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Bremsstrahlung from Polarized Electrons*
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The production of unpolarized bremsstrahlung by polarized electrons in the Coulomb held of a nucleus is

considered. An approximate analytical expression for the differential cross section summed over Anal electron

spins is presented. This differential cross section is integrated numerically over angles of the emitted electron
to determine the asymmetry in the photon angular distribution. Results of the numerical integration are
given for incident electron velocities in the range 0.4c&v&0.9c.

I. INTRODUCTION

'T is well known that transversely polarized electrons
' - elastically scattered by the nuclear Coulomb field
exhibit an azimuthal asymmetry about the direction of
motion of the incident electron beam. ' ' The existence
of a similar asymmetry in the distribution of brems-
strahlung is therefore not surprising. Qualitatively, one
expects the photon asymmetry to be an effect of the
same order of magnitude as the electron scattering
asymmetry; this is shown to be the case.

A calculation of the lowest order term in a series in
the Coulomb parameter o.Z of the photon asymmetry
is presented. Since to lowest order the asymmetry is
proportional to oZ, the bremsstrahlung cross section
must be computed to one higher order than the Bethe-
Heitler formula. ' However, since we limit ourselves to
consideration of the asymmetry, only terms in the nZ
correction to the Bethe-Heitler cross section which
contain the incident electron spin need be considered.
These spin-dependent terms may be extracted rather
easily from the S matrix.

To evaluate the cross-section differential in photon
and electron angles and photon energy one must
evaluate certain integrals which diverge if the external
field is a Coulomb field. This diS.culty is avoided by
employing the device introduced by Dalitz' of replacing
the Coulomb field by a "screened" field and allowing
the screening to vanish after the cross section has been
calculated.

The di6erential cross section, which is given in
analytical form, is integrated numerically to determine
the spin-dependent part of the photon angular distri-
bution. The ratio of the spin-dependent part of the
cross section to the Bethe-Heitler angular distribution
gives the photon asymmetry.

The following general trends of the photon asym-
metry are found: The asymmetry increases from zero
at the soft photon limit of the spectrum to a maximum
at the high-frequency limit; it is a maximum for
incident electron velocities near 0.6c; and it increases

in magnitude from zero at 0' to a maximum near 130',
decreasing to zero at 180'.

II. CALCULATION OF THE DIFFERENTIAL
CROSS SECTION

The differential cross section d'0- for production of
bremsstrahlung is given by'

5"i
dbrr= — dbp2dak P—wb. ,

(2z.)' pi (,,e
where p,= (p,", iW;), i= l, 2, represent the momentum
four-vectors for the incident and final electron, respec-
tively, and where k=(k;i~) represents the photon
momentum four-vector. m~, is the transition rate from
the state Iu)= Ipr, (r) to the Ib)= Ip2, (2, k,e), (r and (~
being the spin vectors of the incident and final electron
in the electron's rest system, and s being the photon's
polarization vector. The transition rate after summation
over photon polarization and final electron spin is a
linear function of the incident electron's spin,

Wb~= W+W ' (i.
(2,e

The contribution of m to the differential cross section
gives to lowest order the Bethe-Heitler formula. We,
therefore, only need consider the lowest order term in
W' (t.

Writing the 5 matrix as S=I+iM and introducing
&= (%+M*)/2, A= (M—M*)/2, one easily verifies
that the spin-dependent part of the transition proba-
bility is given by

w. (,=2 2 (bl~ la)(alelb).

The matrix element of the anti-Hermitian term 3 can
be written as a sum over a complete set of intermediate
states Irb&,

(b I
~

I ~)= 2i 2 (b I
~*l~)(~

I
~

I o&

in virtue of the unitarity of S. Denoting by A, H, ',
M the contributions to the corresponding matrices
from Feynman diagrams with i vertices, j of which

*This work was supported in part by the U. S. Atomic Energy
Commission.

' N. F. Mott, Proc Roy. Soc. (London) A124, 425 (1929).' N. F. Mott, Proc Roy. Soc. (L.ondon) A135, 429 (1932).' H. Bethe and %. Heitler, Proc. Roy. Soc. (London) A146, 83
(1934).' R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951).

5 J. M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons (Addison-Wesley Publishing Company, Inc. , Cam-
bridge, Massachusetts, 1955), p. 390.
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represent external field interactions, one 6nds by
comparing powers of e and Z on both sides of Eq. (4)

(bi aizi a) =0,

&f I
~20

I
o&= 2z 2 (p,(l/lfi'I o&(p, (l/ll(i'I f»*

p,(
+-,zg P (p,(;I"i~,zi.&

y,( h', R'

(Sa)

X(p,(; k'e'iMT'if)&*. (Sb)

The lowest order contribution to the transition proba-
bility is therefore given by Eq. (3) with 24 replaced by
A2' and H replaced by H&'. Substituting the relevant
matrix elements into Eq. (Sb) one finds, after a simple
reduction,

(42r)R/2nk/2ZRI) (Wi —W2 —40)
(f I~ 'l~)=- Q2gpQ] )

(2~)1/2

with

n4Z' p2 1
d5~=2 —kdkd'n»dn, —r,

(22r)' Pi q'
(12)

T=-', TrLO„(m —iPT)yzoL„(m —iP2)j+c.c., (13)

where (T is a four-vector related to the electron's spin
three-vector (i by

In writing Eqs. (7) and (9) we have assumed the
external held to be a "screened" Coulomb 6eld. The
Fourier transform of the external potential is given by

(42m) 2/2Z

(z„(s)= —22rib (s0)
s

From Eqs. (7) and (9) one obtains for the spin. —

dependent part of the differential cross section

with

where

(S(p,—p) X„(m—zp)~,
d'Pl-

2p, (q,'+V) (q,,2+V)

I) (P2- P)y4 (m- iP)M„

2P2(qi'+lk') (q20'+lk')

pi (i zpi
n=i (i+ —pi,

m(W, +m)
'

The trace and polarization sum in Eq. (13) is carried
out to give

T= Ti+ T2+c.c.,
with

qi= yi —p-&, q2 p p2 1 qi0 pi p '620 p p2

((ziH Rib&=
i22r (42(-)2/2nz/2Zi) (Wi —W2 —(D)

—(zziL „242), (9)
(2~)"'(q'+~')

where q=pi —p2 —k and

y„(—i(k+p2)+m)y4 y4( i (p —k)+m—)yS„=
(p2+k)'+m2 (p —k)'+m'

y„(—i(k+P)ym)y4 y4( i(Pi —k)+m—)y„

(p+k)'+m' (pi —k)'+m'

The matrix element of the Hermitian term in Eq. (3)
may be written

d'P ~(pi P)—
2pl (q10 +l) )q2 i

d'P 0(p P)—
P zi/, .

2p2 (q20 +lk )ql 1
(14b)

The functions e; and m; are listed in the Appendix. We
have dropped the factor 'A2 in the denominator of Eq.
(12) as well as in the qi' and q2' terms of Eqs. (14), since
no divergences arise from these terms. The integrals in
Eqs. (14) are carried out with the aid of the formulas
for the basic integrals presented in the Appendix. After
a great deal of algebraic manipulation, the resulting
expression for T may be reduced to

y4( —i(k+P, )+m) y„
~u Y4IR 4

(p, +k)'+m'

7/ ( z(pi k)+m)V4—
(10)

(pi —k)'+m'

vr here

and where

T=22rm(yi (kyat+)/B+/4TC+/42D)2

/ =(kxp). , / =(kxp.)
y= (PRXPT) &, R= (PRXPT) (T,

1 Wi+W2 2 Pi+P, p +p,A=- q R+— +W2 Q,
m DTD2 D2 pip2 p p,

m' pi. p2 —(WT+k) W2) (m' yi P2—(Wi+k) W2) ( Sm' 2W2k}) pi+p28= +
2

~

+ iq T+i1+ +
I VD22 DTD2 J kD22 DTD2 / E DTD2 D2 I pip2

(16a,)

1 1 Pi+P,+ —— 2W,(} +-', 4 R)+(k 0+2b R+y, .T)/(2D, )—(k V+s R+) T)/(2D, }, ()bb}
D2 Dl PiP2
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DgD2 plD1

(m' pl p2 —(Wl+k)W2 Dl —D2 —2W2k 1 1 ) 2(W,k+m') 2
c=l +— — q R+ —Q+ ———

l
Q+-,'q R + I'

lD2 Pl DgD2

8W2Q pl+p2) ( 16m'W, k q2 pl+p2+ l+l 1— ——— Q+((pl+s) R—I U)/(2D2) —(k U —p2 V)/(2Dl), (16c)
Dl PlP2 ~ ~ DlD2 Dl PlP2

(m' pl p2 —(Wl+k)W2) . 2(W2'+plp2) ( 1 1 8m'(Wl+W2)k(p, +p2+ —
lq T+ -l ——Q+

(D12 D1D2 ) p2 (D2 Dl D1D2 k plp2

4(W1+ W2) $1+$2) 2W2k
Q l

— Q+(pl U —p, R+p2 T)/(2D, )—(y, V+p, R+I T)/(2D1). (16d)
D2 plp2 ~ p2D1

In Eqs. (16) the following symbols are used:

R= [p,I., .I.,j, T=—-[p,l., il., j, -
[plXsj [p2XI]

[Pl(1-2+1-2)+k(1-2'—L2) —iL2'j,
[ylXk)'

V=- -[—p2(L, ,+L,,')+k(I.,'—I.,)ysL, j,
[p2Xkj'

cross section, when integrated over photon angles and
a small range of photon energies, must be proportional
to the elastic scattering cross section. One finds that
in the limit k —+ 0

mpl s111g
T +162m (—1

l
pl+y2l'

lp p l
m m2 2p p,

(Xln — + + —,(17)
2p1 Dl D2 D1D2

Ll+I 2 1 1
P= L4'+ L4',—

D, 2l 2P2

where 8 is the electron scattering angle and n is the unit
normal to the plane of scattering. Integrating over
photon energies and angles, one finds

4m2k2q4

Lg ——ln
D'D'

W1W2+ p 1p2
L2——ln

W1W2 —plp2 —m'

4422Z'mP2 sing
d'0. —+ —Jin. (1

l pl+p2l'l pl —p2l'

4m2k2

L3——ln
D 2

D 2

L4= ln

4m202
Lg' ——ln

D 2

D2
L4' ——ln

q4

where

Xln — — dO„„(18)
2

42 ( m m 2pl ' p2)+ + lkdkdn,
&D,2 D,2 D,D, i

W2+ p2Wl+pl
L5= ln——, L5'= ln

Wl —pl W2 —p2

(Pi+&1 (l+P')'~2=»l l, Ls'=»l
Ep,—s) El—p,

Dl —2pl k= 2Wlk —2yl. k,——

D2= —2p2 k= 2W2k —2p, k,

D2 2q2 (W1W2+ plp2 —m2) —D——1D2,

q= yl —y2—k) I= pl —k, s= y2+k.

A formula of such complexity requires some specific
verification. Ke shall outline two checks which have
been made. In the soft photon limit the bremsstrahlung

is the well known factor of proportionality. The
coefficient of Ii is found to be the lowest order term in
the spin-dependent part of the elastic scattering cross
section. 6

A second check involving every term in 8, C, and D
is obtained at the high-frequency limit of the spectrum.
If one takes only the leading terms in a series in P2 in
Eq. (13) and performs the resulting traces and integrals
one obtains formulas for 8, C, and D which agree with
the corresponding limiting values in Eqs. (16). Since
the asymmetry is maximum in this limit, we quote the
result:

4' 2 4m 2
8 + +—,"~' p2l — l4 82 mk k'

(20a)

' W. R. Johnson, T. A. Weber, and C. J. Mullin, Phys. Rev.
121, 933 (1961).
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)2
- ——p) l—2p2k +

pram'k' m'k (k—m) 2m'k'(k —m) p&m' m mm' — — &m m(m+k) 2m'k(3k+m)-

t4 t6 21' P p

k (k — ) 2 'k(2k+ ) kp
pt k R, (20b)

4m' 4m 2 3
D - —- +

pgt2 l4 kt2 mk k'

III. PHOTON ASYMMETRY

The diff o aine' in Sec. I'fferential cross section bt '.--"g-.d--. l f h
give a photon eros t

ngeso t e out oin el
cross section

g g eectron to

Th e resulting asymm. etryry is given y

I'(k, 8)=d'0. (k,Qg, (t)/d30an (k,Q~

=—n (tuZI(k, 8)/J(k, 8).

(20c)

(24)

rp'n'Z3 pg dka, p,(t) = —n (t —— dQI,I(k—,8), (21)
n ptk

where 0 is the hotonp oton production angle, n=(kX t)/
pI~ is the unit normal to the h

plane, and
o e p oton production

42m' d0~,
I(k,8)= [n (p Xp)&

2x g

n (kxpt)c+n (kxp~)D). (22)

In the limi
'

imiting case p2 ~ 0 both the 8et e- eitler
e p. - epe e t o ectionva h

eir ratio remains finite. In an
nis

ese cross sections would vanish s
Coulomb normalization fa t

vanls since a
ion actor would replace the f

p/p„ tn Eqs. (21) and (23). The lim'e hmltlllg value of
is, ere ore, meaningful it; i is given as the

20
= 0.6

The Bethe-Heitler cross section wheT s sec ion, when integrated over
o e outgoing electron m

similarly7:

'
g ron, may be expressed

l2

~, (k,n, ) = ———dn, J(k,8).
pt k

(23)
IOO IJ

,
= 0.4

lOO I
J
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8

FIG. 2. Bremsstrstrahlung asymmetry for P&
——0.6.
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FIG. ymmetry ratio 100I/J for Pj ——0.4. The asym-

, I„rg)/d o pH(k, Qy) = —n (gnsI (k,a)jj(k,a

'd t 1 to i. k=10' k=
m.

ax) 3 max'

7H. W. Koch and J. W. Motz R
(1959).

otz, Revs. Modern Phys. 31, 924
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FIG. 3. Bremsstrstrahlung asymmetry for P&=0.7.
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ratio of Ip(k, 8) to Jp(k, 8), where

t6

nzk (k m—) 2nz'k'(k —m) Pimp
Ip(k, 8) =- 2 sin8 + +—I-2+

t4 2t4

m (m+ 0) 2m'k (3k+m)- mkP l——'y I
t2 t4

m (k —m) 2mpk (2k+m) -
mkp,—+ — I R . (2Sa)

t2 t4 4

/4 t6

m (m —k) 4nz (k' —nz'k —mp) 4nr'k (k' 4nz' —Smk—) 16m'k'
Jp(k, 8) = — +

t8
(25b)

Since a factor of sin'8 occurs implicitly in Eq. (25b)
the corresponding asymmetry will diverge at 8=0'
and 8=180'. For finite values of P2 the asymmetry
vanishes at 8=0 and 8=180'.

k2=0.50k,x, k4=0.75k „, and k .=W,—m.
obtain the asymmetry from these graphs one must
multiply the given ratio by aZ.

16-
Pi =0.9

Pz = 0.80

~00

8
100'

2J

-16

-2 I

30
I

90'
8

I

150'

FIG. 4. Bremsstrahlung asymmetry for pl ——0,8.

The integral in Eq. (22) has been evaluated numeri-

cally for several values of 8 and k, and for various
incident electron velocities. The ratio I(k,8)/J(k, 8) is
plotted in Iigs. 1 to 5, where k~=10 4m, k2=0.25k, ,

l I I I

90' 150
e

Pro. S. Bremsstrahlung asymmetry for pI ——0.9.
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APPENDIX

The functions e, and w, of Eqs. (14) are given by

4m
L
—m'F+p2 k(K+IIl)7,

D22
(A1)

4m
-{p, p2F+ p2 kII2 —wzplF+2wiL (wl+ w2)zz2 —2wpzzl+loz 7—o pL (wl+ w2)A2 —2w2Al+ pzA7},

1 2

(A2)

p,„= {p2 pF+ p, kII2 —WpplF+2Wlpl112 —4W, W, K—2W,L(Wi+ W2)zz2 —2W2zzl+lp p7
2

+o p((Wl+ W2)A2 —2W2Al+coA7}, (A3)

p4 Lpl ' pF+pl ' k(112 Ill)+ pl' k(112 112)+p2' k(ill+ K) pl. ' p2K p' p2K m2K
DyD

+2ppW211l —2W2(Wl+W2) K7, (A4)4'
wl ———— {—p.p.F'+pz. k(K' —IIl') —(p. k —p2. k) (F22+ 2)+ Wzcozrl' —pl(2Wl+ W2) II,'+ W2L2 (W,+W2)+ol7K'

2 —opL(Wl+W2)A2'+loA' —2W2Al'7}, (As)
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{ pl'p21 P2'k112 (p'k p2'k) (441+V)+ (p2'p p22+pl'p pl'p2) (pl p2)
D/D2 —2W2[(Wl+ W2)y2 —2W2ltl l+olV]}, (A7)4'

W4= [22221"—pl klI2' —a"k(h'+A2')],
D12

(A8)

{ p'pit +p'k(ttl II2 ) P2'kttl + (p2'p p pl+p2'p p2 ) (K ++2 gl)
DID —(p k —po k) (pl+ V)+2W2[(Wl+ W2) K' —ootIl']+2W2[(Wl+ W2) p2 —2W2pl+olV]}, (A6)

with

II =(y X4t ), II =(y X4t ) IZ=(kX4t, o) 42

&2= (plx4tlo) 'k, A2= (p2X4tlo) 'k~ I'= (4txltlo) '42,

~= (p2Xpl)'4tlo) D= 2p'k=2Wk —2p k

The primed quantities in Eqs. (A5) to (A8) are obtained
from the corresponding unprimed expressions by
replacing qio by q20

The integrals occuring in Eq. (14a) may be expressed
in terms of the following basic integrals:

'
d'Pqlo~(P —Pl) =ply v+ SBv,
2 pl (qlo2+&2) q22

p].
Cg =-— ~ [plL2 —kI.o],

4 [ylxk]'

Aq —— f2,
2p2D2

I2
BQ— (sH —kG) +kL,—.vI.o,

4 [p2x k]' — p2D2

S I-2
Co =— (kG —sH) kI.;,+~.I.o,—

4 [p2xk]' p2D2

Sg Mg
A= — — Ll+ L, ,

4' — pld P2D2Is

d'Pltlob (P—P l) =ylA a+kC l2,

2 pl (qlo'+x')D
(A10)

Sg Mgg
B=— — Ll+ I2,

4 plh P2D2Is.

with

d'P4tlo&(P —Pl) =plAo+sBq+kCq, (A11)
2plq2 D

d'Pq o~(p P)—
ply+ sB+k——C,

2plq, 'D (qlo'+ll2)

8
A v=- [sLo PlL4], —

4 [PlXs]'

Py
Bv —[PlI——.4

——sLo],
4 [ylXs]'
'F

~z= — [kLo—plL27,
4 [plxk]2

where

Sg Mg
C=— — I.l+ L2,

4 plh P2D2Is,

H=2Wlk, G=yp+s',
r =4y, .[sH —kG], X,= —4p, D„g,=4p, q,
My=4(sH —kG) (kq' —sDl),

Mll ——4Hpl. (sH —kG)+ Sp P (k'q' —s.kD, ),
Mc=4pl k(G' 4yPs') —4pl s(—GH .4yPs k—)

+SpPs (sH —kG),

Is.= D2D4, D4= 2q'(WlW2 —plp2 —222') —DlD2.

The integrals in Eq. (14b) are determined from the
above integ rais by an a,ppropriate inter cha.nge of
vectors.


