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The production of unpolarized bremsstrahlung by polarized electrons in the Coulomb field of a nucleus is
considered. An approximate analytical expression for the differential cross section summed over final electron
spins is presented. This differential cross section is integrated numerically over angles of the emitted electron
to determine the asymmetry in the photon angular distribution. Results of the numerical integration are
given for incident electron velocities in the range 0.4¢<v<0.9¢.

I. INTRODUCTION

T is well known that transversely polarized electrons
elastically scattered by the nuclear Coulomb field
exhibit an azimuthal asymmetry about the direction of
motion of the incident electron beam.!? The existence
of a similar asymmetry in the distribution of brems-
strahlung is therefore not surprising. Qualitatively, one
expects the photon asymmetry to be an effect of the
same order of magnitude as the electron scattering
asymmetry; this is shown to be the case.

A calculation of the lowest order term in a series in
the Coulomb parameter aZ of the photon asymmetry
is presented. Since to lowest order the asymmetry is
proportional to aZ, the bremsstrahlung cross section
must be computed to one higher order than the Bethe-
Heitler formula.? However, since we limit ourselves to
consideration of the asymmetry, only terms in the aZ
correction to the Bethe-Heitler cross section which
contain the incident electron spin need be considered.
These spin-dependent terms may be extracted rather
easily from the S matrix.

To evaluate the cross-section differential in photon
and electron angles and photon energy one must
evaluate certain integrals which diverge if the external
field is a Coulomb field. This difficulty is avoided by
employing the device introduced by Dalitz! of replacing
the Coulomb field by a “screened” field and allowing
the screening to vanish after the cross section has been
calculated.

The differential cross section, which is given in
analytical form, is integrated numerically to determine
the spin-dependent part of the photon angular distri-
bution. The ratio of the spin-dependent part of the
cross section to the Bethe-Heitler angular distribution
gives the photon asymmetry.

The following general trends of the photon asym-
metry are found: The asymmetry increases from zero
at the soft photon limit of the spectrum to a maximum
at the high-frequency limit; it is a maximum for
incident electron velocities near 0.6¢; and it increases
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in magnitude from zero at 0° to a maximum near 130°,
decreasing to zero at 180°.

II. CALCULATION OF THE DIFFERENTIAL
CROSS SECTION
The differential cross section d®s for production of
bremsstrahlung is given by?®
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(2ny ;—d“‘pgd% > Wea, 1)
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where p;= (pi;iW.), i=1, 2, represent the momentum
four-vectors for the incident and final electron, respec-
tively, and where k= (k;iw) represents the photon
momentum four-vector. wy, is the transition rate from
the state |a@)=|p1,{1) to the |b)=|ps,{2; k,e), {1 and &»
being the spin vectors of the incident and final electron
in the electron’s rest system, and e being the photon’s
polarization vector. The transition rate after summation
over photon polarization and final electron spin is a
linear function of the incident electron’s spin,

> wye=w+w- . 2)
(2,8

The contribution of w to the differential cross section
gives to lowest order the Bethe-Heitler formula. We,
therefore, only need consider the lowest order term in
we { 1.

Writing the S matrix as S=7-:7M and introducing
H=(M+M*)/2, A=(M—M*)/2, one easily verifies
that the spin-dependent part of the transition proba-
bility is given by

w-i=2 3 (0| A]|aXalH|b). )

(2,8

dbr=

The matrix element of the anti-Hermitian term A4 can
be written as a sum over a complete set of intermediate
states |n),

(blA|a>=%i;)<b|M*ln><n|M!a> )

in virtue of the unitarity of S. Denoting by 4, H,
Mt the contributions to the corresponding matrices
from Feynman diagrams with ¢ vertices, j of which
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represent external field interactions, one finds by
comparing powers of e and Z on both sides of Eq. (4)

(b]A?]a)=0, (5a)
(0| A?|ay=31 Z(p,CIMﬂld)(p,(iMﬁlb)*
P
+5i 2 X (0K | M2 a)
LK
X{(p,¢; K'e'| M1 b)*.  (5b)

The lowest order contribution to the transition proba-
bility is therefore given by Eq. (3) with 4 replaced by
A4 and H replaced by Hq% Substituting the relevant
matrix elements into Eq. (5b) one finds, after a simple
reduction,

(bl A?|a)=—

with

(4mr)*2ad12225 (W —
(Qw)12

Wz—w)

,"’Z‘ZOuuly (6)

0= /dsj,(a(l"—?) Nu(m—ip)va
21 (g2+N) (g1 +2?)
+5(P2—P)'Y4(m_"7:p)Mu> o
2pa2(q*+N) (g20*+27)

where
6=p—p—k, @=p—p.—k, q1o=PpP1—P, ¢20=p—DP,

and

_vu(=ikep) Fmhys vi(—iB=R)Fm)y

(prt-B)+m? bptmt "
(=il Ty vi(—i= R+,
(p+Ep+m (p—kAm

The matrix element of the Hermitian term in Eq. (3)
may be written

12 (4w )32 Z8 (W 1 — Wy—w)
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In writing Egs. (7) and (9) we have assumed the
external field to be a “screened’” Coulomb field. The
Fourier transform of the external potential is given by

(4wa)2Z
—Op4. (11)

a,(s) = —2mid (s0)
sl

From Egs. (7) and (9) one obtains for the spin-
dependent part of the differential cross section

aAZ3 P, 1
dg=2 —kdkdﬂmdﬂk (12)
(2m)? py q
with
T'=} Tr[Ou(m—ipr)vsoLu(m—ips) J+c.c., (13)

where ¢ is a four-vector related to the electron’s spin
three-vector {; by

(o

The trace and polarization sum in Eq. (13) is carried
out to give

p1r&s 01 (1>
— Py .
m(W+m) m

T=T1+Ts+c.c.,
with
@y 6(p— 4
r-[2 PP S
2p1 (qro* A2 gs? =1
&p 8(p— 4
2?2 (gao*FA%)g? =t

The functions v; and w; are listed in the Appendix. We
have dropped the factor A\? in the denominator of Eq.
(12) as well as in the g2 and ¢.* terms of Eqgs. (14), since
no divergences arise from these terms. The integrals in
Egs. (14) are carried out with the aid of the formulas

(a| H2|b)= TS (@1L,ms), (9) for the basic integrals presented in the Appendix. After
(2e) (@ N) a great deal of algebraic manipulation, the resulting
where q=pi—ps—k and expression for 7" may be reduced to
- Ya(—i(R+p2)+m)v, T'=2rm(p1- LryA+vB~+wmC+uD), (15)
Ly=vyiLyys= (ot b where
m
: . . M1= (kXpl)"’: M2= (kXPZ)'G‘)
_{_w(-—d[h— )+m)74. 10) y=(sXp1) -k, v=(psXp1)-o,
(p1—k)*+m? and where
1rW+W, 2 (B1+B; P1+P2
=—| ———q-R+— +w )Q] (16a)
mL DiDq B1B: PI?Z
2 CDo—
B (m LR (W1+k)W2) < P pa— (W1+k)W2>q_T+(1+ 8m? +2W zk>;b1+1>2 0
Dy? D1\D, DD, DD, D, D1pe
B1+B2

1 1
(e p)one
D, D,

1 ) (k-U+p1-Rpo-T)/ (2D5)— (k-V+s- R+1-T)/(2Dy), (16b)
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m?  pr1-pe— (Wi+E)W, Dy—Dy,—2Wsk 1 1N\/2(Wek+m?) 2
C=(~—-+ )q-R+ +( —-)( Q+%q-R)+—-——P
Dy? DD, 1Dy D, D 1 D\D,
8W2Q ﬁ1+62 16m2W2k q p1+p
n ( )+(1______ﬁ_w) O+ ((pr+5)-R—1-U)/(2Ds) — (k-U—p,-V)/(2D), (16c)
D, B1Bs DD, D1/ pipe
m?  p1-po— (Wit+R)W, 2(W 4 p1ps) { 1 1 8m2(W1+W2)k/171+P2 2
D=— (——+ )q‘T—{— —)Q+ ) -
Dy DiD; p: \D, D DiD; \ pps /- DD
LWrHWy) (BB 2Wek
- f)( )_ Q+ (p1-U—pi-R+p2-T)/(2D2) — (p2- V4p1-R+1-T)/(2Dy).  (16d)
D, B1B2 p2D4

In Egs. (16) the following symbols are used:

= [ﬁll“l— 51‘5]’ T= [ﬁsz;l—zLﬁ’],
[p:XsT [pX1]?
1 A a
U=——[p1(LotLy)+E (LS — Ls)—ILs'],
[p1Xk]?
1
————po(Lo+ L) +E(Ls'— L) +$Ls],
[p2Xk]
Li+L, 1
=, P=—Lit—Li,
with
4m’krqt WWatpipe—
Li=In X Le=lIn——
DeDy? WWo—p1pa—
Am?k? An2k2
L;=In s L/=In y
D¢ D,?
D22 D12
Li=In—j L{=In—j
¢ ¢
Wit+p1 W2+p2
L5—- ln————— 5’ =]
1’1 —p)
prts\? I+p2\*
L6=ln( ) , Le’=ln( ) ,
p1—s I—ps
where

Di=—2p1-k=2W1k—2p:-k,

Do=—2py- k=2W k—2p,-k,
Ds=2¢*(W W s+ p1pa—m?*)— DD,

I=pi—k, s=p.tk.

A formula of such complexity requires some specific

verification. We shall outline two checks which have
been made. In the soft photon limit the bremsstrahlung

q=p:—p—k,

cross section, when integrated over photon angles and
a small range of photon energies, must be proportional
to the elastic scattering cross section. One finds that
in the limit £ — 0

mp; sinf
T —16mn-{———
ID1+D2|2

[pi—pa|\ (2 m* 2pipe
X ln( ) {—+ } ,
2p1 Dy D2*  DiD,
where 6 is the electron scattering angle and n is the unit

normal to the plane of scattering. Integrating over
photon energies and angles, one finds

(17)

40P Z3mps sing

d2[7"‘_> _Fn'{l
[p1t+p2[2 Pi—p2|?
[pi— s
X4, (18)
2p,
where
m2 m2 2p1-
F=—— f ( i 2)kdkd9k (19)
D;? D2 D\D,

is the well known factor of proportionality. The
coefficient of F is found to be the lowest order term in
the spin-dependent part of the elastic scattering cross
section.®

A second check involving every term in B, C, and D
is obtained at the high-frequency limit of the spectrum.
If one takes only the leading terms in a series in p; in
Eq. (13) and performs the resulting traces and integrals
one obtains formulas for B, C, and D which agree with
the corresponding limiting values in Eqgs. (16). Since
the asymmetry is maximum in this limit, we quote the

result: '
17r4m? 4m 2 1
B—> ——[——-—-——f“——-i——:l

, (20a)
0 poll. 14 RI2 mk k2
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III. PHOTON ASYMMETRY

The differential cross section obtained in Sec. II is
now integrated over angles of the outgoing electron to
give a photon cross section

A
dlio. (k)ﬂk;il) =-—n- cl—_— - —‘dﬂkl(k,o),

T P

(1)

where 0 is the photon production angle, n= (kXpi)/
[kXp1| is the unit normal to the photon production
plane, and

B dQy,
I(k0)=— | —[n-(pXp1)B

2T ¢

+n- (kX p:))C+n- (kX p2)D].
The Bethe-Heitler cross section, when integrated over

angles of the outgoing electron, may be expressed
similarly”:

(22)

1’02O£Z2 P2 dk
Bopn (k)= — —dUJ (k,0). (23)
™ P1 k
121
L e (AR k4
sl
1001
J ks
4l
L Ko
X,
O§' e
F
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' 30° 90° 150°
8

F16. 1. The asymmetry ratio 100//J for 8;=0.4. The asym-
metry

P(k,0)=d% (k%,(1)/dPopu (k)= —n- Ciazl (k,0)/T (k,09),
where n is the unit normal to the production plane and {; is the

incident electron spin. k1=10"%m, k2=0.25kmasx, k3=0.50%max,
k4=oﬂ75kmaxy max = W1—m.

17 SH) W. Koch and J. W. Motz, Revs. Modern Phys. 31, 924
(1959).

art . 2 (mk(k—m) 2mPk2(k—m)
e

pmd [m(m+k)_2m2k (3k+m):|

L
e "

20

kp. h—m) 2k (2kd-m) mhp
mplpl-RJr[m( 2m)+ i m):lm 1k.R}, (20b)

A 4
(20c)
The resulting asymmetry is given by
P(kye) = ddo'(krﬂkyql)/dso'BH(kaﬂk)
=—n-{aZl(k,0)/T (k,0). (24)

In the limiting case p»— O both the Bethe-Heitler
cross section and the spin-dependent correction vanish
but their ratio remains finite. In an exact calculation
neither of these cross sections would vanish since a
Coulomb normalization factor would replace the factor
Po/p1, in Egs. (21) and (23). The limiting value of
Eq. (24) is, therefore, meaningful; it is given as the
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F16. 2. Bremsstrahlung asymmetry for 8;=0.6.
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F1G. 3. Bremsstrahlung asymmetry for 8;=0.7.
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ratio of Io(%,0) to Jo(k,0), where

mh(k—m)  2m3kE (k=) poms
Io(k0)=2 sin«?{[ 4 ]

I A

m(m—bk) Am(B—m2k—m®) Ak (k2— dm2—Smk) 16mk?
A p— —_—

JOHNSON AND J.

D. ROZICS

m(m-+k) 2mk (3k+m)‘lmkp1

L5+|:

pi-R
3 7

k— 2m?k (2k+ k
+|:m( s m)+ m (l4 M)}m4?1k'R}. 250)

Jolkd)= { r 7 I8

Since a factor of sin®@ occurs implicitly in Eq. (25b)
the corresponding asymmetry will diverge at §=0°
and 6=180°. For finite values of p, the asymmetry
vanishes at 6=0° and §=180°.

16—
B,=0.80
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ko
0 =
2 30 %0 150°

8
Fi1c. 4. Bremsstrahlung asymmetry for 8;=0.8.

The integral in Eq. (22) has been evaluated numeri-
cally for several values of 6 and %, and for various
incident electron velocities. The ratio I(%,0)/J (%,0) is
plotted in Figs. 1 to 5, where &1=10""m, ky=0.25kmnax,

. 25b
o o

k3=0.50kmax, k14=0.75kmux, and Epux=Wi—m. To
obtain the asymmetry from these graphs one must
multiply the given ratio by aZ.
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8
F16. 5. Bremsstrahlung asymmetry for 8=0.9.
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APPENDIX

The functions v; and w; of Egs. (14) are given by

4m
o= =TTy (KL (A1)
2
4m
Vo= DD {?1 'P2F+172' kIly— WgwI‘+2W1[(W1+ W2)M2_ 2W2ﬂ1+wV]—0'0[(W1+W2)A2— 2W2A1+wA]}1 (Az)
12
4m
V3= 5 D{pQ . [)F+p2 . kHQ— Wgwr+2W]wH2—4W1W2I<_ 2W1[ (W1+ Wz)ﬂz'— 2W2FI+WV:|
24m +00[(W1+W2)A2—2W2A1+wA]}; (A3)
9= —B—B[Pl'ﬁr"f'ﬁl k(M= T11)+p1- k(Tle— 1)+ pa- k (Tl + K) — p1 psK—p- psK—m?K
4;,; +20W oIl —2W.(Wi+W2)K], (A4)
1= = — p pal" - R (K = TI) = (- pa- ) (b )+ Wsoms/— o QW s+ W) T/ A WAL2 (W W)+ TR

D.D

—a o (Wit WAy +wA' —2WA T}, (AS)
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4m
wim (= il k(T = T0) = po KL+ (puep—p prb o p= o) (K i)
1
4 — (pk—pa+ k) (1+»)+2W L W1+ W) K' — Il [ 2W (Wit Wolpue—2Wamtwr ]},  (A6)
m
wy=——{ = p1- pol” — po- k1LY — (p-k— po- k) (w1t v)+ (p2- p— p>+pr- p— pr- p2) (wr—pa)
172
4 —2W [ (Wi+Woue—2Woui+wr]}, (A7)
m
ZU4=;)'—2|:WL2F’—[7| -kﬂ2’—¢r- k(A/“‘I—AgI)], (AS)
1
with T P . R
Cr=- k—g-[ﬁLg—kL,r,],
= (p1Xqu)- o, IL=(p2Xqi0) 0, K= (kXqu) o, 4 [poxk]
A= (p1Xqu) -k, As= (p2Xd10)-k, T=(qXqu)-o, Ao & I
= Lo,
A= (paXp1)-to, D=—2p-k=2Wk—2p-k. 2p2D
. ope e . T k L A
The primed quantities in Eqgs. (A'E’) to (A8) are f)btalned Bo—r— [ (sH—KG) 2 +kL5—§Le:l,
from .the corresponding unprimed expressions by 4 [poXk]? poDs
replacing gio by gs0. .
. . s .
. The integrals occuring in Eq (14a) may be expressed Comm -[(kG— ofl) 2 ——kL,r,-I—s“Lﬁ},
in terms of the following basic integrals: 4 [p. Xk poDy
" &pauod (p—11) [ Na Mi 7
./‘**——————=Dﬂv+63m (A9) A=—| ==L ——L, |,
2p1(q1+22)g? 4L piA peDoA ]
" @ p10d (p— p1) T N Ms T
/ —————————=p14d r+kCrp, (A10) B=— ——L+ Ls |,
2P1(61102+>\2)D 4L P1A PzDgA .
’ daP‘lmMP—Pl) [ Ne¢ Mc 7
/ ——-—=p1AQ+sBQ+kCQ, (All) C= — ‘1+ L2 5
2?1([221) 4L PlA ﬁgDzA -
: h
" & pqod(p—p1) where
Dy PATETRC, (D He2wk, Gepits,
. Na=4p-[sH—KG], Ny=—dpiDy, No=4pid,

with

™

Ay="—
4 [p1Xs]?

M ES‘L(‘)_ ﬁ]L4j,

T 131 R

BV = . [P]L:;‘-S‘Lﬁ],
4 [p:Xs]
™

k .
Ap= ~—-[kLs—p1Ls],
R 4[p1Xk]2[ s—P1ls ]

M 4=4(sH—kG)- (kg>—sD,),
M p=4Hp,- (sH—kG)+8p2(F*¢>—s-kD,),
Me=4p,-k(G*—4p25?)—4p;- s (GH—4p,?s- k)
+8p:?s- (sH—KG),
A=D;Dy, Dy=2¢*(WWo— prpa—m?)— D1 D,.
The integrals in Eq. (14b) are determined from the

above integrals by an appropriate interchange of
vectors.



