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I=-'„J=-,' State in ~N Scattering with the Nucleon as a Bound State
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An approximate formula for the I=~ J=+~ phase shift is derived. Assuming that the nucleon is a bound
state, this formula depends only on the pion and nucleon masses, and the nX coupling constant (f'). No
purely phenomenological parameters are involved. The formula is roughly consistent with experiment in
the 0- to 220-MeV range.

I. INTRODUCTION

N the 5-matrix theory recently proposed by Chew, '
- - it is postulated that none of the strongly interacting
particles is elementary. Thus, all stable particles must
be bound states, and their masses and coupling con-
stants can, in principle, be determined dynamically.
Although a complete calculation would be beyond
present techniques, it should be possible to test such a
postulate by an experimental study of various scattering
processes. In particular, one may investigate the conse-

quences of the assumption that the nucleon is a bound
state on the low-energy behavior of the I' wave I=-', ,
J=2 state in mÃ scattering, since the nucleon pole is

present in this state. '
Therefore, making this assumption, a two-parameter

formula is erst set up to approximate the eGect of the
interaction singularities. The parameters are then ad-

justed so as to give a bound-state pole with just the
position and residue of the nucleon pole. This removes
all arbitrary constants and leaves a formula which de-

pends only on the nucleon and pion masses, and the xE
coupling constant. Such a procedure is similar to the one
followed in the sS state in I-p scattering, where the
scattering length and effective range can be calculated
from the position and residue of the deuteron pole; i.e.,
from the binding energy and square of the asymptotic
normalization coefficient for the bound-state wave func-

tion of the deuteron. ' This procedure can also be com-

pared with that followed by Chew and Low, ' who

correlated the parameters of the interaction singularities
with the position and width of the 3-3 resonance (which
can be considered as an unstable bound state). The only
important difference in the present case is that part of
the interaction singularities coincides with the nucleon

pole, a difhculty which does not arise for the deuteron
and the 3-3 resonance.

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' G. F. Chew, S 31atriz Theory of Strong I-nteractions (W. A.
Benjamin, Inc. , New York, 1961).' For a possible test at high energies, see G. F. Chew and S. C.
Frautschi, Phys. Rev. Letters 7, 394 (1961).' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

II. THE I=q, 1= q PARTIAL-WAVE AMPLITUDE

Consider the partial-wave amplitude4

a(w) =
(W+M)' —1

—5"
(W+M)' —1

rti(w) exp(2ibi(w)] —1

2iq(W)
(1a)

g„(—W) expgib„( —W))—1X,(1b)
2iq( —W)

where we have used the MacDowell reQection property, '
and where, taking the pion mass to be unity, 8'= total
energy in the barycentric system; M=nucleon mass;
8~, g~=S wave I=-,', J=2 phase shift and inelastic
parameter; 8~~, g~~=I' wave I=-'„J=-', phase shift and
inelastic parameter; and

q(W) = z'W '{
t (W+lV)' —1]$(W—M)' —1))'". (2)

Since we are concerned only with the amplitude on the
real axis, we shall replace the correct singularity struc-
ture' of g(W), as shown in Fig. 1(a), by the equivalent
structure of Fig. 1(b). That this is always possible to
any order of approximation can be seen quite readily
from the familiar Coulomb-law analogy (see Chapter I
of reference 1).Furthermore, we shall only consider the
6» phase shift, because the corresponding physical cut,
running from —3f—j. to —~, is quite close to the
nucleon pole, which is at O'= —M.

To solve the resulting problem, we use the 1V/D
method of Chew and Mandelstam. ' We write

g (W) =X(W)/D (W), (3)

4 S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960). See also W. R. Frazer and J. R. Fulco, ibid 119, 1420.
(1960).

~ S. W. MacDowell, Phys. Rev. 116, 774 (1960).' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

where we define D(W) to be a function with a cut in the
left-hand physical region, and obeying the subtracted
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dispersion relation i.e., we have a pole in g(W) at W= M—, with residue

y = —$1V(—M)/D'( —M)j.W+M+1
D(W) =1+

with

7r It is useful to note that we may always redefine
ImD(W) by distorting ReX(W) in Eq. (5) into any

X
ImD(W ) other function E(W) for W( —Wr without changing

(W W) (W +M+] )
the fo of Eq. (6), p ovid d o ly th t the i teg l (4), (4)

and (6) still exist. If F(W) is such that on solving the
resulting equations we are still able to obtain a bound

ImD(W) W—
s&( W) L(W+M)s 1jRe~(W) state, then that bound state must be the nucleon, since

there is none other in this problem.

where the function is approached from above the cut.
This corresponds to $(W) being real for —M—1&W) WI—, as can be seen from Eqs. (1b) and (3). Here
5'I is the threshold of the inelastic region.

We can now find the singularities of E(W)
=g(W)D(W). It is obvious that this function has no
singularities in addition to those possessed by g(W) and
D(W). Since, as we saw, ImiV(W) =0 for —M—1&W)—Wr, the dispersion relation for X(W) becomes

1
$(W) =—

(MQ+g) 1/ 2

+—

Img (W') D (W')
dS"

ImLg(W')D(W') j
dW' . (6)8"—8'

This is not the most convenient method in an actual calcula-
tion, but is more appropriate for setting up effective-range
formulas. For an alternative method see, for instance, M. Froissart,
Nuovo cimento 22, 191 (1961).

s G. F. Chew and. S. C. Frantschi, Phys. Rev. 124, 264 (1961).

The second integral comes from inelastic e6ects. In
practice, the integrand is small until 8" corresponds to
600 MeV, and so we may effectively take Wr =M+4,
even though the correct value is smaller.

Equations (4) and (6)—together with (1), (3), and

(5)—can be solved if we know Img(W) for W& —M—1
and ritr( —W) for W( —Wr. If, as we are assuming
here, the nucleon is a bound state, we then have
D ( M) =0'; i.e., there —is a pole in D-'(W) at W = —M.
Hence there is no pole in E(W), since the corresponding
delta function in Img(W) is canceled by D(W), which
is zero at the same point in Eq. (6).To obtain the residue
of this pole, we expand

D(-M) — 8 (D)
+(W+M)

~

—
~

+ ". (7)
g X(—M) BW(X) s= ~

Since D(—M) =0, this means that, near W= —M,

—1 8 /D)
g(W) =

—M—W BW(XI

III. THE APPROXIMATION

We shall first neglect all unphysical singularities for
W(W~= —M+1 except for the short cut at W= —M'

arising from the nucleon pole in the crossed channel,
which we shall call the 5 cut. This is equivalent to
neglecting the nearby portions of the circular cut in
Fig. 1(a), and should not be unreasonable, because this
cut depends on xw scattering and the xx resonance has
a large mass, which corresponds mostly to the more
distant portions of the cut. Nevertheless, this approxi-
mation can be expected to introduce some error into the
function E(W) at W= —M, in any quantitative calcu-
lation. For 8'& —M—1, however, this error is much
smaller because, in addition to D(W') being small in the
neighborhood of W'= —M, (W' —W) is much larger in
Eq. (6).

Thus, putting W'= (x '—M) and combining the two
integrals (except for the S-cut contribution) in Eq. (6),
we have

Img (W') D (W')
dS"

1 *a ImLg(x ' —M)D(x ' —M)j
+— dx

xL1—(Wg+ M) x$

1—(W~+M) x
X (1o)

1—(W+M)x

where xg= (Wg+M) '=1, xr= (M—Wr) '= —0.25
(effectively), and Wg is some convenient value of W in
the range of interest. We shall take lV~= —1.5—3f.

Now within the erst integral in Eq. (10)—since the
interval is small, and since D(—M) =0—we may put

D(W) =D'( M) (W+M). —

To treat the second integral in Eq. (10), we shall use an
approach first applied to nucleon-nucleon scattering for
obtaining approximate formulas depending on only a
small number of parameters. ~ From Fig. 2, we see that
in the range 0) (W+M)) —2.25 we may make the

' L. A. P. 3a16ss, Phys. Rev. 125, 2179 (1962).
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Fro. 1. (a) The singularity structure of g(W) in the complex W
plane. (b) The singularity structure of g(W) with the unphysical
singularities oG the real axis replaced by an equivalent cut, which
has its discontinuity adjusted so as to give the correct amplitude
on the real axis.
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Fzo. 2. Comparison of C1—(W/i+3I)x)lD —(W+M)xj (sohd
lines) with the corresponding approximate forms given by Kq. (12)
(dashed lines), as functions of x.

straight-line approximation

1—(W~+M)x 1—(W~+M)xi x—xs )
1—(W+M) x 1—(W+M) xi xi—xs/' several percent in the range of interest. That possible

oscillations, even growing ones, in Img (W) should cause
no difBculty was shown in Appendix A of reference 9.

To obtain an expression for D(W) valid in the same

range, we substitute Eq. (13) into Eq. (5). Equation (4)
then becomes

1—(W~+M)xs(x —x
)

1—(W+M) xs xs—xi

DI ( M) —M+(i/sri

E(W)=
(~2+2) 1/ 2 —M—1

H(W W )=— dW'

where x~= 0.081 and x2= 0.735.
Substituting the approximations (11) and (12) into D(W)

Eq. (10), we get XLcrrEE(W, Wi)+nsH(W, Ws) j, (14)

+ ) where we have dropped the first term in Eq. (13), and

(W' —W) where

where

and

+2, (13)
'=~ O';—8'

8';=x, '—M

q (—W') L (W'+ M) '—1j
(15)

W" (W' —W) (W' —W~) (W'+M+1)

or, since for W( —M—1, Eq. (2) becomes q(—W)
=-'W-'(W —M) L (W+M)' —1)i/'1—(Wg+M) xi, s

7rg1.2 M+2sL(0) C(W) —C(W~)
(W,W;) =— (16)

4r(M' —1) W—W;
B

ImLg(x-' —M)D(x-' —M))) x—x, i
I where
Xx —x

//M+2xL(0) 1—2s.ML(0)
x!

k 4rr(Ms 1) 2s W-
L(W+M)' —1jL(W)—EM' —1jL(0)

)8"

(W—M) (W+M —1)
The erst term in Eq. (13) can be neglected for W(—M
—1, because the numerator in the integrand is small
compared with the denominator. The second term has
the same form as a two-pole formula. In this case, of
course, the positions of these poles are not free parame-
ters. The accuracy of this term can be easily estimated,
being of the same order as the approximation (12),
which, as can be seen from Fig. 2, is correct to within
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TABLE I.The 5» phase shift calculated from Eq, {19)with o.'1 ——68.5
and us=3.83 (which corresponds to f'=0.08).

I.ab energy
yreV)

Phase shift (deg)
Calculated Experimental

30
41.5
98

150

170

220

225

—1.15—1.76—4.96—7.76

—8.90

—11.39

—11.59

—0.11+6.30—0.34&2.12—1.20&0.23
-3+13—1.5—3+2—2.3—5.4+6
—4.3&2.5

CQ
-5-

-10—

50 l00 l50

Lob energy ( MeV)
200 250

and

I.(w) =
in i (WyM) —

L (W+M) '—1)'"}
27r((w+M)' 1]"'—

a These values were taken from S.W. Barnes, H. Winick, K. Miyake, and
K. Kinsey, Phys. Rev. 117, 238 (1960) (30 to 98 MeV); from Solution A
of H. Y. Chiu and E.L.Lomon, Ann. Phys. (New York) 6, 50 (1959) (150to
220 MeV); and from the Fermi (ii) solution of J. Deahl, M. Derrick, J.
Fetkovich, T. Fields, and G. B. Yodh, Phys. Rev. 124, 1987 (1961) (225
MeV),

FIG. 3. Plot of the 8» phase shift calculated with f'=0.08,
as a function of lab energy.

pole in the static theory, ' i.e., p,s= (8/3) f'M', with f'
equal to the renormalized pseudovector coupling con-
stant. Taking f'=0.08, we obtaincrr ——68.5 andrrs=3. 83.

Using Eqs. (1b), (3), (13), and (14)—and remember-
ing that we may drop the integral in Eq. (13) for
H/ & —3f—1—we obtain for 811,

1(w+M) I
&1 Re—= q( —W) cog„(—W)

D (W+M)' —1

X —W'

2e L1—(W+M) ']'"
W+M

g ——tan —'
2 [1—(s'+M)']"'~

for
I (W+M) I

&1.

Now it is true that we only have a good approximation
for N(w) in a limited range of W, whereas the range in
the integral of Eq. (4) is from 3II 1 to —~.Tha—t this—
should not give rise to any difhculties, however, was
shown in the last paragraph of the preceding section.

The two parameters 0.1 and n2 can now be calculated
from the two conditions necessary for the nucleon pole
to be a bound-state pole, namely,

= L1+(W+M+1) Q rr; ReH(w, w;)]/
i=1

2 I:~'/(W' —W)], (19)
i=1

which may be compared with the experimental phase
shifts in the range of interest. " Such a comparison is
given in Table I and Fig. 3, and is not unreasonable in
view of the crude approximations that were made.
Moreover, the experimental 511 phase shifts are not very
reliably known at present and the values given should
probably not be taken too seriously.

IV. CONCLUSION

D(—M) =0,

and from Eqs. (9) and (13),
—llxI+(1IM)

7+— dw' Img(w')
[~2+0] 1/ 2

2 &i

D'(™)'=' W. W

(17)

(18)

We have shown that the energy dependence of the 8»
phase shift in the 0- to 220-MeV range can be roughly
predicted by assuming that the nucleon is a bound
state. " Ke have not considered higher energies, since
phase-shift analyses normally neglect inelastic effects at
such energies, and it is not known how the results of
such analyses would be modified by their inclusion.
Even if they do not a6ect a particular solution sub-

with D(W) given by Eq. (14) in each case. Of these two
conditions, Eq. (17) is the more accurate, since it only
depends on the value of N(W) for W& M 1.Thus it- —
could be used even if we did not know the singularities
at W= —M'. In Eq. (18), y~ is just the residue of the
equivalent pole in g(W) that would be obtained by re-
placing the 5 cut by a pole at 8'= —3f and adding to
this the nucleon pole. This is equal to the corresponding

' It is important to note that this is true only in a limited energy
range. For instance, although Levinson's theorem is satis6ed in
this case, any considerations based on this theorem are probably
meaningless.

"In a recent report by this author bearing the same title
LUniversity of California Radiation Laboratory Report UCRL-
10026 (unpublished) j an error in sign in one of the formulas re-
sulted in the prediction of a change of sign of the B&1 phase shift at
about 180 MeV. Such a change of sign is favored in some phase-
shift analyses [see, for instance, the third reference attached to
Table If. A conclusive experimental con6rmation of such an effect
would indicate the inadequacy of the model employed here.
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stantially, it is not certain whether the best solution
(statistically) without the consideration of inelastic
eEects remains the best when such effects are taken into
account, and vice versa.

If, as has been assumed here, the nucleon is indeed a
bound state in the xÃ system, its mass and the mS
coupling constant could be calculated by solving Eqs.
(4) and (6) together with (1), (3), and (5) to obtain
E(W) and D(W), and then finding M and y from
D(—M) =0 and Eq. (9). The nucleon pole would not
have to be inserted at the beginning of the calculation,
because, as we have seen, it is absent from 1V(W). It is
true that the pole parameters in the crossed channel

would indeed contribute to these equations in the com-
plete problem. But, we could treat their values as
variables, and then And those values for which the
calculated parameters equal the assumed ones. Inelastic
effects may be quite important in such a calculation,
however. A similar procedure could be followed for any
bound state.

ACKNOWLEDGMENTS

The author wishes to express his deepest gratitude to
Professor G. F. Chew, Dr. D. V. Kong, and Virendra
Singh for several very helpful conversations and
suggestions.

PHYSICAL REVIEW VOLUME 128, NUMB ER 4 NOVE M B ER 15, 1962

Low-Energy Pion-Pion Scattering*

Loves A. P. BAxizs
Lawrence Radiatiort Laboratory, Unioersity of CaHforrtia, Berkeley, CaliforrNa

(Received May 28, 1962)

A general method for solving the problem of low-energy pion-pion scattering is presented. Within each
partial wave, the nearby unphysical singularities are calculated by the usual Chew-Mandelstam approach,
while the more distant ones are treated by a generalization of the Ball-Wong technique. These two tech-
niques are then combined with the requirement of self-consistency. A rough calculation is given in which
only a narrow I'-wave resonance is retained, and the only free parameter is the pion mass. The resulting
resonance has a mass of 585 MeV and a half-width of 125 MeV. A method is also given for calculating
Regge poles at low energies.

I. INTRODUCTION

'HERE have been several attempts at calculating
the low-energy pion-pion amplitude from the re-

quirements of analyticity, elastic unitarity, crossing
symmetry, and self-consistency. ' ' Of these, only the
method of Zachariasen' does not involve any arbitrary
parameters in the physically interesting E-dominant
case, at least if only the lowest order term is retained.
However, when this method is extended to higher
orders, one has to introduce cutoffs, ' and so one once
again introduces such parameters. The main difhculty
in all of these calculations arises from the strong,
incalculable, distant, unphysical singularities within
each partial wave.

In the method presented here, which does not contain

* This work was done under the auspices of the U. S. Atomic
Energy Commission.' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960);
hereafter referred to as CM-I.' G. F. Chew and S. Mandelstam, Nuovo cimento 19, 752
(1961);hereafter referred to as CM-II.' U. V. Serebryakov and D. V. Shirkov, J.Exptl. Theoret. Phys.
(U.S.S.R.) (to be published).' F. Zachariasen, Phys. Rev. Letters 7, 112, 268 (1961).

~ J. S. Ball and D. Y. Wong, Phys. Rev. Letters 7, 390 (1961),
to which the reader is also referred for additional references on the
m.-m. problem.' F. Zachariasen and C. Zemach (private communication).

any arbitrary parameters, the nearby unphysical singu-
larities are treated by the usual polynomial method of
CM-I (reference 1). An effective-range formula is then
set up to represent the remaining unphysical singu-
larities. The parameters of this formula can be deter-
mined by requiring that the resulting partial-wave
amplitude have the correct value and derivatives at
some point between these singularities and the physical
region. The amplitude at this point can, in turn, be
calculated from the absorptive part in the crossed
channel, through a 6xed momentum-transfer dispersion
relation. This absorptive part is always expandable in
I egendre polynomials in the region of interest. Thus we
have a self-consistency problem in which we must find
partial-wave amplitudes such that the assumed forms
equal the calculated ones.

Finally, the same type of procedure can be followed
for complex values of the angular momentum l, once the
physical problem has been solved at low energies. The
main usefulness of such a calculation is that it gives the
trajectories of the poles in the complex-/ plane, as they
move with energy. These Regge poles, in turn, dominate
high-energy scattering in the crossed channel. '

7 G. F. Chew, S. C. Frautschi and S. Mandelstam, Phys. Rev.
126, 1202 (1962).

8 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(1961);8, 41 (1962), to which the reader is referred for additional
references on Regge poles.


