
P II VS ICAL REVIEW' VOLUME 128, NUMBER 4 NOVEM B &'R & S,

Prediction of Pion Phase Shifts*
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A method of deducing the pion-pion phase shifts from the pion-nucleon phase shifts is developed. A

predominantly attractive S-wave interaction is found. A resonant P wave and an appreciable D wave are
also deduced.

INTRODUCTION

HE equations of dispersion theory may be capable
of predicting the phase shifts of pion-pion, and

of pion-nucleon scattering in terms of a few parameters.
However, the labor involved in the numerical solution
of the self-consistent integral equations, and the prob-
lems posed by the multiplicity of solutions caused by
nonlinearity, enhance the worth of a less ambitious
undertaking. The pion-pion phase shifts can be calcu-
lated from the pion-nucleon phase shifts without the in-
troduction of any unknown parameters, notwithstand-
ing a subtraction, which reduces the incalculable high-

energy effects.
The scattering amplitudes which are dispersed staisfy

analyticity, crossing, and unitarity conditions. Most
dispersion relations use analyticity to the full, while
the approximations are at the expense of the other
two requirements. Partial wave relations satisfy uni-

tarity exactly, and in practice approximate the crossing.
They allow the input of pion-nucleon information in a
detailed manner'; but they suffer from the necessity of
cutoffs, arising because of an analytic continuation into
unphysical regions of angle, with a consequent diver-

gence of the Legendre expansion in terms of which the
continuation is made. Since it is here the intention to
force the input information to yield the pion-pion phases,
with no arbitrary parameters, it has been decided to use
total amplitudes in the backward direction. ' The re-
sulting equations involve no continuation in angle.
Further, they are linear in the unknown pion-pion

amplitude, constituting Stieltjes equations, with unique
solutions.

2 p'=o.
i=1

The "invariant energies" are defined by

s;= (p;+p4)', i = 1, 2, 3, (1 2)

but only two are independent, because of the mass-shell
restriction:

Q s;=2(M'+1).
i=1

(1 3)

M is the nucleon mass, in units of the pion mass.
If

p, = (y;,e;), i=1, 2, 3, 4. (1.4)

then the scattering matrix element between initial and
final states is

Sr,——5f;—(2 )'zi5 (Q p;) [M/2 (Ile;)'l'jus TN, . (1.5)

Here N~ and N2 are the nucleon spinors, and the T
matrix has the form:

T= A+iy QB with—Q= zt (ps —p,). (1.6)

The amplitudes A and 8 can be decomposed in isospin
space:

~p +strap~ ~l8 8+ 8

1. KINEMATICS

The scattering is depicted in Fig. 1, where pt, ps are
the pion momenta, ps, p4 the nucleon momenta. Con-
servation of four momentum is expressed by

I'IG. 1. The three
channels of the 7(n ~ ~n
reaction.

I+
I
I

A
l
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In this expression, n and P are the isospin indices of the
pions. The four amplitudes A+, 8+ are scalar functions
of two independent variables.

The invariant amplitudes A+, 8+ serve to describe
three separate reactions, depending on the range of the
arguments s~, s2, s3, of which only two need be specified
because of Eq. (1.3). If

*This work was supported by the Department of Scientific
and Industrial Research, and by the U. S. Air Force, European
Ofhce (Aerospace Research).

' J. Hamilton and T. D. Spearman, Ann. Phys. (New York) 1
172 (1961).' H. Y. Tzu (to be published).

st) (M+1)', s,(0,
the amplitudes A+, 8+ describe the reaction xiV—+n-X

t channel I of Fig. (1)).An alternative pair of variables
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consist in v, the square of the three momentum of the maps into the region
pion, and 8, the scattering angle between initial and 0&~& 00

6nal states, in the center of momentum system. The on sheet I.
relations between the variables are The channel II physical region,

$1=$(v+ M')'/ + (v+1)'/'j2

s2 ———2v(1—cos8).

For the range
$2) (&+1)2, s2(0,

maps into the region

(M+1)2 (s2( ~

$1= —
p

—
q +2pq cosy,

$2
——4(M'+P') =4(1+q').

(1.10)

The invariant amplitudes can be continued from these
three "physical" regions into the complex planes of the
s;, and hence connections are implied between the three
channels. This analytic continuation is considered in
the following sections, where it is shown that if the
amplitudes are known in the physical regions of chan-
nels I and II, then they can be decuced in that of
channel III.

Dispersion relations will be written in the variable v,

the momentum squared in channel I, at Axed scattering
angle, 8=2r. Equations (1.8) become

s = L(v+3II )'/ + (v+1)'"g',
$3= 4P~ (1.11)

$2 —2 (/lII2+ 1)—$1—$2
—p(p+ /M2)1/2 —(py 1)1/q2

The amplitudes are defined in the sl plane, and this
is mapped into a two sheeted v plane. The two sheets
are connected crosswise across a cut, (—M2(v( —1),
distinguished by

the particles 2 and 4 of Fig. 1 are incoming (channel II).
This is the "crossed" xS —+ xX reaction; and if it is
described by the corresponding momentum squared v'

and angle 0' the relations are

$2—
L (p y 3I2)1/2+ (p~+ ] )1/2y

s2 ———2v'(1 —cosset').

However, when
si&0, ss&4,

the invariant amplitudes describe the reaction 7r~ —+ EX
(channel III), although the nucleons are virtual if
s3(4M'. The natural variables to use in this channel
are the three momenta of the pions, q, and of the
nucleons, p, together with the scattering angle between
the pion and the nucleons, q. The relations are

on sheet II,as may be seen by comparing the expressions
for s2 in terms of v and v' LEq. (1.9)]. Further, by
comparing the expressions for s3, it is seen that 0'=x.
That is, the continuation of the backward amplitude
from the channel I region into the channel II region
gives the backward amplitude of the crossed mÃ —mX
reaction. For any 6xed angle other than 0 or x this
simple 1:1 mapping does not exist.

Similarly, comparing Eqs. (1.10) and (1.11), one
adopts the definitions:

where the product pq is defined to be positive for
v (—M' on sheet I of v, and negative on sheet II.
Then it is readily seen that q =x, or the continuation
of the invariant amplitudes into the ~z region again
refers to backward amplitudes, on both sheets of v.

Further, the xx cut, namely,

maps into

on both sheets.
It is necessary now to relate the invariant amplitudes

A+, 8+, in the backward direction, to the pion-nucleon
phase shifts bl, ~~.' Partial-wave amplitudes are de6ned
iri terms of these phase shifts:

fr~ = (1//v'/') expibl, ~ sinai, T=
I.=O 1 2

Here T is the isospin of the system, and I. the orbital
angular momentum, while ~ refers to the nucleon
helicity. Spin amplitudes fir, f2 are given by

(1.14)

The square roots are defined to be positive for real
v) —1. Thus the channel I physical region,

3f —- —f I. /2 f 2/2' s —ii 2

$1=L(v+~')'/'+ (v+1)'/'p sh«t I Certain & combinations are de6ned:
(1.12)

L(v+~2)1/2 (p+ 1)1/2]2 sheet II 2f +—f 1/2+2f 3/2

(1.15)

(&+1)2 ($1(~
3 G."F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu.

Phys. Rev. 106, 1337 (1957).
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Pro. 2. Two-pion in-
termediate state in
channel ZZZ.

and the invariant amplitudes are expressed

A+/4n. =L(W+M)/(X+M) 7fr~
—

L (W—M)/(E —M) 7f2+,
(1.16)

B+/4~= P/(Z+ M)7f,+pl 1/(Z —M) 7f,+.

In a similar way, by considering the kinematics of
~7f-—ÃE scattering, the invariant amplitudes in the
channel III physical region can be related to the helicity
amplitudes describing that reaction. Here ~ refers to
the relative helicity of the nucleons in the Anal state.
The expansion is

2. DISPERSION RELATIONS

The invariant amplitudes can be considered to be the
boundary values of analytic functions of two iud, epend-
ent variables. The functions have cuts on the real axes'.

(M+1)' &s, & ~, I,
(M+1)'&s2& ee, II,

4($3&~, III.

These regions correspond to the "physical" regions of
channels I, II, III; and the boundary values on these
cuts, approaching through positive values of the imagi-
nary part of the argument, are the invariant amplitudes,
in the corresponding channels. The 8 amplitudes also
have poles, at

$,=~2
7 2

j—B'= Z (—)"'(2~+1)L~(~+1)7'"(Pv)' 'f-" v' 1,p'(s'')
A =P +— ds, '~'—s;T=O, 1,

where

that arise from single-nucleon intermediate states.
These analytic properties can be expressed by means

of a double Cauchy integral, the Mandelstam represen-
t& {2ML~(~+1)7'"f-"—f+"}

8' 8+
and

p&y($& sg )
ds& lsd;

(sr' —sr) (»' —»)-
(2 1)

In the expansions (1.17) only alternate terms are non-
zero, for f+e =0 if 1 is odd, and f+'s 0 if j is e——ven, a
consequence of the Pauli principle.

One is interested in the helicity amplitudes /~re in
the region just above the two-pion threshold, where
the nucleons are virtual. They can be related to the
phase shifts of ~m.—~~ scattering, for, applying the
unitarity of the 5 matrix to the decomposition pictured
in Fig. 2, one has

3( i
XE)- dn( i

)*(
i
Xg). (1.19)

Here A = (A+,A,B+,B ), (ijk) is a cyclic permutation
of (123), and

y'= G'(0011), y'= G'(00 —11), y'= 0.

G is the renormalized pion-nucleon coupling constant.
In the Mandelstam representation, the spectral func-
tions p;, p, i, are real, and vanish outside well-de6ned
regions. They are not all independent, because of the
crossing symmetry. For the interchange of the two pions
does not alter the nature of the reaction; and the scatter-
ing matrix element is invariant under the interchange.
This implies the symmetry:

That this formula is applicable in this unphysical region
has been deomonstrated by Mandelstam'; also, it is
exact below the four-pion threshold. It gives a simple
expression for the xw —m~ phase shift, 8J~.

A ($,$2$3) = A ($2sts,). (2.2)

T—argf TJ (1.20)

The program of the following sections will be to
calculate the invariant amplitudes from the mÃ —m-lV

phase shifts, using (1.13) through (1.16), in the channel
I physical region, then to extrapolate to the channel III
physical' region, and to calculate the mw —mw phase
shifts, using (1.17) though (1.20). A (ur) = A (urr) (2.3)

Equation (2.1) can be used to give a dispersion
relation for the invariant amplitudes, in the backward
direction, as a function of v. The amplitudes are deQned
on a two-sheeted surface, according to Eq. (1.12).
The crossing relation (2.2) becomes

'W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960).' S. Mandelstam, Phys. Rev. Letters 4, 84 (1960). ' S. Mandelstam, Phys. Rev. 112, 1344 (1958).
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where the amplitudes are written as a function of P

only. A dispersion relation will be written on sheet I
only; and the superscript will be omitted. On this sheet
there is a cut:

0(P&~;

FIG. 3. The cuts and
integration contours in
the v plane.
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and the boundary value on it, approaching through posi-
tive values of ~P, is the xE—xS backward-invariant
amplitude. There is also a cut

—~ (V(—&;

and the boundary value, approaching through negative
values of ~v, is the m.x —EÃ backward amplitude, as a
function of v, which is related to p and q by

persion relation not directly calculable in terms of the
m.E phase shifts and the Born terms. Here, this is simply
the contribution from the xx cut; but in his case it
consists in short-range contributions from the crossed
mE reaction, and from the crossed Born pole, beside
the xx contribution. The Cauchy pole of the dispersion
relation (at v) can be placed in the ~N physical region:

—v= 1+q'=M'+ p'.

There is also a Born single-nucleon pole at

v= vp—=—1+1/4M'.

The singularities are shown in Fig. 3.
It will be seen from Eqs. (1.17) and (1.18) that

(2.4)
=. (v) =RN(v) —%N(0) Q

" dv' ~~N(v')

P P P
1 1

+ , v)0. (2.8)
Pp P—Pp

Here the discrepancy is real, and can be calculated from
the known N(v). A method will be given, in the next
section, whereby (v) can be extrapolated from the
region (0,~) to the region (—~,—1). Then the ampli-
tudes N(v) are givenin (—~,—1) byplacing the Cauchy
pole there:

pe= L(v+1) (v+I )j"
factors out from the expansions of A and 8+, and it
can be shown, by considering (2.1), that A /pq and

8+/pq have the same singularities as 2—and 8+. It is,
in fact, more convenient to disperse these quantities.
Accordingly, one defines

QN(v) %N(0) 1 " dv' QN(v')
=%="(v)+ +-

P P 7l p V
—V P

A+

N(v) = +, p=P(v+1)(v+M')]-'i',pA

8
(2.5)

(2.V)
Pp P—Pp

3. CONFORMAL MAPPING

and writes a, dispersion relation for N, using the contour
of Fig. 3. Introducing a subtraction at the pion-nucleon =~~K(v), v( —1.
threshold, P=O, the relation is P

N(v+ie) —N(0) 1- dv' QN(v'+ze)

I"-P V

Vp P—Pp 26

The problem to be considered in this section is the
extrapolation of (v) from (0,")on to its cut (—~,—1).
The continuation is unique, and amounts to the solu-

tion of a Stieltjes integral equation. For, according to
Eqs. (2.6) and (2.7),

where

d. (0lI'=Gz
=(v)=-

'~~N(v') dv'

P P V

Putting
n= —(v'+1), ~~N(v')/v'=g(n),

=(v) = N(v) —N(0) 1 " dv' ~~N(v')

V V P

A complex quantity, the discrepancy, is defined by
one has

P=v+1, =(v) =f(&)

1 "g(n)
f(P) =

p n+P
(3.1)

+ (2 7) which is the Stieltjes equation, the solution being:

(2~/z)g(P) =»m-R- Lf(—~+ze) —f(—~—ze)j (3 2)

The notation follows that of Hamilton, ' in that the r E. c. Titchmarsg, ppeory fpouorzerlmeegrais(Oxford pniver-

discrepancy, like his, consists in those parts of the dis- sity Press, New York, 1937), p. 318.
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Fn. 4. The q plane.

The question of convergence on the unit circle arises.
The Maclaurin series in g becomes a Fourier series in q,.
and analyticity is not required for its convergence, Ac-
cording to Fourier's Theorem, '~ if

~(e'")A (3 7)

converges absolutely, and

((ii)=ps" a.r)", (3.4)

where the a„are determined by the knowledge of ( on
the real axis. The value on the circle is discovered. by
setting g= e'~:

Among several practical methods of soution, it was found
that a conformal mapping technique was most satis-
factory, ' "as it takes the errors of into account more
satisfactorily, as will devolve.

The transformation is

E(v+1)"+'"—1
k(~) =-""(v) (3 3)

E(v+1)"+'"+1
This maps the whole of the v plane into the unit circle
in the 2) plane. The cut (—~ &v& —1) is transformed
into the unit circle

~
2)

~

= 1, while the region (—1(v( co )
becomes the interval (—1(rl(1). The elastic branch
point at v= —1 is of a square-root type"; and is trans-
formed away by the mapping. However, higher branch
points survive in the g plane.

The discrepancy is expanded in a Maclaurin series:

$(e'v)e 'nvdip 22=0, 1, , (3.8)

then if ip is interior to an interval in which $(e'") has
limited total Quctuation,

2 "&.e'""=2LE(e" ')+i(e"" ")j ( )

If, further, $(e'i') is continuous in the same interval, the
sum reduces to $(e'i'); and the convergence to it is uni-
form with respect to q. In fact, physical considerations
allow one to assert both limited total fluctuation and
continuity of $(e'v) at all points, except possibly q =0,
corresponding to infinite energy. The integral (3.7)
becomes, in the v plane:

—' E(222+1) (—v —1)"—'~2

- (v)dv,
1+E2( v 1)2n+1

(3.10)

and this certainly exists. Hence the Fourier series (3.9)
converges uniformly to $(e'v). To establish that the
Maclaurin series (3.4) converges to $(e'") on the unit
circle, one must demonstrate the identities:

](eiv) g 'n a einrp (3.5) n=0, 1, 2, (3.11)

The discrepancy in the v plane, on the cut, is then
obtained by the substitution

E( V 1)n+1/2 ( )n COtp j2 (3 6)

The real constant E is arbitrary, and can be chosen
to suit the discrepancy. The index, n, however, is pre-
scribed by a condition at the mx threshold. In accordance
with Eq. (1.20),

gf r&~1 ~~f TJ~if2J+1 ~~0

This implies, by virtue of Eqs. (1.17) and (2.5), that

RÃ; 1, i = 1, 2, 3, 4,

~~h~i-q, ~~Ã2-q', ~~N3-q', ~~$4-q,

where E(v) = (Ei,X2,Xs,Xs). This threshold behavior
is automatically ensured by choosing I to be (0,1,2,1)
in turn, for the four components of X(v). The mapping
is displayed, for E=1, 22 =0, in Fig. (4), where the figures
are v values.

S. Ciulli and J. Fischer, Nuclear Phys. 24, 465 (1961).' W. R. Frazer, Phys. Rev. 123, 2180 (1961)."C. Lovelace {tobe published).
"W. Zimmerman, Nuovo cimento 21, 249 (1961).

The analyticity ensures that

((peii )=p a pneinv 0(p (g ( 1 (3 ] 2)

the convergence being uniform. Since the discrepancy
is de6ned on the cut by a limiting process, it follows
that, given any c&0, there exists a 8&0, such that

~

$(e'i') —f(pe"v)
~
& e for all 0&1—p(5. (3.13)

Suppose for the moment that this limit is uniform, that
is, that 5 does not depend on q, The sum

$(eiv) $(peiv) —p m($ a pn)einv 0(v(] (3 14)

converges uniformly, and so can be integrated term
by term, giving

b„—8 p"=—

ibn ap"
i
(s, 0(1—p—&6, (3.16)

'~E. T. Whittaker and G. N. Watson, Modern Analysis {The
Macmillan Company, New York, 1940).

Using (3.13), with the postulated uniformity, one has



PREDICTION OF PI ON PHASE SHIFTS 1913

which establishes the required result. However, the
limit

The second point is that, since ((tt) is known only
in the region

&(pe'") &( '") (3.17) ~& V&1,

is not expected to be uniform over the whole range of

q,' but only over an interval including no branch
points. I.et (a,b) be such an interval, and let g„(qr) be
defined so that

g„(v)e'v&de= 8.„. (3.18)

—8 p"——
7r

Lk(e'") 8(pe'")—jg-(p)dp (3 19)

whence (3.16) follows, by using (3.18). Thus the Mac-
laurin series converges at all points of the circle, except
the branch points. It should be noted that the m-x

threshold, p =m. , is not a branch point in the g plane, "
so that convergence occurs there.

4. ERRORS

The experimental information used consists in the
pion nucleon phase shifts for 5, I', and D waves, taken
from the work of tA'oolcock. "The invariant amplitudes
are calculated from these, using Eqs. (1.13) through
(1.16), the expansions (1.14) being truncated at the D
wave. The errors are estimated from those of Koolcock,
and it is assumed that neglect of Ii waves causes negli-
gible error.

It is necessary to estimate the error introduced by
the conformal extrapolation. First, two objections to the
mapping will be considered. The 6rst is that while the
high energy parts of the cuts in the v plane contribute
little to the low energy solution, this may not be the
case in the g plane, where all parts of the ~m cut are at
the same distance from the low energy region. The criti-
cism is relevant to a method in which a dispersion rela-
tion is written down in the g plane, but it is not true
that the useful properties of the v plane are destroyed.
For, in the v plane, the high energy part of a once sub-
tracted integral, from

~

v
~

= V to oo, behaves like U '.
The corresponding behavior in the g plane, for the
equivalent integral, is U '"+'~'). Thus, if e&1, the sup-
pression of the high energy parts is more efficacious
than it is in the v plane; if e= 0, it is not so, but the sup-
pression still exists. The notion of distance as a factor
reducing the importance of a cut is valid only when
considered together with a lateral effect; and the rela-
tive importance of the two factors depends on the com-
plex variable used.

"W. S. Woolcock& thesis, 1961 (unpublished).

The linear independence and square integrability of
the functions e'"& in (a,b) assure the existence and
boundedness of the g„(qp). Equation (3.14) is inverted by

Y representing the highest energy at which phase shifts
are available, it may be that the true Maclaurin series
should contain some very high powers, with appreciable
coefficients. These would not be detected in the experi-
mental curve $(tl); but they would clearly be important
on the unit circle.

Before this point is considered, it would be well to
point out that the difficulty lies in the dispersion rela-
tion, and not in the mapping as a technique of solution.
The problem is that, in the equation

1
="(v)=- (4.1)

h(v) = - (v) —- p(v). (4.2)

Then, if ~"(v'), v'( —1, is the known approximate
solution, the true solution Z p(v') is given by

3-"p(")=3=(")—3~("),
where ~~8(v') satisfies

(4.3)

(4 4)

Mathematically, even if h(v) is a small quantity,
8(v ) could be a large, rapidly oscillating function. It is
necessary, therefore, to supplement the mathematics by
a physical assumption. It is known that (v'), v'( —1,
describes the mm amplitude; and one can reject a highly
oscillating solution. Thus, if one s initial solution,

(v'), v'( —1, is slowly varying, one expects the error,

a violently oscillatory error of 3' (v'), v'( —1, only
produces a small error of "(v), v) 0, due to cancellation
in the integral. All one can do, from a mathematical
point of view, is to fit the experimental points by a curve

(v), lying within the band of errors of the points, and
then devise some means of estimating g (v'), v'( —1,
from this curve. Now if a polynomial in g is such a fit,
then the corresponding Fourier series obtained by the
extrapolation is identically the solution which, when
integrated, gives the above 6t. The mapping, as a trick
for finding a solution which gives an acceptable dis-
crepancy, has achieved what was required. No state-
ment about the remainder term in the Fourier series,
or the behavior of a„as e —& ~ is needed. Actually, an
assumptioo merely of boundedness of the pion pion
amplitude at infinite energy implies

~
na

~
( constant.

The problem remains that, having found a solution
which gives an acceptable discrepancy, one requires to
estimate the error, in particular the possibliity of large
oscillations. If .p(v, ) v)0, is the exact, unknown dis-
crepancy, and (v) is the approximation which is known,
the error will be written
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Rodiona
neglected entirely, Eq. (1.20) gives

00 arglgi,

5~' ——argX2 ——argÃ4,

82'= argX3.

(4.8)

0~2 4

Pro. 5. The S wave.

800= arg [cVi—M/I21V2]. (4.9)

To obtain a more accurate expression for the 5 wave,

f 0' can be eliminated between the first and third of
Eqs. (4.7). f+" is still neglected. This gives

PION PHASE

6(v) =cg (v), v)0, (4.5)

and it follows that

ii (v'), to be slowly varying too. One is at liberty to choose
a simple functional behavior of h(v), and calculate 8 (v').
A reasonable, and eminently tractable assumption is
that the error of the discrepancy is a constant percent-
age of itself. Then

The positive helicity D wave occurs in the expression
for E~ with a coefficient of about 8, compared with unity
for the negative helicity amplitude. If the two ampli-
tudes are of about the same size, it can be shown that
neglect of f+0' has no significant effect. This, however,
may not be the case, for the corresponding ratio between
the positive and negative helicity P waves, derived from
E2 and X4, is about 4, agreeing with the known ratio of
the nucleon form factors, to which these amplitudes are
connected. If f+ ' were four times f ",the S-wave pion-
phase shift derived from the analysis would be very
slightly affected at the highest energies considered. If it
were any greater than this, the results could be signifi-

cantly altered at lower energies, too.
8(v)=cZ(v), v (—1. (4.6)

5. RESULTS

Thus one expects about the same percentage error in
the solution as in the discrepancy.

It is worth while pointing out that a constant error
in the rescattering integral,

" dv' ~~Ã(v')

(P2/22r) (2)1/2g ——f00+5 (Pq)2f~(0)1/2f 02 f 02)

(p2/6~)Q —1~( )1 22f /11 f 11

1/102r)X2 ——f 0

(1/3v2n)X4= f". (4.7)

which could arise because of faulty assumptions about
the very high energy part of the integral, causes no
error in E(v'), v'( —1.

The partial-wave expansions of the invariant ampli-
tudes (1.17) are truncated at the D wave. Together
With Eq. (2.5) this allows one to write the components
of E(v), v( —1:

The results are displayed as graphs of phase shifts,
in Figs. 5, 6, and 7. The abscissa in each case is q, in
units of the pion mass squared, and the ordinate is in
radians. The error bands, based on the input experi-
mental errors, are 10% for the plus, 25% for the minus
combinations. Some of the parameters extracted have
larger errors, however, for example the resonance half-
width, as indicated below.

The T=O, J=O, xx interaction shows a low-energy
repulsion, but is predominantly attractive over the
range 0(q'(7. The scattering length is —0.4~0.1;
and the phase shift passes through zero at q'= 1.35~0.20.
The minimum in the negative going part is —10;and a
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There are here four equations, and five unknown
helicity amplitudes, and f~02 cannot be determined. This
diS.culty could be removed by writing a dispersion
relation for the derivative of A.+ with respect to mo-
mentum transfer, although the procedure might be
subject to large error. The difhculty is circumvented
below by neglecting f+0', although still retaining f 0'

If the D wave contribution to 1V, in-Eqs. (4.7) is

I.O'

0

FIG. 6. The E wave.
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very low energy xw —mm S wave can be made. This
conclusion agrees with that of Hamilton et al." The
two versions of the S wave are shown in Fig. 5 (curves
1 and 2, respectively).

The E-wave estimate, coming from the minus com-
binations, has a larger error. There are two values, from
E~ and E4, and these agree, within the errors. The
scattering length is 0.030&0.015; and a resonance is
found at q'= 5.5~1.0. The half-width is subject to large
error, since it depends on the derivative of the real part
of the amplitude, as it passes through zero. The estimate
is 200~160 MeV. The discrepancy is not very sensitive
to the resonance, since the effect is smoothed out by the
dispersion integral. The phase shift is shown in Fig. 6.

The T=2, J=O interaction is attractive, with a
scattering length of 0.10+0.03. The phase shift is shown
in Fig. 7, where it will be seen that there is a peak of
about 45' at q'=4. 2.

positive maximum of 50 is reached at q'= 6. Since most
approaches to the xm problem, based on a solution of
the mw equations in a self-consistent way, give a positive
de6nite phase shift, it is of interest to see what are the
circumstances under which such a solution would be
acceptable in the present method.

It is found that if the plus combination of the small

p waves, that is, ft 'I'+2ft '~', were altered from Wool-
cock's values by two of his standard deviations at
threshold, then the negative going part of the S-wave
pion-pion phase shift would be eliminated, giving a
scattering length of +0.6. Therefore, it would seem that
an accurate determination of the small mlV —~X phase
shifts is necessary before a definite statement about the
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