= expE —PHo(x)7dx.

(2 1)

(2 2)

Since there is only one reservoir, the subscripts in
Eq. (1.1) may be dropped, and this equation becomes

Bp(x,t)iBt = Xp, (x,t) —h(t)Fp(x, t), (2 3)

where X and 5 are linear operators such that for an
arbitrary function f on the phase space

X4 (x)= (Ho(x) A (*)}

Pt (x,x')P(x') —Z(x', x)y(x) 7Cx', (2.4)

and
SP(x) = (A (x),P(x)). (2 3)

Equation (2.3) and the initial condition (2.1) imply the
integral equation

p(x, t) =po(x) — dt' h(t') expL(t —t') X7Fp, (x,t'), (2.6)

as can be checked by differentiation. An infinite series,
which is obtained by an iteration process beginning with
po(x), is a formal solution to Eq. (2.6). The term in this
series which is obtained for the erst time at the ith
iteration will be designated by IJ.;(x,t) In particular, .

pg(x, t) =— Ch' h(t') expL(t —t')x7(A (x),po(x))

d&' h(& —&') exp(&'X)

X dx' B(x—x')(A (x'),po(x')). (2.7)

2. RESPONSE OF AN OPEN SYSTEM TO A
MECHANICAL DISTURBANCE

We consider a system in contact with a single
reservoir at temperature T, with which it can exchange
energy but not particles. Furthermore, we assume that
there is a mechanical disturbance of the system due to
an external field, such that the total Hamiltonian of the
system is the sum of an unperturbed part Ho(x) and an
interaction part —h(t)A(x), where h(t) is independent
of x. Some of the results below hold when A (x) is an
arbitrary function of position in system phase space,
but the most useful expression for the response function
presupposes a limitation on A(x) which will be stated
later. It will be convenient to assume that h(t) ~ 0
as f —+ —~, for then the system can be pictured as
evolving from a state of Maxwellian equilibrium in the
infinitely distant past, i.e.,
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very many microscopic degrees of freedom of the
system. Such a process cannot be isothermal, and the
assumption which is implicit in their formalism, that
after the removal of the driving 6eld the system would
relax to equilibrium at its initial temperature, is not
rigorously true. 4 It is a justifiable assumption in many
practical problems, however, because the energy
absorbed by the system in the time intervals which are
relevant may be much smaller than the internal energy
of the system. ' The advantage of the derivation given
above of the Quctuation-dissipation theorem is that
the obscurity regarding the dissipation of energy is
removed. The energy is dissipated into an infinite
reservoir, and the entire process is isothermal.

and where Hp(x) is written in place of H(x), since no
interaction with an external field is assumed. It is
convenient to rewrite (4.1) in operator notation as

(4 3)

where X and F„are linear operators such that for an
arbitrary function R (x)

XR(x) = {Hp(x),R(x))

+P [E,(x,x')R(x') —E,(x',x)R(x))dx', (4.4)

4. HEAT FLOW' IN THE PRESENCE OF
SEVERAL RESERVOIRS

It has been shown' under very general conditions
that when the system is in contact with several reservoirs
at different temperatures, as described in Sec. 1, the
distribution approaches a stationary distribution which
is independent of the initial distribution function. We
shall now examine the stationary distribution under the
condition that the reservoir temperatures T„differ only
slightly from each other. ' The meaning of this condition
depends upon the physical quantities which are under
consideration. If these quantities (e.g. , the heat flow
from each reservoir into the system) are expressed as
power series in P,—P„and if truncating the series after
the erst-order terms provides sufficiently good approxi-
mations to these quantities, then the temperatures may
be said to "differ slightly" from each other. It will be
convenient in the following calculations to choose some
T close to the T„, and possibly equal to one of them,
and to express all series expansions in powers of (P,—P),
where P= 1/kT.

In particular, the kernels E,(x,x') can be expanded
about P,=P. If only terms to 6rst order in (P,—P) are
retained, then (1.1) becomes

Bti(x,t) = {Hp(x),ti(x, t))

-BE„(x,x')
-R(x')

BE,(x',x)
R(x) Cx'. (4.5)

Xtip(x) =0. (4.6)

It may be checked by differentiation and the use of
(4.6) that a formal solution to (4.3) which satisfies the
initial condition p(x,0) =tip(x) is

The operator X of (4.4) is essentially the same as the
operator X introduced in Sec. 2, for when all the
reservoirs have the same temperature T, they constitute
a single composite reservoir, and the stochastic kernel
E(x,x') of this composite reservoir is simply P E,(x,x').
By the result cited at the beginning of this Section, if
p(x, t) is any solution of (4.1) with an arbitrary initial
condition, then it asymptotically approaches the unique
stationary solution ti'(x) as t increases to infinity. In
particular, therefore, we may specify ti(x,0)=tip(x),
where tip(x) is defined in (2.2). We shall seek only an
approximation to the true stationary solution ti'(x) by
investigating the solution to the approximate equation
(4.3).By (1.4) and the properties of the Poisson bracket
it follows that

+ Q [E,(x,x')p(x', t) —E„(x',x)ti(x, t))dx'

where

+ Z (P P)—-BE„(x,x')
t (x', t)

BP,

BE„(x',x)
ti (x,t) dx'. (4.1)

BPr A s-=
&&exp[(t —t') X)&,ti (x,t'). (4.7)

The first-order term in the iteration solution of this
integral equation is

tji(x, t)= P y„—p) dt' dx' I (X,X'~t')r 'pp(x'), (48)

E„(x,x') =E,(x,*')
i s„=s, (4.2)

P U. Fano, Phys. Rev. 96, 869 (1954).
This problem has also been considered by J. A. McLennan,

Phys. Fluid 3, 493 (1960), who does not adopt a special physical
model, but instead makes certain simplifying mathematical
assumptions.

where p, ' is the linear operator of (4.5), except that it
operates on functions of x', and where the transition
probability notation of (2.8) has been used. We now
proceed to find a simple expression for P„tip(x). By
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his reciprocity theorem applies to the coeKcients of this
set of linear relations. Bergmann and Lebowitz' have
established previously that in the present model the
Onsager reciprocal relations hold when the J" are
expressed as linear functions of the g,. We shall now
derive their result in a new way, which has the ad-
vantage of providing explicit expressions for the
coeKcients.

We 6rst return to Eq. (4.17) in order to find the
6rst-order term in an expansion of J" in powers of
(P,—P). It is clear that for this purpose we may
substitute po(h)+ pi'(h) for the exact stationary
distribution p'(h). Furthermore, by expanding the
kernel E,(x,x') about p„=p we may use (4.12) and
(4.13) to obtain

-BE,(x',x)

where the coefficients of these linear relations are

00

dt (g (t)y„q(O)),+S " dh dh'

{)

XPp(h)E, (h', h)HO(h)LHp(h') —Ho(h)] . (4.27)

Using the time-reversal theorem (A7) we obtain

L,"=L„'. (4.28)

Thus, the Onsager reciprocal relations hold in the
situation which we are considering. There is an analogy
between Eq. (4.28) and Eq. (2.25), and in particular
both of these reciprocity theorems rest upon time-
reversal invariance. However, it does not seem correct
to call Eq. (2.25) a generalization of Onsager's theorem,
as sometimes is done, since the thermodynamic forces
considered by Onsager cannot in general be represented
as mechanical disturbances.

I"= (p„—p) dh dh tip(h)t Ho(h) HQ(h)$

aE, (x',x)-
+ p (pq

—p) dt dx dh'

Xg"( )I'( 'It)P(*')t o( ') (423)

The first term in (4.23) can be transformed by the
method of (4.9), and the second term can be written
compactly by introducing for arbitrary R(x) the
notation

R„(x)=R(h), (4.24)

From (4.15), (4.17), and (4.22) we Gnd, to first order
in (p,—p),

$. HEAT AND MATTER FLOW IN THE PRESENCE
OF SEVERAL RESERVOIRS

The model described in Sec. 1 has been generalized
by Bergmann and Lebowitz' in order to represent a
system which exchanges particles as well as energy
with several reservoirs. When there are e particles in
the system, the state of the system can be specified by
a point x„ in a phase space of 2mf dimensions, where f
is the number of degrees of freedom of each particle.
The phase space will be taken to be a generic phase
space, in which microstates differing by a permutation
of particles are considered to be identical. The grand
ensemble density is represented by a family of functions
ti„(h„,t), one in each 2rsf-dimensional generic phase
space, and the evolution of the ensemble is governed by
the following generalization of (1.1):

(where the subscript tr denotes "time reversed") and
by using the time-correlation notation of (2.18).Hence,
to first order, 8 oo

+ p p dx LE„,"(h„,h )p;(h, ',t)
r=l i=0

I"=(p, —p) dx dx' —E;."(x,',x.)p„(h„,t)). (5.1)

Xti o (x)E' (x',x)H p (x) t Ho (x') —H p (h) $

+2 (p. p) «u" (t)2—.'(o))o (425)

R
&"= E La"4a (4.26)

Using (4.21) and (4.25) we can express the linear
relations between the I"and the p, by

IIere IC„;"(h„,h ) is the probability per unit time that
the system at x,' will make the transition to x (which
involves gaining e i particle—s) due to interaction with
the rth reservoir. The rth reservoir is assumed to be
characterized by a temperature T„and in addition by a
chemical potential v, . If the volume of the system is
kept constant, it is natural to require that the following
grand canonical distribution be stationary when the
system is in contact only with the rth reservoir:

p p(x„)= 5,—' exp) —P,H(h„)+y„ej, (5.2)
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and we introduce the notation

J"=G"' for r=R+1, 2R and r'=r R.—(5.10)

We can then express the rate of entropy production by

2B
~= E 4.J'. (5.11)

It is clear that linear relations hold between the J"and
the P, (for r= 1, , 2R),

write

hp=eEp and A(x)=X. (6.2)

Hence, the correlation function of interest is

Since the position of the particle is not instan-
taneously changed by a collision with the gas molecules
(which constitute the reservoir) the condition (2.11')
is satisfjLed, and we have

A = (X,H}= VX (6 3)

(A(~)A(o)), = (v (~)vx(o)), . (6.4)

q=1
(5.12)

where the coefficients I.," can be read from (5.7) and
(5.8). Finally, it can be checked that

The first case we shall consider is the Brownian
motion limit, in which m/M((1. The correlation func-
tion (6.4) in the case of a harmonically bound Brownian
particle was found by Wang and Uhlenbeck" to be

Lq"= L,„q, (5.13)

so that the Onsager relations hold in the present model
when there are simultaneous Rows of heat and matter.

(v (t)v (o)),=
2k' dcooP coscvf

(6.5)
(~ 2 ~p)2+~2~2

hp

Q(tp) = dt cosset(A (/)A (0))o.
2kT p

(6.1)

In the present problem the perturbation term of the
total Hamiltonian is —XeEpcosc03 so that we can

G. E. Uhlenbeck and C. S. Wang Chang, Proceedings of the
International Symposium of Transport Processes in S/atistical
3IIechanics, edited by I. Prigogine (Interscience Publishers, Inc. ,
New York, 1958). C. S. Wang Chang and G. E. Uhlenbeck, "The
Kinetic Theory of a Gas in Alternating Outside Force Fields, "
University of Michigan Engineering Research Institute, Technical
Report, October, 1956 (unpublished}.' J. H. Van Vleck and V. Weisskopf, Revs. Modern Phys. 17,
227 (1945);E. P. Gross and J.I.. Lebowitz, Phys. Rev. 104, 1528
(1956), and references cited there,

6. APPLICATIONS TO KINETIC THEORY

We can apply the formal results of Secs. 1—3 to the
following problem considered by Chang and Uhlenbeck'
and others. ' A particle of mass 3f and charge e is bound
harmonically to a fixed center, with potential ~%cop'R'.
It is subject to elastic collisions with a gas of neutral
molecules of mass m, and this gas is assumed to be
unaffected statistically by collisions with the particle
and always to have a Maxwellian distribution at
temperature T. Finally, there is an alternating external
electric field E(t)=Ep cosh' in the X direction. The
particle is driven by the held and dissipates energy by
colliding with the gas molecules. In a number of
important cases Chang and Uhlenbeck calculate Q(tp),
the rate at which the dissipation of energy occurs, by
finding solutions to the Boltzmann equation. We shall
rederive two of their results by use of the Quctuation-
dissipation theorem, and in addition we shall give a
proof of a sum rule which they noticed but did not
prove.

In Sec. 3 we found that

where g is a friction constant depending on the density
of the gas and the law of interaction between the
particle and the gas molecules. )It has been convenient
in Eq. (6.5), and also later, to change their notation
slightly. ) From (6.1)—(6.5) we have

Q(~) =
~2+ 2~

(tp2 ~ 2)2+~2~2
(6.6)

Vx P(V R ' V,Rit)v~pp(V, R)dV dR dVdR

Vx'W (V,&)S(V V')&(R' R—Vt)——

X Vxpp(Y, R)dV'dR'dVdR. (6.7)

The second equation of (6.7) results from writing
P(V',R' V,Rit) as

P(V', R'; V,R i
t) = W(V, t)b(V —V')5(R' —R—Vt)

+P'(V', R', V,R
i t), (6.g)

where W(V, t) is the probability that the particle with
velocity V will not suffer a collision with a gas molecule
in time t, and P'(V', R'; V, R~t) the transition prob-
abil. ity density from (V,R) to (V', R') in time t if at least

' Ming Chen Wang and G. E. Uhlenbeck, Revs. Modern Phys.
17, 323 (1945).

which agrees with the result of Chang and Uhlenbeck. '
The second case we shall consider is that in which

m/M))1 (the "Lorentz limit" ), the interaction between
the particle and the gas molecules is a hard sphere
collision, and ~p= 0. We calculate the correlation
function (6.4) as follows:

(Vx(t) Vx(0))p
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where Ep expi~t is the electric field in the I direction.
If the quantity 8 of Sec. 2 is identi6ed with elVVx, and

(6 9) the quantity A with eX, then clearlyW(V, t) = exp( —Vt/Ii),

one collision has occurred in the interval; the contri- where the average (Vx(t)) is taken in the perturbed
bution of the second term on the rhs of (6.8) to the ensemble. The complex conductivity a. (pp) is defined by
correlation function (6.7) is zero, because there is zero
"correlation of velocities" when a small hard sphere is i x(t) =~(~%~'"', (6.16)
scattered by a very large one."From the assumpti
hard-sphere scattering

where 'A is the mean free path of the particle. Therefore

(Vx(t) Vx(0))p

~(~)=x»(~), (6.17)

where xsz(p~) is the susceptibility defined in Eq. (2.20).
From Eq. (2.19) and Eq. (2.20) we then have

dV V»' exp( —Vt/X) (2~kT/M) '"

Xexp( —M V'/2kT) = ', pr(27rkT-/M) Pt' d -V

o. (pi) =e'1VP (Vx(t) Vx(0))pe ~'dt. (6.18)

Inserting the expression for (Vx(t)Vx(0))p from Eq.
&& V4 exp( —Vt/y) exp( —M V'/2kT) (6 10) (6.10) yields

From (6.1), (6.4), and (6.10) we obtain

e2jVp2rp

Q (pi) = -;7r='" dc exp( —c') (6.11)
cp+ r pppi&

where rp (M/2kT——)'~9,. Again this agrees with the
result of Chang and Uhlenbeck.

We can go one step beyond the work of Chang and
Uhlenbeck by proving (to second order in accura, cy) a
sum rule which they noted without proof. From
(6.1)—(6.4) we have

Q(~)d~=
00 00

dpp dt cosset(Vx(t) Vx(0))p
2kT „p

= (ere'E, '/2k T)(Vx') p. (6.12)

But by the equipartition theorem

(Vx')p= kT/M.

Hence,

(6.13)

Q(pr) dcp = p.ePE /MpP. (6.14)

jx(t) = eN(Vx(t)), - (6.15)

' S. Chapman and T. G. Cowling, The Mathematical Theory of
nonuniform Gases {Cambridge University Press, New York,
1939), p. 99.

Related sum rules have been proved by Kubo. '
The above calculation can be used to determine the

conductivity of a slightly ionized gas, in which only
collisions between electrons and neutral molecules need
be taken into account, and in which the electrons are
represented as small hard spheres and the molecules as
large hard spheres (the Lorentz model). If the density
of electrons is X, then the current density in the X
direction is

8Ãe'r p

~(p~) = dc
37''"M p c+ir ppi

exp( —c') (6.19)

This formula agrees with a result of Margenau, " but
our derivation uses a more specialized model than the
one which he assumes.

V. VALIDITY OF THE PERTURBATION PROCEDURE

—I /2

Lp (x,t)]'dh p (x,t),

—I /2

L~(x,t)]'dx q(x, t)

Lwhich are, respectively, the distributions ti(g, t) and

g(x, t) normalized so as to be square integrable to

"H. Margenau, Phys. Rev. 69, 508 (1946}.
'3 This di%culty and its consequences were pointed out to tile

authors by Professor E. P. Wigner. Similar problems occur in the
quantum mechanical many-body problem, see, e.g. , Van Hove,
Hugenholtz, and Howland, Quantum Theory of Many-Body
Systems (W, A. Benjamin Inc. , New York, 1961).

Approximate solutions of a modified I.iouville
equation were found in Secs. 2 and 4 by means of a
perturbation procedure. No attempt was made in those
sections to justify the procedure rigorously, nor shall
we undertake to do this now. In particular, we shall not
deal with the dif5cult problem of the convergence of the
iteration solutions of the integral Eqs. (2.6) and (4.7).
However, we wish to discuss a particular difhculty
which arises from the fact that ti(x, t) is a function in

phase space, which in the case of a system with many
degrees of freedom is a space of high dimensionality.
When the phase space has many dimensions, it is very
likely that the first approximation it (x,t)

—= tip ($)+tii (x,t)
will be a very bad approximation to ti(x, t), in the sense
that rt(x, t) will have negligible values at those phase
points at which p(x, t) is large a,nd conversely. "A more
formal expression of this difhculty is that the functions
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