
POSSIBLE TESTS OF TCP THEOREM IN p —p SCATTERING 1927

Ip8@.

Ipe, „„=2Re(mu*)+2IcI'+2IhI' —2IgI'

Ipg = 2 Re[a(g*—ho) —m(g*+h*)]+4 Im[cC (22)],

Ion&I ——2 Re[a(g*+h*)—m(g*—h*)]—4 Im[cC*(22)],

Ip 0',„I——2 Re[(a—&+g)C*(25)+cC*(11)]—2 Im[(m —
g
—h) C*(12)+cC'" (26)]

+2 Re[(a+h —g)C*(29)—cC*(13)]+2Im[(m+g+h)C*(14)+cC*(28)],
IpS&„2R——et (a—h+g)C*(25)+cC*(11)]—2 Im[(m —

g
—h)C*(12)+cC*(26)]

—2 Re[(a+h —g)C*(29)—cC*(13)]—2 Im[(m+g+h)C*(14)+cC*(28)], (A3.8)

IpQ& +4 I——m(ch*)+2 Re[(a+m)C*(22)+(u —m)C*(23)]+4 Im[gC*(16)],

Ipo, &
——+4 Im(che)+2 Re[(a+m)C*(22) —(a—m)C*(23)]—4 Im[gC*(16)],

Ip 8 „=2 Re[(a+g+h)C*(26)+cC~(12)]+2 Im[(m —g+h)Ce(11)+cC~(25)]
+2 Re[(a—

g
—h)C" (28)+cC*(14)]+2Im[(m+g —h)C*(13)—cC*(29)],

Ip 8„=2 Re[(a+g+ h) C*(26)+cC*(12)]+2 Im[(m —g+ h)C*(11)+cC (25)]
—2 Re[(a—

g
—h)C*(28)+cC~(14)]—2 Im[(m+g —h)C*(13)—cC*(29)].

z,x,,~»:

IpX»&'&=2 Re(am*)+2IcI'+2IgI' —2

IpX "=2 Re[(a+m)g*+ (a—m)h~]+4 Im[cC*(23)],
IpXII&I& = 2 Re[(a+m)ge —(a—m) h*]+4 Im[cC*(23)],
IpX„I&'&= 2 Re[(a—g+h)C*(25)+ (a+g—h)C*(29)—cC*(13)+cC*(11)]

+2 Im[(g+ h —m) C*(14)+(m+ g+ h) C"(12)+ cCe (26)+cC*(28)),
IpX&„&'&= 2 Re[(a—g+h)C*(25) —(a+g—h)C*(29)+cC*(13)+cC*(11)]

+2 Im[(g+h —m)C*(14)—(m+g+h)C*(12) —cC*(26)—cC*(28)], (A3.9)

IpX &'&=2 Re[(a—
g
—h)C~(26) —(a+g+h)C*(28)+cC*(12)—cC*(14)]

+2 Im[(m+ h —g)C*(13)—(m+ g
—h) C*(11)—cC*(29)—cC* (25)],

IpX „&'&= 2 Re[(a—g—h)C*(26)+ (a+g+h)C*(28)+cC*(12)+cC*(14)]
+2 Im[(m+h —g)C*(13)+(m+g —h)C*(11)—cC*(29)+cC*(25)],

IpXt "=2 Re[(a—m)C*(22)+ (a+m)C*(23)]+4 Im[gc*—hCP (16)],
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A model of three-pion resonances is constructed taking into account only m-p intermediate states. The x-p
interaction is replaced by a simple pole. The calculated co-resonance width is approximately 10-20 MeV,
depending on the range of the m-p interaction. These values of the width are consistent with present experi-
mental data.

E have estimated the width of I=O three-pion
resonances on the basis of a disperion-theoretic

calculation of the three-pion scattering amplitude, find-
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ing for the co meson a full width of 10—20 MeV. We have
employed an angular-momentum expansion of the
three-pion state in order to reduce the calculation to
manageable dimensions. The picture of an I=0, three-
pion resonance as a quasi-bound state of a pion and a
&p meson then arises from the approximation of consjder-



W. R. I RAZER AND D. Y. WONG

ing only states of low angular momentum. Such a pic-
ture leads to a three-pion resonance whose width is
much smaller than the p-meson width. However, our
calculation gives an ~ width of an order of magnitude
broader than the estimation of Gell-Mann, Sharp, and
Wagner, ' and several orders of magnitude broader than
that of Feinberg. '

Let us now consider our quasi-bound-state model in
more detail. The angular momentum expansion for
three relativistic particles has been worked out by
Wick, ' who generalized the scheme introduced by Dalitz
in the study of v.-meson decay. 4 First, two of the three
pions, having four-momenta q& and q2, are characterized

by their angular momentum /, invariant mass-squared
o-, and helicity A; then the two pions are combined with
the third (four-momentum qs) to form a state of total
angular momentum. Cook and Lee' have shown that
the generalized unitarity condition then simplifies

to the form, for (3m )'&s & (5m )',

disc('A'l'a'
t
TI (s)

~
Ma)

q(s, ")( "—4)"'
do

fn 2 y/g //

&&(y'f'a'~ TI(s~) ~X"l"o+")

&&(X"l"0 "~T (s ) ~i~la)r (1)

where s is the square of the invariant mass of the three-

pion system, and where q(s, a) is the momentum of the
third pion in the over-all c.m. system. We use the sub-

scripts ~ as an abbreviation of +i&, and use the symbol
"disc" to indicate the discontinuity across the branch
cut in s. Since an I=O state of three pions is totally
antisymmetric, only odd values of l occur. We consider

only /=1, thus neglecting F and higher waves in the
pion-pion system. The amplitude must, of course, be
symmetrized, but let us defer this complication for a
moment. Equation (1) can be simplified still further

by considering states of given parity. Specifically, we

consider the two quantum-number assignments which

have been discussed in connection with three-pion
resonances of negative G parity, namely, 1 and 0—.
Since both these assignments have negative parity,
both require I =1, where I- is the angular momentum

of the third pion in the over-all c.m. system. In both
cases the scattering amplitude satisfies a unitarity rela-
tion of the form of Eq. (1), but as long as states with

I &3 are neglected, the sum over helicities is not present
as long as one considers amplitudes corresponding to 1
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and 0 . This equation is very similar to the ordinary
two-body unitarity condition, except for the additional
dependence on 0..

To facilitate consideration of the dependence on cr

and 0-', we factor out the initial and final-state inter-
actions and define a new amplitude SI as follows:

Lv(a —4)q'(s, a)j'"
f(a) =

m, '—a —
iyL (a—4)'/ag'r'

(3)

From the dispersion-theoretic viewpoint the definition
of the function M(s, o',o) has been chosen such that the
branch points at 0-=4m ' and 0-'=4m 2 associated with
pion-pion scattering have been removed. Therefore, we
conjecture that M(s, o',o) will not vary rapidly with o'
and 0. In particular, we use the sharply peaked nature
of f(o) to simplify Eq. (1) to the form

(1/2i) discMI (s,a',a)
= rr (s)MI (s+,a', ms') MI (s,a,m p'), (4)

where

(su'-m~)s qs(s a) —
(o 4)$-1/2

a(s) =— do.
7l 4m' 2

X (5)
(m, '—o )'+y'(a —4)'/o

Our procedure up to this point has been parallel to
that used by Ball, Frazer, and Nauenberg in treating
the state a+7r+X.r The approximation made in de-
riving Eq. (4) should be quite reasonable for values of
s suSciently large that the phase-space integration
runs over the region of the p-meson peak. Then we need
only assume that M does not vary significantly as a
function of 0. in the region of this peak. In using Eq.
(4) for values of s less than (m, +m )', we are neglecting
the 0. dependence of 3I over a wider region.

Note that Eq. (4) is identical in form to the partial-
wave unitarity condition for two-body scattering. The
properties of the unstable p meson are contained in the
generalized phase-space factor ~(s). In the limit y —+ 0,
Ir(s) reduces to the two-body P-wave phase space
qs (s,m, ')/s'r'

We shall show later that the effect of symmetrization
is to modify the function a(s). Before taking up this
question, let us show how the formalism we have de-
veloped can be used to estimate the width of three-
pion resonances. In order to do this, one must somehow
evaluate the interaction between the pions, then solve
the E/D equations. The resonance should appear as a

TI(s,o',a) =f(a')MI(s, a', a)f(o), .

where f(o) is a function having the phase of pion-pion
I'-wave scattering and incorporating the threshold
factors appropriate to the present problem. We use a
Breit-Wigner type formula,
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zero of the D function. As a first rough attempt in this
direction we have represented the interaction by a pole
(i.e., we have used an effective-range formula) whose
residue is adjusted to 6t the position of the resonance.
We then And that

l
/

/I

p r
~r

gsgo ~ e

2
\ II

I
I//II /

+Pr
p rr

where

1 Ir(s)
M(s) =

s,—s—iLIr(s)/Ir(s))8(s —9m ')
(6)

(b) (c)

FIG. 1. Diagrams for the 3' decay of a quasi-bound-state.

s—$0
tr (s)= —(P ds', (7)

sm, l' (s' —S) (s' —ss) (s' —s„)

where s„ is the position of the resonance and so is the
position of the interaction pole. For a narrow resonance
we then have a width of I'=Ir(s„)/s(s, ). We shall see
below that the width is not very sensitive to the position
of sp. In fact, for large negative so the dependence is
only logarithmic.

Since the width I' is proportional to Ir(s,), we can see
from Eq. (5) why a three-pion I=O resonance with

energy well below res, +m should be narrow. The mass
squared of the two-pion system cannot be large enough
to lie in the region of the p-meson peak, and the decay
occurs via the tail of the p-meson distribution. The
existence of a second, lower-lying pion-pion resonance
in the J=I= j. state would, of course, invalidate the
present treatment. ' It is interesting to note that s(s)
is essentially equal to the decay probability correspond-
ing to Fig. 1(a).

Finally, let us consider the effect of symmetrization
on s;(s). We used an expansion in states of the form

(12)3), where pions 1 and 2 are combined to have angu-
lar momentum /= 1. The following state will then have
the proper symmetry: (12)3)+ (23)1)+(31)2). The
effect of introducing such a state is to change Ir(s) to be
essentially equal to the decay matrix element calculated
from the sum of the three diagrams of Fig. 1. This
matrix element has been written down for both 0 and

by Shaw and Kong, ' who pointed out that the sym-
metrization produces a tremendous suppression in Ir(s)

s M. Nauenberg and A. Pais, Phys. Rev. Letters 8, 82 (1962),
pointed out that the Dalitz plot of the co decay indicates that this
decay does not proceed via a low-lying pion-pion resonance.' G. L. Shaw and D. Y.Wong, Phys. Rev. Letters 8, 336 (1962).

for small s in the 0 case and electromagnetic correc-
tions must be included if the resonance is in the neigh-
borhood of 550 MeV. The 1 matrix element calculated
from any one term in Fig. 1 is already totally anti-
symmetric except for the p-meson propagators L'the

denominators in Eq. (3)j.Nevertheless the symmetriza-
tion affects the calculation of F. For low values of s
the three propagators are essentially constant and add
coherently. For high values of s the result is approxi-
mately the sum of the squares, so that Ir(s)/Ir(s„) is
raised by a factor of about 3 for small s„, as compared
to the unsymmetrized calculation.

The results we fjnd for the ro (1 assignment assumed)
are summarized in the table below:

$0

8

0—10—100

Full width of oy

(Mev)

23.4
20.4
18.4
14.7
7.0

The disagreement between our result and that of
Gell-Mann, Sharp, and Wagner' can probably be under-
stood as a violation of unitary symmetry, which these
authors assume in relating m' decay to the width of the
co. Current calculations of nucleon-nucleon scattering
by Scotti and Kong" indicate that the co-nucleon cou-
pling is stronger by a factor of about 3 than the
p-nucleon coupling; hence, the ~-gamma coupling may
be three times weaker than the p-gamma coupling if the
electromagnetic form factors of the nucleon are domi-
nated by the co and p states. This result is consistent
with the calculation of the x lifetime using our values
of the co width.
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