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Low energy s- and p-wave 7f-E scattering is analyzed by partial
wave dispersion relations. From the experimental 7i- —S phase
shifts we derive the discrepancies" in the physical energy region
and on the crossed cut. We are able to separate the discrepancies
into the short-range (&0.2X10 "cm) 7r —E interactions and the
7i- —m- contributions to ~—X scattering. The 7f- —7r contributions
found in this way satisfy several stringent tests which show the
validity of our method for deriving and separating the 7l- —71.

contributions.
The (+) charge combination of s- and p-wave 7r fV am—plitudes

yields considerable information about the T=O 7i- —7r interaction
at low energies. The T=O, J=O 7i- —7i- scattering is dominant, and
we determine possible sets of the corresponding phase shift 80".
Several of our solutions for B0' agree with recent solutions of the
Chew-Mandelstam equations for 7t- —7r scattering. Comparison
with the latter suggests that the 7t- —7i- coupling parameter is
X= —0.18~0.05, and the 7t- —7l- scattering length is a0=1.3&0.4

(in units where k=p=c=1). Other information, from the p+d
and 7t-+S —+7f+7f.+N experiments and from 7. decay, is con-
sistent with our proposed values of bo'.

The (—) charge combination of s- anti p-wave ~—1V amplitudes
gives information about the T=1, J=1 7f.—7i- interaction which
is consistent with the observed p resonance. However. in the T= 1,
case, complete prediction of our 7l- —S results via the helicity
amplitudes for 7i-+7t-~ S+N is not yet satisfactory. Possible
reasons for this are given.

The p-wave 7i- —S interaction is separated into its constituent
parts, and for example, it is seen that any attempt to determine
the position of the (-,', —',) resonance must include the T=O, J=O
7i-—7i- interaction, The extent to which our analysis depends on
assuming charge independence is examined. We also discuss how
our results can be regarded as a fairly good physical proof of the
Mandelstam representation.

1. INTRODUCTION AND SUMMARY a,nalyses of these experiments. Our analysis gives some
evidence for a T=O d-wave x—x interaction, but it
appears to be of no great importance in m. —X scattering
up to 200-MeV lab energy.

The information we obtain about the T= j. z —~
intera, ction is consistent with the effects which would
be produced by the p resonance (at approximately
760 Mev). There is however some difficulty in calcu-
lating the helicity amplitudes for m.+7r ~ N+N in the
T= 1, J= 1. state. This is probably due to the fact that
we have to solve the appropriate Omnes equation for
comparatively high energies.

In III we showed how low-energy s-wave m —S
scattering could be broken down into its constituent
contributions from T=O and T= 1 z —

m interactions,
core (short-range) effects, crossed nss resonance effect,
and rescattering. Here we do the same for low-energy
p-wave w —1V scattering. In addition to the above
effects we have, of course, the long-range Born term in

the case of p-wave ~—N scattering. This breakdown
of the p-wave ~—N scattering gives some interesting
results; for example, the 7=0, J=0 m —x interaction
gives an important contribution to the (-'„-,') x—N
amplitudes, and the position of the ($, ~) resonance
could not be calculated without taking this into account
as well as the short-range attraction.

Our analysis of low-energy m —E scattering uses the
latest values of the phase shifts given by Woolcock. '
These are partly taken directly from the accurate
experimental data, and partly result from an analysis
along the lines of Chew, Goldberger, I,ow, and Nambu'.
This analysis uses single variable x—E dispersion rela-

' 'N earlier papers' a method was developed for
~ ~ obtaining information about pion-pion interactions
from low-energy pion-nucleon scattering. This was
based on the dispersion rela, tions for the pa, rtial wave
w —E amplitudes. In II and III there was a preliminary
account of the information about x—~ interactions
which was obtained from s-wave z —S scattering. In
the present paper we give the results of an improved
calculation for the s-wave x —E case, and in addition
give a similar analysis of p-wave m —1V scattering.

Ke 6nd that there is a strong low energy attraction
between two pions in the T=0, J=0 state, and that it
plays an important part in low-energy s- and p-wave
m —S scattering. We give values of the T=O, J=Om —

m

phase shift 6p" which reproduce the x—Ã data, and we
show how these values comPare with values of bpP which
have been obtained by several authors from solutions
of the Chew-Mandelstam dynamical equations for ~—x
scattering. This comparison enables us to give an
estimate of the z —~ coupling parameter ) and the T=0
s-wave z —z scattering length ap. Our results for Qp

and the value of hp at low energies a,re compared with
other sources of information on bs', such as the p+d
experiment, the w+N and m.+7r+1V experiments, and
the ~-decay data. It is shown that our results a,re, by
and large, not in disagreement with the theoretical

2W. S. Woolcock, Proceedings of the Aix-en-Provence Inter-
national Conference on L&'lementary Particles (Centre d'Etudes
Nucleaires de Saclay, Seine et Oise, 1961), Vol. I, 461.

3 G. F. Chew, M. L. Goldberger, F. E.. I.ow, and Y. Nambu,
Phys. Rev. 106, 133/ (1957).
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FIG. 1.LoCation of
the pole and cuts of
the 7f.—E partial
wave amplitudes in
the complex s plane.

tions for fixed momentum transfer. The 7r —x inter-
actions only appear in these relations in the form of
subtraction constants, and these subtraction constants
are determined by using experimental data. Thus, in
no sense are we working in a circle: the m —S phase
shifts from which we start are directly or effectively
experimental values.

The paper is set out as follows. In Sec.~2::.the method
and evidence for its validity is discussed. In Sec. 3 we
derive the T=O, J=O pha, se shifts and in Sec. 4 we
discuss the T=1 z —& interaction, and the relation
between low energy x—l'It' scattering and the nucleon
form factors. In Sec. 5 we examine the relation of our
results to other information on the T=0 and T= 1 x —~
interactions, There, we also give the breakdown of
p-wave 7r—iV scattering into its constituent parts, and
make some comments on the validity of charge inde-
pendence and on the validity of the Mandelstam
representation.

fo'+'(&) = lLfo' '(&)+fo'+'(&)3,
fo' '( ) = l(fo' '(&)—f "'(&)j

where fo' '(s) and f~&"+'(s) are the s-wave scattering
amplitudes for vr +p —+or +p and +++p ~ ~++p,
respectively.

The Dispersiort Relation

The singularities of the partial wave amplitudes as
functions of s are shown in I'ig. 1. Knowing the position
of the singularities we can"'write down the dispersion

~ 4relations
1 " Im fat+' (s')

Refo'+& (s) =P'*i (s)+— ds'
(M+ p)

iiir—v)2 1mfo(+i (e')
+t1o'"(~), (2)

S —S

~ I:or a discussion of convergence and possible subtractions
see III, Sec. V (ii).

2. CALCULATION OF THE DISCREPANCIES

(i) The s-Wave ~-N Discrepancies

The same notation is used as in III. s= [(M'+o')'t'
+(p'+q')'t'j' is the square of the total energy in the
c.m. system in the channel m+E~ vr+1V. M and p
are the nucleon and pion masses, and q is the momentum
in the c.m. system. The s-wave partial x—S amplitudes
are fo&r'(s) where T=~i, 2 is the isotopic spin; these
are normalized so that in the elastic region fo'"'(s)
=e'" 'r( isbn& ')/q where 8'r' is the phase shift. We
shall use the combinations

where s lies either on the physical cut (M+p)'~& s~&~
or on the "crossed cut" 0&~s~& (M—p)'. One of the
integrals on the right will be singular and it has to be
evaluat:ed as a principal value integral. P'+'(s) denotes
the sum of those Born terms which arise from the pole
s'=M' and the short cut (M p'/—M)'~&s'~&M2+2p'.
We call the first integral on the right of (2) the physical
integral and the second integral will be called the
crossed integral. The physical integral gives the contri-
bution to Refo(s) due to rescattering, and the crossed
integral gives the effect of the crossed graphs. The
(-,', —,') and the higher ~—A' resonances contribute to
the s-wave z—A amplitude through the crossed
integral.

We call Dot+'(s) the s-wave discrepancies. These are
made up of the contributions to (2) arising from the fa.r
unphysical cut —~ &~s' &~0 and the circle

i

s'
i
=M' —p-'.

The former is equivalent to x—S interactions of range'
& h/Mc, while the circle arises solely from the channel
~+m —+ iV+X. The left half of the circle also is equiva, -
lent to short-range interactions (range ~&A/Mc). The
right half of the circle, and in particular the part near
5'=M' —p', gives a comparatively long-range inter-
action between the pion and the nucleon which is due
to low-energy x —x scattering.

We evaluate 60&+& (s) in the physical region s
)~ (M+p)' by substituting the known s-wave vr —1V

phase shifts on the left of (2) and in the physical
integral on the right. The Born terms P'+'(s) are
calculated using the coupling constant f'=0.081 (these
Born terms are very small in the s-wave case, as was
shown in I). The crossed integral is evaluated by
means of the crossing theorem using known s-wave,
p-wave, .

m
—1V phase shifts and using certain infor-

mation about high-energy z —S scattering. ' Equation
(2) then yields 60'+&(s).

0
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pIG. 2. The discrepancy 60(+)(s) for s-wave n- —lV scattering,
The solid curve is obtained by assuming Imf0(+)(s) behaves like
s 'I' as s —+ 0, and the broken curve is obtained by assuming
Imf0(+)(s) —& 0 as s —+ 0. The cross at s=20 indicates where the
solid curve would end if we neglected d waves.

5For a definition of the range of the equivalent interaction,
see III, Sec. I (ii).

"' For. details see III.
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I'zo. 3. The discrepancy no& & (s)'for
s-wave m- —1V scattering, The broken
line for s(23 shows the effect of the
d waves.
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Applying the crossing theorem to Refo'+'(s), we can
also evaluate Ae'+&(s) on the right-hand part of the
"crossed cut" 0&~s&~ (M—ts)'. In practice the accuracy
of this calculation is limited by our knowledge of the
x—E scattering phase shifts at moderate and high
energies. We have carried out the calculation for
2O/s'&~s~& (M—ts)'=32. 7/s', and our results are quite
reliable for 25p, '~& s ~& 32.7y'.

(const)

(s—Res&)'+ (Imsr)'
(3)

where' sr~(M' —p,')e'» and pr is some angle less than
about 35'. Figure 2 shows the calculated values of
Dot+&(s). Clearly it is well represented by the form

7 The constant arises from the far unphysical region, where s'
is large and negative.' Note that 3P—45@'.

Separatt'ort of the Low Erterg-y m
—

m sects
Ke have seen that the effect of low-energy m —

m

interactions on w —N scattering comes from the front
of the circle ~s' =M2 /s' (i.e., th—e part nearest s'
=M' —/s'). This will result in a fairly rapid variation
of t&o'+&(s) with s over the range of values of s where
we have calculated it. The remainder of hat+& (s) comes
from the more distant parts of the cuts and is expected
to be a slowly varying function of s over the range of
our calculation. In fact this remaining part of Aaf+&(s)

should be well approximated by a constant~ plus a
single pole somewhere on the cut —~~&s'~&0. This
part of Aa'+&(s) is due to the short-range part of the
x—E interaction, and we shall call it the core inter-
action (the corresponding range of interaction is
& h//Mc).

This interpretation of Ae'"&(s) is supported by certain
symmetry properties which were derived in II. In
particula, r the low-energy ~—~ part of Ae'+&(s) is
expected to be approximately of the form

(3) plus a term which varies slowly with s. The low-
energy n.—x. part of 60' &(s) is similarly expected to be
approximately of the form

(const) (s—Resr')
(4)

(s—Res&')'+ (Imsr')'

where s~' is defined in the same way as s~ above.
Figure 3 shows the calculated values of t4t & (s).
Expansion (4) plus a constant gives a rough approxi-
mation to the form of hot & (s). In particular, it explains
the noticeable difference between the values of hot &(s)
for s&~ (M—ts)' and its values for s&~ (M+ts)'. It is also
shown in II that if the x—~ interaction in the isotopic
spin state T= 1 is only appreciable for moderate, but
not low, m —x energies, say for t&20'' where t is the
square of the energy of the x—x state in its c.m.
system, then (4) is only a rough approximation to the
7r—vr part of Ao' &(s). Comparison of (4) with Fig. 3
suggests that this is, indeed, the case.

In the present paper we improve considerably on the
information which can be obtained using (3) and (4).
Various forms of the s-wave ~—

m phase shift 6O'(t) are
used to calculate the low-energy ~—~ part ofd a'+& (s).
Adding a slowly varying function of s and comparing
the result with Fig. 2, we can determine the s-wave
m —z scattering length, etc. As a check on our results
we can require the same s-wave x—

m phase shifts to
give agreement between the theoretical and the calcu-
lated values of the discrepancies Ar/~'+& (s) and As/2'+& (s)
in the dispersion relation for p-wave m

—/V scattering
(cf. Sec. 3). We similarly fit the Dot ' (s) curve in Fig. 3
by assuming various resonances in the T= 1, J= 1 vr —x
system, and again a check on our results is given by
the requirement of also 6tting the p-wave ~—/V dis-
crepancies hr/2& '(s) and As/2& '(s).

w —/V Phase Shrift Data Used

The new values of ha'+&(s) and Aa' '(s) shown in
Figs. 2 and 3 are in several ways superior to the values
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Fio. 4. Values of the 7r —E s-wave amplitude Resa= (sin2o;3)/2g
where q is the momentum in the c.m. system.

given in II and III. The range of s in the physical
region has been extended to 59.6= (M+tt)'~&s&~80
(we use units A = tc =c= 1 throughout), i.e., from
threshold to pion (lab) energy 215 MeV. In the crossed
region the range is 20 &~s &&32.7 = (3I tt)'. —

s-wave sr—1V shifts. In the original calculation two
sets of discrepancies were given because of ambiguities
in the high-energy values of the s-wave x—E phase
shifts n~ and n~. In the present calculation Woolcock's'
values for these phase shifts up to 400 MeV are used.
These values are given in Figs. 4 and 5. Woolcock's
values of nt and ne (and of the small p-wave phase
shifts discussed below) are derived partly from an
improved form of the dispersion relation method of
Chew ef al. ,

" and partly from certain particularly
accurate experimental phase shift determinations. The
n~ plot shown in Fig. 4 passes through, or close to the
accurate experimental values at 31, 98, 120, 224, and
310 MeV. The ni plot in Fig. 5 passes through or close
to the accurate experimental values at 31, 98, 120, and
224 MeV. Above 250 MeV Woolcock's values of ni lie
about half way between the two sets of values of ni
used in II and III.

Woolcock's values give us Refv'+'(s) with consider-
able accuracy in 59.6&&s&~80 (i.e., for lab energies up
to 215 MeV). For the physical integral and the crossed
integral we require Imfo'~'(s) at higher energies. Above
2 BeV we use the value Imfv'v' ——0.22/q as suggested
by the partially opaque optical disk Lcf. Eq. (9) of IIIj;
here T=-2, —,'is the isotopic spin. Between 400 MeV
and 2 BeU we join up Imfo'+&(s) with smooth curves.
As was pointed out in III, the errors arising from our
rough approximations above 400 MeV are likely to

'W. S, Woolcock, Ph. D. thesis, Cambridge University, 1961
{unpublishedl; and Proceedings of the Aix en Provence Con)eren-ce-
on FA'gh-Energy I'hys~cs (Centre d'Etudes Nucleaires de Saclay,
Seine et Oise, 1961). See also J. Hamilton and W. S. Woolcock
(to be published). We are indebted to Dr. Woolcock for permission
to quote his results and reproduce Figs. 4, 5, and 7.

'0 G. F. Chew, M. L. Goldberger, F. F.. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).
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Fro, 5. Values of the 7f —E s-wave amplitude Res1 ——(sin2nI)/2g
where q is the momentum in the c.m, system.

"J.H. Foote, 0, Chamberlain, E.H. Rogers, and H. M. Steiner,
Phys. Rev. 122, 959 (1961).

"Rochester University result (Set I). We are indebted to Dr.

raise or lower the Aoi+l(s) curves bodily, but should
not tilt or deform them appreciably.

In ca,lculating Eiefo'+'(s) and Imfot~'(s) in the crossed
region s~& 32.7 we require the p-wave and possibly some
d-wave x—S phase shifts as well as the s-wave phase
shifts. From Table IV of III it is seen that to find
fot+'(s) in 25 &&s~& 32.7 we require these phase shifts up
to 200 MeV, and for 20&~s~&32.7 we require them up
to 400 MeV. We shall not place much reliance on
t1oi+l(s) in 20&s& 25.

p-wctve 7r Eph—use shifts. The main contributions to
&o'+'(s) from net come from the region of the (-,', —,')
resonance, and small errors in n» away from the
resonance are relatively unimportant. For convenience
of calculation simple parametric fits were used for o.~3.

Below the ($, $) resonance ccee was expressed in a simple
power series in q, so as to give agreement with Wool-
cock's value of the scattering length net )see Eq. (16)
below] and the accurate experimental data. Above the
resonance another simple parametric form was used.
This gave good agreement with the accurate experi-
mental values such as that at 310 MeV."The values
of net used in calculating Dot+'(s) are shown in Fig. 6.
It should be noted that any inaccuracies in 2 et+'(s) due
to the kink in n» just above the resonance will only be
noticeable for 20~&s~& 23, i.e., at the very lower end of
our range. It should also be noted that in calculating
the p-wave 7r—tV discrepancies it was necessary to use
a more accurate set of values for n~3. These are described
in Sec. 2(ii) below.

The cate phase shift is the predominant p-wave effect.
in t1ei+&(s) for s&~32.7. However we also included the
small p-wave phase shifts atl, tete, net. For these we
used the values calculated with great care by Woolcock
up to 400 MeV. ' Figure 7 shows the values up to 100
MeV. They are in fairly good agreement with accurate
experimental values at 31, 98, and 120 MeV(cc.„t)," "
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s dx P'i(x)fi+f2],

(6)

f2+(s) = l dx L~i(x) f2+I'2(x) f2],

where x=cos8 and 8 is the m —lV scattering angle in
the c.m. system. Also

fi DE+M)/SzrW——)(A (s,t)+ (W—M)B(s,t)],

f2 L(E—M)/SzrW——][—A (s,t)+ (W+M)B(s, t)],

where E= (M'+q')'/' and W=s"'. Applying the cross-

ing rela, tion to the invariant amplitudes A(s, t) and

B(s,t) in (7) and substituting in (6), we find fi+(s) on

the crossed cut 0~&s~& (M—tz)2 in the same way a,s in

III. However, we wish to use the dispersion relation

We shall use the (+) charge combinations defined
analogously to (1).Our dispersion relations for p2r 2~(s)
are now used to evaluate the p-wave discrepancies
+1/2'"' (s) and 6,/2/+& (s) where the subscript is the
angular momentum. These di.screpancies give the effect
of the low-energy zr —zr interactions on p-wave zr —1V

scattering, coming from the right half of the circle,
plus the effect of various short-range interactions
(range &A/Mc) coming from the left half of the circle

( ~

arg (s')
~ ~&zr/2) and the cut —~ &~s' ~& 0.

Again we should be able to distinguish the low-energy
zr —zr parts of Ai/2'+'(s) and dz/2'+'(s) from the short-
range parts by the fact that the former will vary
rapidly with s in the range we use (20~&s~&32.7 and
59.6 &~ s ~& 80), while the short. -range parts can be
represented by a pole on the cut —~~&s'&0 and
contribute to Di/2&+&(s) and 62/2/"'(s) a term which
varies slowly with s. This separation of the low-energy
m —x effect should be somewhat easier here than in the
case of s-wave m —E scattering because of the extra
factor q

' in the definition of the amplitudes pzr, zz(s).
On the left half of the circle and on the cut —~ &~ s'~& 0
the factor

~ q ~

' is very small.
The presence of this factor q

' in Pzi 2s(s) also makes
it much easier to evaluate the dispersion relations for
pzr, zq(s). This is because in the physical region
Impz/, 2q(s) q

' as s ~ ~ by unitarity, so the physical
integral converges faster at high energies than in the
s-wave case. Also q'~ ~ as s ~ 0, so that the crossed
integral is easier to evaluate; uncertainties about the
x—E phase shifts at the higher energies are not so
important as in the s-wave case, and also Impzr, zz(s') ~
0 as s' —+0. The price we pay for these considerable
advantages is that we must know the p-wave zr —Ã
phase shifts accurately at low energies.

Threshold beh/zi/ior on the crossed cztt. The P-wave zr E—
amplitudes fi (s) and fi+(s) for angular momentum
J=—,'and J=-,', respectively, are expressed in terms of
the amplitudes f„ f2 (cf. I for notation) by

(5) for the amplitudes P22 2s which are derived from
f2~'r'(s) by dividing by q'. Also q'=0 at s= (M—tz)2,

so there may be singularities in pzr, 2q(s) as s ~ (M—ti)'.
We shall now show tha, t the behavior as s —+ (M—/z)2

causes no difficulties.
I'rom (7) we get

1 W+M W M-—A(st)= ——f,—— f„
4zr Li"+M L&' M—

i i—B(s,t) = fi+— f2. —
4zr E,+M L~' M—

Also, for small physical momentum q", and physical
scattering angle 8",

f,=fp(q")+3 cosi't"f,+(q")+0(q'"),

f = (f -(q")—f +(q"))+o(q'"),

where fo, fi, and f2~ denote the s and p-wave zr E—
amplitudes. Using (6) and Eq. (10) of III, we see that
for 0(s& (M—tz)2

(W+M)' —ti2 +'
+Refi /+'(s) =— — xdx

32zlV'

)&LReA i+' (s",x")—(W —M) ReB&+' (s",x")]
(W—M)' —tz2 +'

+ — dx P
—ReA i+~ (s",x")

327rW'

—(W+M) ReB'+'(s",x")], (10)

where the superscripts (+) are as usual the charge
combinations given by Eq. (1). Also x"=cos6". Using

(6) a similar equation holds for Ref,+'+&(s) for 0(s
& (M—p,)2.

On the crossed cut 0(s & (M—tz)2, we have

s = L (M2+ q2) i/2 (~2+q2)1/2]2

and q' increases from 0 as s decrea, ses from (M—tz)2.

Also x=cos6 is used in dehning the partial wave

amplitudes on the crossed cut. %hen s is close to
(M—tz)', the variables (q', x) on the crossed cut are
related to the variables (q'",x") in the physical region

by fcf. Eqs. (14) and. (1S) of III]

2p p
q"'=q' 1——(1+x)+0

M 3P

2/2
x"= x——(1—x')+0

M2)
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The behavior of ReP 3T, sq(s). Using (8) and (9) we
see that for q" small,

—ReA (s",x")= 1+ ~a,
43r 2M)

2M—I (av. av—.—)+0(q'"), (12)

—ReB(s",x")= a,+2M(a„;—ave)+0(q'"),
47r 2M

where a„a„„and av; are the appropriate s- and p-wave
3r—X scattering lengths. Substituting in (10) we see
that because of the factor x in the 6rst integral, this
term behaves like q' as q' —+0. The kinematic factor
outside the second integral ensures that the second term
in (10) has the same behavior. Hence RepsT, 3J(s) ~
const as s —+ (M—&t3)'.

The behavior of ImpsT, sq(s). For ImpsT, ss(s) the
position is not so simple. For example, Imfi t+&(s) is
defined by an equation analogous to (10) except for a
reversal of signs

C Eq. (17) of IIIj. In the integrals on
the right of (10) we now replace ReAt+& and ReB'+'
by ImA'+& and ImB'+&, respectively. Instead of (12),
for small q" we get

(1/43r) ImA (S",X")= (1+p/2M) a,sq"+0(q'"),
(13)

(1/43r) ImB (s",x")= (1/2M) a,sq "+0 (q'").

Substituting (13) in the analog of Eq. (10) gives

Imp2T, 2s(s) = c2T,2J/q+0(q) as q ~ o, (14)

where csT,sq are constants. )In this case the leading
term does not vanish on integration over x, because
the relation (11) between q" and q itself involves x.j

Now consider the crossed integral in the dispersion
relation (5) for RepsT 2J(s). It is

ImpsT, ss (s')
o's'

'
. (15)

S S

As s' —+ (M—i3)',

P, (')=(&, /((M —)'—'j'")+0( ')

where dsT, 3J are constants. Clearly the integral (15) con-
verges if sW (M—&3)'. Further, by a standard theorem
on the limiting behavior of principal value integrals, "
I3T,ss(s) tends to a finite value as s —+ (M—p)'. In the
actual computation we used an algebraic method to
evaluate that part of the crossed integral arising from
values of s' close to (M &3)'—

Phase Shifts ar3d Errors

The phase shifts used in calculating 6,~3'+&(s) and
63~3&+&(s) were, with the exception of n33 the accurate

' See for example, J. Hamilton and W. S. Woolcock, reference
9, Sec. 2(ii) for details.

values described in Sec. 2(i) above. The values of n33

in the range 0 to 500 MeV were given by (i) Woolcock's
calculated values for Rep33 from 0 to 100 MeV, (ii) a
Chew-I ow fit to the experimental values from 80 to
180 MeV, and (iii) a smooth curve drawn through the
accurate experimental values above 180 MeV. Assuming
complete elasticity, these values gave Rep33 and Imp33
up to 500 MeV. Above 500 MeV the plot of Imp33 was
continued smoothly to fit on to a resonance peak at
1.3 BeV, and then to fit on the high-energy behavior
0.22/q' above 2 BeV. From these initial values we
calculated

1
Rep33(s) — P—Impss (s')

dS )

and made small adjustments in 0,33 in the neighborhood
of the joins of the different ranges so as to smooth out
any kinks in this function at the joins. (These small
adjustments were within the estimated errors on the
initial values of c333.) The final values of n33 are shown
in Fig. 6; these values were used in our computations
of As&+&(s) (J=- —',, —,'). (The p-wave discrepancies are
plotted in Figs. 15 and 22 below. )

The total error in the discrepancies 63~3'+& (s) arising
from errors in the phase shifts 0.~~, n~3, n3~, F33 are
estimated to be around &0.005 for 25&&s&~32.7 and
59.6~&s~&75. For 75&&s~&80 the errors could rise to
twice this value, and they may be even larger in
20&~s~& 25. The total error in At~st"& (s) from the same
source are estimated to be about 25% greater than
those just quoted for 63~st+&(s). The nature of the
errors in Ast+& (s) was discussed fully in III. For Azi+& (s)
(I=—'„3) we again expect that the shape of the dis-
crepancies is not subject to large errors except for the
largest and smallest values of s. The effect of the
above errors is mainly to shift the curves &s'+&(s)
bodily up or down.

In the crossed region there are also errors arising
from x—Ã s waves, d waves, etc. For s waves the
contributions to the real part and to the crossed integral
tend to cancel, and the errors arising from n~ and n3 are
estimated to be small. Below 400 MeV the d-wave phase
shifts are small and the d-wave contribution is only
noticeable (in the real parts) for s(25 (it comes from
533). Apart from the region 20~&s(25 errors due to
uncertainties in the d waves are negligible. The above
estimates of the p-wave errors in As'+&(s) (J=—',, -', ) are
therefore believed to be good estimates of the total
errors in Ast+& (s).

Errors near the Ihresholds. It will be seen below that
the values of Ast+&(s) (J=is, +~) near the thresholds
s= (M&f3)3 are of particular interest, and we examine
the errors in these regions in more detail. The contri-
butions to d qt+& (s) from the s-wave phase shifts rrt and
e3 show the sort of cancellation mentioned in the
preceding paragraph, and thus the main contribution
to errors in the shape of Dst+&(s) near the thresholds
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comes from the p-wave phase shifts. The errors are
only important. in Rep». os(s) and their size can be
seen from the errors given by Woolcock' for his p-wave
scattering lengths (t't=ti=c=1):

a33 —— 0.214~0.004)

aug= —0.104~0.006,

a3g= —0.040+0.004,

ag3 ———0.030+0.005.

(16)

We shall discuss in Sec. 3(xii) below the extent to
which some of our deductions depend on (16) giving a
realistic estimate of the errors in the p-wave scattering
lengths.

(i) Absorptive Parts on the Circle ~s i

= M' —p'

The absorptive parts of the amplitudes A'+i(s, t),
B&+&(s,t) in the channel ~+n. ~ 1V+N are given by"

ImA &+& (s,t)

Sx
g (J+-',) (ip q,)' P, (cos6,) Imf+'(t)

p 's-o

cos8oPs'(cos8o) Imf s(t), (17)
P (J+1)3i/'

ImB .&+& (s,t)

(J+l)
=8~ P (iP qo)s 'Ps'(cos8o) Imf s(t).

&=i [J(J+1)]'/2

Here qo and ip are the pion and nucleon momenta (in
the c.m. system) in the channel m+vr —& 1V+N. They
are given by

Also
qoo= t/4 —p,', p '=Mo t/4. —

cosbo ——(s p' +q3)o—
/( i2pq3)

(18)

gives the scattering angle 8o in the channel ~+n. —+

N+N. Further, f~s(t) are the helicity amplitudes for
m+m ~N+N (for states having total angular mo-

"See W. R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420
(1960l.

3. THE T=O m—m INTERACTION

In the preceding sections we found the experimental
values of the discrepancies Do'+&(s), &i/2(+&(s), and
63/Q~+& (s) for the s, pi/o, and po/2 partial wave r—N
amplitudes, respectively. Now we try to find the low

energy z —z interaction in the T=O isotopic state
which reproduces these discrepancies. In each case we
can add to the m —x contribution a slowly varying
function of s which represents the short range part of
the m

—N interaction, as discussed in Sec. 2(i) above.
We also attempt to assess how unique is our result for
the low-energy T=0 m —zr interaction.

rnentum J) as defined by Jacob and Wick."In finding
the discontinuity of a m —E partial wave amplitude
across the circle

~
s~ =M' —ti' we use" (17) with t&~4@,'.

Frazer and Fulco" have shown that the Legendre
expansions in (17) converge only for that part of the
circle given by

~
args

~

&66'. We shall, throughout, only
calculate the circle .contribution coming from this arc;
this will include all the long-range effects of the m

—x
interaction on x—E scattering. The contribution to
6'+&(s) from the remainder of the circle (66'(

~
args~

(180') is assumed to be included in the short-range
part of the x —E interaction. In the charge combina-
tions given by the superscripts (+) and (—) only even
and odd values of J, respectively, appear on the right
of (17).Also f '(t) =0.

ImA &+& (s,t) = $4vr/(M' t/4) ]I—m f~o (t),
ImB (+& (s,t) =0.

The contribution of this J=O x—x interaction to the
scattering process m+1V —+ m+N at energy s and c.m.
angle is given by"

1 " ImA .(+& (s,t')
A, &+&(s,cosi») =— dt',

4„2 t'+2q (1—cos8) (21)

B ~+& (s,cos8) =0,

where q is the c.m. momentum in the channel ~+1V~
m+N.

It is now easy to And the T=O, vr—x contribution
to any z —E partial wave amplitude. For example
consider the p-wave amplitudes fi/o'+&(s) and fo/o'+&(s)
where the subscript is the angular momentum. LWhen
divided by q' these give the amplitudes p2z, os(s) used
in Sec. 2(ii) above. ] Using Eqs. (10) and (21) the
T=0 x—m contribution is

(W+M)' —ti' +'

32m 8"'
dx xA..&+& (s, x)

(W—M)' —ti' +'
dx Po(x)A '+& (s,x), (22)

32m B"
"M. Jacob and G. C. Wick, Ann. Phys. {New York) 7, 404

(1959).
2o See I and III for the details of this relation.
"See III, Eqs. {45) and {46).

(ii) Symmetry Properties of 4(+&(s) if the J=O
~-~ Interaction only Contributes

Now we consider the (+) case and assume that we
can ignore any low-energy m—~ interactions in states
with angular momentum J ~&2. Then by (17)
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LRefs/2+ (s)].. th e crossed cut 0 s~ — ' anp, n they are related by

(W+M)2 —/12 +'
dx xA .&+~(s,x)

1 The kinematic factors a cariPP 'go"
(25)

32m 5" dx I'2(x)A &+& (s,x), (23)

W (~2+q2)1/2+ (/12+q2 1/2

—(~2+q2)1/2 ( 2+ 2)1/2
(24)

wh ere x=—cos8 and 5'=—s'~' 8 2.8 (20) d (21) A + (, )
o q and x only (i.e., s doe

p
'

y in this special
value of

casey. Now to p
wo values of W given by

'
e

(W&M)2 —/22 1 M2 —/12
=—

i W+ "~m'~.
W W J

(26)

Apart fromp m the common factor 8' '

8"
P " P

are unaltered i
ns8', '

g e subscript xz toO' H
'

h
o tib tio toth e p-wave discrepancies 6,'+ (s)

where we take thee e positive value of the
ies on the physical cut s&

e square roots.
eut s~ (M+/a)2 and W' lies on

~+) (W) = W'61/2, &+& (W' )

Whs/2. ..&+&(W) =W'6, &+~ W' .2/2, ~~ W')

(27)

(28)
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Similarly it is obvious that for the s-wave discrepancy,

Who, .i+) (W) = W'6o, '+'(W'). (29)

In this proof it has been assumed that the integration
over t' in (21) extends over all values greater than 4p'.
In the actual calculations (as was pointed out above)
we confine the integration over the v+v ~X+X
channel to the front part of the circle given by

~
args~

~&66'. This procedure is equivalent to replacing the
upper limit of integration in (21) by t'= —,'(1—x)t
where" t, = 4'' cos'(33')+M' sin'(33')]. Clearly the
symmetry relations (27), (28), and (29) are still valid;
the subscript mm now indicates that part of the dis-
screpancy which is due to the J=O m —z interaction
and comes from the front of the circle,

~
args~ &&66'. We

are much indebted to Dr. Lovelace for pointing" out the
existence of these relations (27), (28), and (29).

5o&+) (W) = t)io i+) (W)+Fo(W), (30)

where Ap, '+'(W) is the long-range contribution from
the 5=0 v —v interaction as defined above and Fp(W)
is the remainder (it comes from short-range eRects
associated with the cut —~~&s&&0, and with the
left-hand part of the circle: ~args~ )66'; it might also
include some long-range effect from any low-energy
J=2 x—x interaction which contributes to the front
of the circle). By (29),

W'6o&+) (W') —Wt), oi+) (W) W'Fo(W') —WFp(W)
. (31)

TV' —8' S"—8'

Suppose Fp(W) is due entirely to short-range effects.
Then to a fair approximation we can represent these by

(iii) Test of Lovelace's Relations

A. s wave Di-screpancy

Ke now examine how well these symmetry relations
(27), (28), and (29) are satisfied. Consider first the
s-wave 7r —1V results, and use the values of ho&+&(s)

shown in Fig. 2. Let

Possible evidence for J=Z v.—v- interaction. The
function [W'Ap&+& (W') —Who&+) (W)]/(W' —W) shown
in Fig. 8 is not a constant, but varies slowly with 8'.
This could be due either to the fact that (32) is not a
good approximation to the short range part of the
discrepancy, or to the presence of some J=2 m —x
contribution. If we use the somewhat better form

Fo(W) = n—P—/(W'+ Wo') (33)

(where n, P, and Woo are positive constants) for the
short-range part, we can readily evaluate the right side
of (31). Although the use of (33) could possibly give
the full variation with 8" shown in Fig. 8, it seems
more likely that a small effect due to J=2 m.—x scat-
tering is present.

B. p-wave Discrepancies

The values of

LW'6, &+) (W') —Wh, i+& (W)]/(W' —W), (j=—',, —,'),

are shown in Fig. 9. Apart from the small kinks for
59.6~&s&~65, the curves are very smooth and slowly
varying functions of W. (The small kinks may well be
due to small errors in the v —1V da, ta near threshold. )

This again is consistent with our general picture,
namely, that the rapidly varying parts of the p-wave
discrepancies d, ,'i+)(s) (j=-'„-,') a,re due to the effect
of the low-energy J=O m —x interaction. In this case
the presence of the extra factor q

' in the ampli-
tudes Lpov, pq (s)] means that the contribution to
t1,'+&(s) from the very front of the circle (i.e., near
s=M' —p,') is enhanced relative to other contributions.
This is because the factor

~ q~
' is small on all parts of

the cuts which are far away from the thresholds
s= (M&p)' (cf. Fig. 1), so the contributions from
these parts of the cuts are suppressed in the dispersion
relations (5) for ppv pq(s). This tends to make the
discrepancies Aitp'+&(s) and Aotp&+&(s) themselves obey
(27) and (28).

0.02-

Fp(W) = —n —P/W' (32)
-0.02-

I (+), 4)
W S,pt, (w')-W 63t, (w

W-W

where n, P are constants. Also, the general discussion
of the form of Ap~+)(s) given in II and III suggests
that both n and P are positive. With this form for
Fp(W) the right-hand side of (31) becomes —n+P(M'
—po) ' so it is independent of W. We plot the left-hand
side of (31) in Fig. 8. The variation of this function
with 5' is seen to be small. This fact is further confirma-
tion of our general assertion that the rapidly varying
part of Ao'+)(s) in the regions 20& s&32.7 and 59.6&~s

~& 80 is almost entirely due to a low-energy J=O m. —vr

interaction.

"See Eqs. (3) and (4) of III."C, l,ovelace (private communication).

60.60

0.04-

I

65.60 ~ 70.60
S =W

I

75.60

0.02-

-0.02-

60.60 65.60 '
~ 70.60S.=W

Fn. 9. Test of Lovelace's relation for the p-vrave 7t- —g
discrepancies 61&2&+){s) and 63& 2&+) (s),
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(iv) The Difference
I cL;.&+1(s)—4,&+l(s)]

It is readily seen from (6), (17), and (20) that if the
low-energy T=O m

—m interaction is negligible in the
states J~&2, then

Here t' is a weighted average of the value of t for which
the contribution from the T=O, J=0 7t-—7t- interaction
to low-energy x—E scattering is important. We
estimate t' 101''—15+'. Thus Eq. (34) suggests that
fhs1s&+&(s) —6&1s&+'(s)$ is Predominantly due to short-
range effects. The experimental values of this quantity
are shown in Fig. 10. The general behavior is a slow

falling off as s increases from 20 to 80. The small devi-
ations from a monotonically decreasing function of s
could be due to small T=O, J=2 m —x effects, and to
the fact that the right-hand side of (34) is not actually
zero. However the general behavior of 63&s&+' (s)—4&1s&+'(s) over the wide range 20~&st&80 is further
confirmation that the main effect which we are detecting
in the (+) case is the T=O, J=O w —7r interaction.

kernels Es&+' (s,f), E;&+' (s,f) a're fairly complicated
functions of various kinematic factors. The values of
these functions for the s-wave and ps1s-wave (j=—,')
cases are shown in Figs. 11 and 12 for various values
of s. The form of Er1s&+'(s, t) is almost the same as

Es1s&+l (s,t). (The relative scales of E,&+& and Est+1 are
unimportant. )

We note the following general properties of the
kernels.

(i) For different fixed values of s, the kernel E&+' (s,f)
gives functions of f (some of them are shown in Fig. 11).
Over the range Sp'&&1~&30p,' these are almost geometri-
cally similar functions" of t. This is true except for s
near the extreme values (s= 20 and s=80). The kernels

E,&+'(s,f) (j=—,', —',) tend to have the same property,
but not to such a marked extent.

(ii) In the kernels E,&+&(s,f) (j=-,', ss) small values
of f (4p'~&t&~151i') are much more important than the
larger values of f (/)15@'). This effect is much less
marked in Ep+(s, f).

(iii) In general, the kernels are larger for the crossed
cut (san& 32.7) than for the physical cut (s~&59.6).

(v) Determination of Imf+'(f) from
the Discrepancies 2.0x103

S =32.72

2.0x10-
S =25,72

2.0x10-
S =20.72

Suppose now that we can isolate the m —m parts of
the 6(+' discrepancies in the ranges 20~&s~&32.7 and
59.6~&s&~80. Denote them by ds, &+l(s), 6;, &+&(s)

(j= sr, ss) and ignore any J= 2 w —s. contribution to the
discrepancies. We shall examine the kind of information
which this gives us about the absorptive part of the
helicity amplitude Imf~'(/) for t~&4p'.

Using (17), (22), (23), and the analogous equation
for the s-wave case, we can write

56@2

1.0x10

S = 59.60

1.0x 10 1.0x 10

0- I I

10 30 50.

1.0x10

10 30 50

S = 65.60

1.0x 10

1.0x1V

S =70.60

10 30 50

1.0x10

&+& (s) =
4~2

Ep&+l (s,t) Im f+'(f) &Eh,

10
0— 030 50 10 30 50 10 30 50 10 30 50

&+) (r) =
56@~

E;&+'(s,f) Tmf+~(t)&Eh, (j= '„—') (36)—FIG. 11. Examples, for various values of s, of the kernels
JCo(+)(s,t) which relate the helicity amplitude f+ (t) to the w —7f-

part of the discrepancy for s-wave 7r fthm scattering L'Eq. (35)—j.

where we have cut off the integration at t=56p'. 24 The

"The largest value of t which can contribute to the arc of
the circle

~
args j &&66' is 56''.

"Hy this we mean that if, for different 6xed values of s, we
multiply the functions EI(+)(s,t) by constants so as to make them
equal for t=15p', say, they will then be almost equal over the
range 8p, '~& t ~& 30''.
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2.0x10

S = 32.72

2,0x10"-

S =25.72

2.Ox'

5 =20.72

1.0x10- 1.0x10 1.0x10

2.Ox10

0 10 30 50 10 30 50

S=65.60

0 10 30 50

S =80.60

1,0x10 1,0x10 1.0x10 1.0x 10

We draw the following conclusions:

(a) Drom (i)) The shape" of the function As, t+'(s)
is, to a 6rst approximation, independent of the values
we choose for Imf+'(t), particularly if we ignore values
of s close to the extremes (s= 20 and s= 80). Combined
with the fact that we can choose values of Imf+!'(t)
which give good agreement with our experimental
values of 6,t+l(s) Lcf. Secs. 3(viii) and 3(x) below),
this provides further strong confirmation that we are
here detecting the T=O, J=O x—w e6ect" in w —N
scattering. Con.versely, it is clear that Do'+'(s), to a
6rst approximation, only determines one "moment" of
Imf+'(t) (this is given, for example, by (35) with
s= 59.6).

(b) )from (i) and (ii)] The experimental values of
6;'+' (s) (j= s, a) give us "moments" of Imf+'(t) which
are heavily weighted for the smaller values of t. Hence,
the p-wave discrepancies are strongly influenced by
any low energy J=O m —m scattering.

(c) /from (iii)] The s.—s. effect for s~&32.7 is in all
cases stronger than the x—m. effect for s&~59.6. Also,
the sr —w effect falls off with decreasing s (s&~32.7) in
a manner which cannot be confused with a short-range
term (cf. Figs. 2, 15, and 19). Therefore good and un-

ambiguous evidence about the "moments" of Imf+'(t)
Las given by (35) and (36)j should be obtained by
6tting the discrepancies in the crossed region, s~&32.7
as well as in the physical region, s~& 59.6.

(vi) Calculation of Imf+o(f) in Terms of the
1=0 ~—~ Interaction

We now discuss how the quantity Imf+'(t) is calcu-
lated for t~&4p, ', assuming certain simple forms for the
J=O, T=O sr —s phase shift 3ss(t). We shall require
that the calculated function Imf+" (t) gives the observed
x—x part of the discrepancies.

"We use the word in the sense that Xh(s) has the same shape
as h(s), where X is a constant."A low-energy T=0, J=2 7I-—71- interaction would give 60(+) (s)
a different slIape.

0 o 0—
10 30 r.,0 10 .r', r..c)

I' IG. 12. Examples, for various values of s, of the kernels
E3/2(+)(s, t) which relate the helicity amplitude f+ (t) to the 7i- —7r

part of the I=-,'p-wave discrepancy [Eq. (36)g.

The helicity amplitude f+'(t) for the process sr+a ~
E+Ãhas cuts" along —co~(t&quand 4tt'~&t~& eo, where
tt=4tt'(1 —tts/4M'). The value of Imf+'(t) on 0~&t~&tt

is given by the Born term alone, and is readily calcu-
lated using f'=0.081 for the w —1V coupling constant. "
For —25tt' ~& t ~&0 we also have contributions to Imf+'(t)
from the m

—N partial wave amplitudes. "It is sufhcient
for the purpose of the present work to use the (-', ,—',)
amplitude alone. LThe small p-wave 7r Xa—mplitudes
give a negligible contribution. The s-wave x —N ampli-
tudes give rise to an integrable divergence in )Im f+a (t)]"
at ]=0, but this gives no trouble in the dispersion
relation for the helicity amplit:ude, Eq. (52) below. In
fact, it turns out that the s-wave contribution to
Imf+'(t) is negligible. Also, the sr —Ã d-wave terms are
unimportant for t) —25tt'. $

We find that the (-,',—,') or —E amplitude gives a
contribution to Imf+ (t) which increases like

~

t
~

when

t takes large negative values. For t& —25@' the partial
wave expansion for Imf+'(t) in terms of the s —W

amplitudes is expected to diverge" and we cannot
reliably determine 1mf~ (t) in this region. Figure 13
shows Imf+" (t) for t~&a.

By unitarity, f+"(t) has the phase expLi8ao(t)] when
4p'~&t~&16p'. Ke assume that, because of the small

phase space available for 4m states, this unitarity
relation is also approximately true when t lies somewhat
above 16p,', say for t~&30p'. Ignoring further inelastic
contributions on the remainder of the right-hand cut
we solve for Imf+'(t) in the usual way, "assuming 5s'(t)
is known for t~&4p'. Because of the approximate nature
of the unitary condition for 16p'&~ t &~ 30'', and because
of neglecting inelastic contributions on the cut t&~ 30p,',
there will be errors" in our values of Imf~'(t) for the
larger values of t (say, 20tt'&~t~&56tt'). However the
kernels Et+i(s, t) (Figs. 11, 12) are small when t is

large, so that these errors are unimportant in calculating
the discrepancies.

(vii) The N/D Pole Method

We use the X/D method to give a convenient
parametric description of the T=O, J=O ~—m phase
shift 8s'(t) at low energies. The invariant form of the
T=0, J=O m —x partial wave amplitude is

(37)

' Compare with W. R. Frazer and J. R. I ulco, Phys. Rev.
117, 1603 (1960}.

se W. S. Woolcock, Proceedengs of the At'x en Provence Inter--
national Conference on Elementary Particles (Centre d'Etudes
Nucleaires de Saclay, Seine et Oise, 1961),Vol. I, p. 459.

n R. Omnes, Nuovo cimento 8, 316 (1938); and W. R, Frazer
and J. R. I ulco reference 2g.

"Several authors O'. S. Ball and D. Y. Wong, Phys. Rev.
Letters 7, 390 (1961);M. Jacob, G. Mahoux and R. Omnes, Nuovo
cimento 23, 838 (1962)g have suggested that the inelastic con-
tributions do not produce large errors.
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1V(v) =D(vi)1/(v

D(v ) =1, and(39) ~e can. choose "p

(45)
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g(t) =— dt' (42)
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1 D(v') Imf~o(t')
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s edited by G. R.rszon Relatzons,hew, in zs er
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Bo d, Edinburgh, 1961).
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FIG. 14. The E/D pole approxi-
mation Gts to the s-wave discrepancy
60&+&(s) are given by the solid lines.
The corresponding short range parts
are given by the broken lines. The
circles indicate the experimental
values calculated in Sec. 2.
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is given by

1 (—vi) 1—-LF (»)—»F'(») j,

1 2 1
r= —+ F'(v ).

2 7r r 7r

(49)

The second subtraction gives

1
f+'(t) = D(v= —1) Reft(t=0)

D(v)—

8
+t (D( ")Ref+'(t")) -=

Bt"

Also, F(vi) —viF'(vi) &0 (for vr(0), and a bound state
of the x—x system appears when r has increased to a
critical value given by

1 8 D(v') Imf '(t')
+ PF —dt'

~ at" „(t'—t") (t' —t)
(52)

m/I'„;, =F(vi)/( —vi)+F'(vi). (50)

It follows from the properties of F(v) given in Appendix
I that for I'&I"„;~,D(v) has one zero on the negative
axis at v~ where vr(vg(0. In this case ReD(v) also
vanishes on the real axis at v= v3) 0, so at v= v3, cot5p'
=0. Also, for 0&v&v3, cotbp'(0 and for v~&v& ~,
cotbp &0. It is therefore convenient to use the con-
vention, which would follow from Levinson's theorem,
that for r&r„;„Sp'=x when v=0 and 6p' decreases
through s/2 at v = va. Thus, strictly speaking, we do not
have a resonance" at v= v3.

For 0(r (r„;~there is no bound state, and bp' starts
from zero at v=0 stays positive, and does not pass
through ir/2. In the repulsive case rr/F'(vr)(1'(0 the
phase shift bp' starts from zero at v=0 and stays
negative. The case I'(~/F'(vr) is not of physical
significance, since D(v) then has a zero to the left of vi.
In a/t cases 800 goes to zero like (const)/v as v —+ ~.

(viii) Subtractions

Since Imf+'(t') is diverging like ~t'~ near t'= —25@',
and D(v') —+ 1—(I'/m)F'(vi) as v'~ —~, we have to
make two subtractions in (43). These are made at t= 0.
One subtraction gives

In the second term on the right, t"=4(1+v").
We require the subtraction constants Ref+'(0) and

(8/Bt) Ref+'(t)
~

& e. These have been evalua, ted by
Menotti" from the forward x—E scattering data using
an extension of the method of Ball and Wong. "He gets

Ref+'(0) = —1.9&2,

Reft'(0) = 2.8&0.9.

(»)
(54)

(The units A=c=p=1 are used in numerical results
throughout. ) In this evaluation the cr33 and the s-wave
vr —1V phase shifts are important. Also the small p-wave
scattering lengths have to be used, and uncertainties
in these are included in the estimated errors. The error
in Ref~'(0) is large because terms of the order of 100
cancel in this calculation. In the calculation of Ref+'(0)
there is no cancellation of large terms. In evaluating
the dispersion relation (52) the integral dominates for
low values of t (t &4); in this term the Born contribution
to Imf+'(t') is predominant, so the value of the integral
is readily determined to high accuracy. For large t the
term in (52) which is linear in t will dominate. Com-
paratively large errors in this term have a small eBect
on the discrepancies because of the small values of the
kernels E&+& (s,t) for large t (cf. Figs. 11 and 12).

1
f (t)= D(v= —1) Ref (t=0)

D(v)
D(v') Im j+'(t')

+ Fdt'-
t'(t'-t)

(ix) Results of the N/D Pole Method

In Figs. 14 and 1S we show 6ts to the discrepancies
(51) 60'+&(s), Aitq&+&(s), and t&3tx&+&(s) using the two pa-

rameter form E(v) =I'/(v —vi). In fitting the discrep-
'5 A pole in the scattering amplitude on an unphysical sheet in

the lower half plane (Im Qs (0) will always give a phase shift
which ilcreases through m/2.

' P. Menotti, 5uovo cimento 23, 931 (1962).
37 J. S. Ball and D. Y. Wong, Phys. Rev. Letters 6, 29 (1961).
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values calculated in Sec. 2.
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ancies we first calculate the m.—x contribution coming
from the front of the circle (~ args~ &~66') for a particular
choice of F and v~. The remaining parts of the discrep-
ancies are then fitted by /incor short-range terms in
the following way:

(i) Ap'+'(s). Here we expect the threshold terms to
be fairly accurate, and we fit the linear short-range
term u+bs at the two thresholds s= (M&@)'.

(ii) A&~2&+&(s) and As~2&+&(s). We assume that the
errors at the two thresholds are due mainly to errors in
the p-wave scattering lengths [see Sec. 3(xii) below].
Thus the errors in Ai~p&+& (s) and Ap~p&+& (s) at s= (M—&i)'

are related to those at s= (M+p)' (see Table I for
details). Consequently, in each case only one parameter
is needed to determine the linear short-range term, and
this is obtained by fitting the discrepancies at s=69
(i.e., about 100 MeV) where we have accurate experi-
mental confirmation of Woolcock's values of Repi~p'+'
and Repp~p&+'. It should be noted that the short-range
terms are small and vary very slowly with s.

Reasonable fits to the discrepancies cannot be ob-
tained. for v~& —5. However as v~ decreases below —5
there is a slight improvement in the goodness of the
fit over that for v~= —5. Figures 14 and j.5 show the
curves corresponding to scattering lengths up=2 (vi=
—5) and ap ——1.3 (vi ———30) (ap is in units of 5/pc).
The agreement with the experimental values is good;
even for the p-wave discrepancies the difference be-
tween the experimental and theoretical values is never
more than twice the standard errors in the p-wave
x—E data. Slightly better fits can be obtained with
smaller values of ao and even more negative values of vj..

This tendency to get large negative values of v~ from
our analysis suggests that we are meeting the same

difhculty as occurs in the solution of the dynamical
equations for x—x scattering. "There it appears tha, t

'P J. S. Ball and D. Y. Wong, Phys. Rev. Letters 7, 390 (1961).

the nearby part of the left-hand cut does not play a
significant role in determining low-energy x—m- scat-
tering. It may be that the position of the pole in our
s-wave x—x solution is far to the left for the same
reason as has been suggested by Frazer" in another
connection. If X(v) for v( —1 has an attractive and a
repulsive part, both occurring for moderate values of—v, approximating by a single pole as in (45) could
lead to large values of —v~.

The m —sr phase shifts hpp(i) corresponding to our
solutions are shown in Fig. 16. In each case F)0, but
there is no bound state. General features common to
the phase shifts hpP(t) are that they rise to a maximum
value of about 30' and then fall off to about 15' by
t=50 (qp=3.39). As vi becomes more negative the
energy at which hpP(t) is maximum increases, reaching
1=8 (qp= 1) for vi ———30. Improved fits to the discrep-
ancies can be obtained if i&pP (t) rises more slowly (corre-
sponding to ap(1.3) reaching a maximum of about 30'
for t)10 (gp)1.24). This corresponds to large nega-
tive values of v~.

TABLE I. Contributions from the p-wave scattering lengths
G2+ QJ to Rep2+, 2J at the thresholds s = (3E&IJ}'.Terms of relative
order (&a/M)' have been ignored at s = (M—p)'.

Repe/2(+)
Rep1/2(+)

Rep3/2(-)
RepI/2( )

s= (M+p)'

(1/3) (aw+2a13)
(1/3) (a»+2aw)
(1/3) (a&s —a33)
(1/3) (a» —as&)

s= (M—v)'

(1/9) (aia+2a3s)+ (2/9) (au+2a3i)
(4/9) (aie+2a83) —(1/9) (ag&+2ap&)
—(1/9) (ass —a38) —(2/9) (agg —a~,)—(4/9) (a&s —ap3)+ (1/9) (an —a3 )

39 See W. R. Frazer, in Dispersion Relations, edited by G. R.
Screaton (Oliver gr Boyd, Edinburgh, 1960), p. 256.

(x) The Conformal Transformation Method

We saw in Sec. 3(v) tha, t the discrepancies d, &+&(s)

only determine certain "moments" of the helicity
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where tan P = —rw I, /2g= —'I' and the lower side of the cut
(—iit). The segments of the real axis—1&v&~0 and 0&~ v&~ ~ go into the segments o

oes into g=exp —z . e
s of the

er 0« 1 and —l~&p&&0, respectively. Figure
17 shows the transformed p ane. e

The phase shift 8s'(I) is generated by using

1V(v) =ns+ni'9+nsri + ' ' '
) (57)

10

1

3

here O.p o.~, u2 re real parameters. T is gives

across the cut —ao~ v~ — is z

Im1V(v) =ni sinP+ns sin(2$)+ .

de Im '(]) for t~&4. It is therefore of interest
f 8 '(I) which give agreement

—E d t For this purpose we
some other forms o p w i

use the conforma pp' gl ma in met o o i
azer4' to enerate functions v

ion (52) then givesim le forms of 5s'(t). Equation en

+ rel on the fact, which was shownImf~'(t) for t &~ 4. We re y on e
l form of the Omnes met o,

'~t~ for t&~4 is determined uniquely y

al theor of low-energy m —x in era
e use the conformal mappingthe present section we use e c

rel to exhibit simple forms o p w
'

f I f '( ) fo « j
ancies. It will be seen that there

with our values o m +

h h o'()similarities between t e p aseare considerable sim'

derive ind
'

this way and the values erive a
the 1V/D pole method.

The transformation

n = L1—(v+1)'"j/L1+ (v+1)'"j (55)

q
3

e 7r —v hase shifts for our 1V/D pole
'- th"- ""--'is the pion momentum znapproximations. q3 is

units A=p, =c=1.

l the first two terms in (57),For example using on y e
viz. , 1V(v) =np+nirf, we get

59ImlV(v) = —2nir'Is/(1+r). (—oo ~(v~(—1)

es a
The denominator function is given y

convenient to subtract at v =0 so that

D(v) = 1—— dv
7l p Lv'(v'+1)]' ' v' —v

(60)

of terms in 57),Thus D(0) = 1. Using a finite number of te
1V v) is bounded, and the integral in (60) converges well.

2 SPecial Case

An interesting special case occurs
'

rs if we use only the
first term in (57), i.e., 1V(v) =ns. Then

CXp

D(v) =1——v

dv

(v'(v'+1))'" v'- v
(61)

PLANE

edge of cut
& 'g ~&"'t

A simple calculation shows that in the notation of

—ao& vthe to sheet of the v plane cut along-
f the circle

~
rl

~

~(1. Writing& —1 into the interior o t e circ e

v= —1+re'e, (56)
Real axis

p& v&~(v~oa)
{v=

Real axjS
]~v ~&p (v„g)

—m&8~&~, it is seen that the upperwhere r&~0 and —m~
side of the cut —~ ~& v~& — g t& —1 oes into

=exp(g),
1+iv"

ischer Nuc1ear Phys. 24, 465 (1961)."S. Ciulli and J. Fischer, uc ea . , 1961,
4' W. R. Frazer, Phys. Rev. 12B,

"~&&g-1

he to sheet of the cut p planeFIG. 17. The transformation of the op s
into the circle (p )

=1 given by Eq.
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-0.2-

-0.3-

-0.4-

-0.5-

-0.6-

Short range 1

Short range 2

-0.7-

25
I

30 60
I

65
I

70
I

75
I

80

Appendix I, Also
0!p

ReD(v) =1+—F(v).

For v~ & ~, we have

Gp

ReD(v) —+ —ln(4v) as v-++~

Clp

D(v) —+ —ln( —4v) as

The divergence « ID(v) I

does not invalidate the derivation of (61) since the
contribution from the circle at in6nity vanishes due to
the subtraction in (60). The corresponding dispersion
relation for 1V(v) also requires one subtraction, and in
t is special case the integral vanishes and the result
X(v) =no is given by the subtraction constant.

(xi) Results of the Conformal Mapping Method

In Figs. 18 and 49, we show fits to the discrepancies
Asi+&(s), ht/si+i(s), and 63/si+&(s) using the two pa-
rameter form $(v)=ap+crr&i. The method of fitting is
similar to that used for the X/D pole method. Reason-

Conforrnal Mapping for N

(62) I v/(v+1) J"cot8p' ——1/as+ (1/2.)F(v). (64)

Since F(v))~0 (the equality occurring at v=0) for
ns) 0, 8s' is positive and does not reach &r/2; also D(v)
does not vanish on the negative real axis v&(0. For
np(0, cot5p is negative for small v and it has one zero.

(63)
Also in this case, by (62), D (v) has one zero on —~(
~0. So for O.p&0 there is a bound state and Sp' drops
from 2 at v=0 and falls through s/2 as v increases. In
both cases bs" behaves like s./1n(4v) for suKcientl
large v.

cien y

0.04

0.03

'(s)
y2 1 . +o 0'6~ os:~ "0'92: w =-0.6, a,=-2.9

FIG. 19. The conformal mapping
solution fits to the p-wave discrepan-
cies a&~si+& (s) and /i»~s(+&(s) are given
by the solid curves. The broken lines
are the corresponding short range
parts. The circles indicate the experi-
mental values.

002- o
C

0.01

005-

0,04

C

0.03

Short ranqe 2

0.02

0.01 Short range 1

I

25
I

30
Short range

60 65 70
I

75
I

80



HAMIL'1 ON, MENO I TI, OAIBES, AND VI CK

0.6 a)= -0.9
-0,6 a)=-2.9

-28-
pIG. 20. The T=O s-wave ~—7f phase shifts for our conformal

mapping solutions. q3 is the pion momentum in the c.m. system.

able fits to hei+&(s) are obtained for rre in the range
—1&rrp& 1 Solution (1) (rre=0. 6, rrt= —0.9) gives the
best Gt to De'+&(s) near s=32.7, while solution (2)
(ne ———0.6, ni ———2.9) gives the best fit to Aoi+& (s) near
s=59.6 and also gives better 6ts to Ar/2&+&(s) and
~3»"'(~)

The corresponding m
—n. phase shifts Be'(t) are shown

in Fig. 20. Solution (1) has the scattering length
ae ——0.6(h/pc), and 8e is everywhere positive, rising to
between 25' and 30' for t)9. Solution (2) has the
scattering length ae= —0.6(h/pc) and 80' is negative
for 4&t&9.5(0&q3(1.17). For larger values of 3, be' is
positive and it rises to between 50' and 60' for t&9.5
(q&)1.17). It will be seen that, in general, the phase
shift given by the two parameter conformal mapping
method does not fall off as rapidly for the larger values
of t(30(t(50 or 2.55(qi(3.39), as that given by
the 1V/D pole method. For both the solutions (1) and

(2) D(») has no zero on the negative real axis, so there
is no bound state. In both solutions

~

t&o'~ never reaches
n-/2.

Thus we can. choose a two-parameter fit of type (1)
which gives good agreement with the s-wave discrep-
ancy &o'+&(s). [The disagreement between the theo-
retical and experimental values of Ae'+&(s) for s) 70

may be due either to inaccurate values of the s-wave

phase shifts o.~, n3 above 200 MeV, or to the severe
restriction imposed by using a linear short-range term. ]
As was explained in Sec. 3 (ix) above, only one arbitrary
parameter is involved in each of the short-range terms
in the case of the p-wave discrepancies. The same
values of f&e" (t) now give good agreement with /& r/2t+& (s),
the difference between experimental and theoretical
values being nowhere greater than twice the estimated
standard errors in the p-wave rr Jt/ data. For Ar/2'+'—(s)
the agreement is not so good, but this is not surprising
since the experimental determination of the p-wave
phase shifts o.» and 0.» is particularly diS.cult.

Solution (2) partly allows for the fact that the p-wave
experimental values of b, ;&+&(s) (j= r2, ~a) all fall below
solution (1) near the two thresholds s = (M&p)'.
Solution (2) gives better agreement with Ae&+& (s) in the
region 59.6(s(70 and it gives much better agreement
with &3/2'+&(s). For 4t/2t+&(s) the agreement is not so
good, but the fit is within the estimated errors. In all
the p-wave cases the short-range term is small and
varies very slowly with s.

A common feature of our solutions for be" (/) obtained
both by the 1V/D pole method and the conformal
method is that the phase shift 8e'(t) is positive over the
greater part of the range 4&~t~&30 (0&~pa&~2.55) and it
rises to around 30' (or more) for moderate values of t
(10&t&~25, i.e., 1.22&g3&~2.29). The only ambiguity
in the general behavior of 8e'(/) is the possibility that
it becomes negative for small t. It is clear that such
a change in sign of 5e'(/) would not be easy to under-
stand on the basis of a dynamical theory of the z —x
interaction. "We therefore examine what changes are
required in the rr Ep-wa—ve scattering lengths to
remove all support for solutions in which be'(t) has a
zero.

(xii) Behavior of Li/2'+& (s) and eke/2&+& (s)
near the Thresholds

Apart from terms which vary comparatively slowly
with s, the values of 6,'+&(s) near the thresholds
s= (M+ p)' and s= (M—p)' are mainly determined by
the Born terms, the (direct and crossed) a~r terms and
Rep2r, 2z(s). The first two can be calculated accurately,
so it is reasonable to blame any errors4' on the values
of Rep2r, 2J'(s) near the thresholds. This suggests that
near s= (M+p)' the main source of error is the values
of u2r, 2J the p-wave m. —X scattering lengths —which
are given in (16). In Table I we show the contributions
of the p-wave scattering lengths to Rep2r ~q(s) near
the thresholds; there are corrections of relative order
(p,'/M') at s= (M—p)' which we have not included.

By changing the values of a»+2u», a»+2u» we
can bring the experimental values of hi/2&+&(s) and
63/2'+& (s) at s= (M+ p)' into agreement with the values
given by solution (1) (Fig. 19). For this purpose it is
necessary to increase a»+2a» and a»+2a» by 0.025
and 0.030, respectively. These changes in the scattering
lengths also imply small changes in Woolcock's p-wave
z —S phase shifts' in the region 0—100 MeV, and these
would be such as to improve the agreement between
the experimental values of Ar/2&+& (s) and A3/2&+& (s) and
the solution (1) values'4 shown in Fig. 19 in the regions

4' We have not attempted to find such a solution by the direct
N/D method since this would require two poles in N(v), i.e., a
4-parameter Gt.

43 The contribution of the s-wave m —N phases ~1 and a3 via
ImP2z 2J(s) near s= (M —p)' is unlikely to lead to appreciable
errors in 6;(+)(s) near s= (2lf —p)'. The d-wave x —N contribu-
tiona are unimportant near s= (M —pl'.

44 Small adjustments in the short-range terms might also be
made.
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27&»s&»32.7 and 59.6»&s &» 67. Agreement with the S/D
pole solutions (Fig. 15) would similarly be improved.

Diaz' '(s) arzd Aztz& &(s) zzeur the Threshotds

If the kinks in the experimental values of the dis-
crepancies 6;&+&(s) (j= ~~, $) near s= (M+tz)' are due
to small errors in the scattering lengths a2+, 2J the same
might be true for 5 '(s) (j= ~z, —',). As will be seen in
Sec. 4(ii) and Fig. 22 below, there is better agreement
between the theoretical and experimental values of
6,& '(s) (j=—'„—', ) near s= (3I&tz)' than there is in the
case of 6,'+'(s). It will be seen by looking at Fig. 22
and Table I that in the case of 6,& '(s) (j=-'„—', ) the
agreement in the physical and crossed regions can be
made even better by increasing a~3—u33 and u~~ —@3~

by 0.009 and 0.007, respectively.
Combining these changes in the (+) and (—) cases

gives (h=tz=c=1)

a» —— 0.219 (0.214&0.004),

a»= —0.090 (—0.104&0.006),

azg ———0.032 (—0.040&0.004),

agz ———0.016 (—0.030&0.005).

The values in parentheses are those due to Woolcock"
)Eq. (16) above) which have been used in our calcu-
lations. It will be noted that only in the case of the
smallest scattering length a~3 is the change significantly
more than two standard errors, while for a33, which is
the best known, it is just over one standard error.

(xiii) Strength of the Evidence for Solution (2)

We can now see the degree of accuracy which is
required in the experimental and theoretical analysis
of low-energy m —X experiments if we are to assert
firmly that 50'(t) must change sign at low energies as in
solution (2) LSec. 3(xi) above and Fig. 20j. To assert
this we would have to be certain that the values of
azr, zs on the left in (65) were incorrect and the values
in brackets were correct. As we cannot be certain of
this at present, the evidence for solutions of type (2)
is weak.

The fact that smaller changes are suggested in the

(—) combinations a~z—azz, a» —azz than in the (+)
combinations azz+2azz, azz+2a&z may be related to
the fact that the single variable dispersion relations
used by Woolcock' in analyzing the low energy x—3T

data, are more reliable in the (—) case than in the (+)
case. In particular, the 3(+) relation requires a sub-
traction and this is well known to give the possibility
of errors in the resulting phase shifts.

The relation of our results for the T=O, J=O x —x
phase shift to information obtained by other methods
is discussed in Sec. 5(i) below.

" ImF. (t')
F.(t) =1+— dt'.

4„2 t'(t' —t)

Also, by unitarity, we have for 4p'&~ t &~ 16p,'-,

(66)

ImF (t)= (real const)A~*(t)F (t), (67)

where A~(t) is the invariant zr —zr scattering amplitude
for angular momentum J=1. In order to calculate the
discrepancies we must know F (t) accurately around
t=30p,', and approximately for values of t up to 50@~.
Because the phase space for 4~ processes is not large
i' or 16p,'»&t&30tz', we expect (67) to be approximately
true in this range. However, this is not a large enough
range of I, for our purpose, and our neglect of inelastic
processes (for larger t) may introduce errors into the
results (a similar situation occurs in the calculation of
J;(t) using Eq. (71) belowj. These errors due to
neglecting inelastic processes are probably more serious
in the T= 1 case, where we are interested in values of t
around 30tz', than they were in the T=O case (Sec.
3(v) above) where we only had to know the helicity
amplitude f+0(t) accurately for t»&20tz'.

For the present we assume Eq. (67) is valid for all
values of t (t&~4p,') which we require. The 5=1 zr —zr

phase shift 8~(t) associated with a narrow resonance is
given by

exp (i5~) sin5~ ——

4,—3—2+(3
(68)

where q3 is the pion momentum in the c.m. system.
The resonance occurs at t=tg and has half-width (in
units of t) yqz', where tz=4(tz'+qlz'). In practice tzz

and y are of the order of magnitude of 30 and 0.3,
respectively. By (66) and (67), we have

F (t) = (t —y)/(tz —t—iraq '). (69)

From (66) or (69) it is seen that on the real axis F (t)
is real for $&4p2.

Following Frazer and Fulco" we introduce the
functions I';(t) (i=1, 2). For i=1, 2 these functions
are closely related, respectively, to the electric and
magnetic nucleon isovector form factors F;"(t). Also
they are linear combinations of the helicity amplitudes
f~'(t) for m.+zr ~X+X in the 7= 1 state, so they give
the 6( ) discrepancies. ' We introduce the functions

4~ For details see W. R. Frazer, reference 39.
4' See II and III for details.

4. THE T=r ~-& INTERACTION

(i) Narrow Resonance Approximation

First we show that the 6' '(s) discrepancies can be
reproduced very well by assuming there is a narrow
resonance in the T=1, J= 1 x—m state. In order to
link up with the nucleon form factors as well as x—E
scattering we require the pion electromagnetic form
factor4' F (t). It is given by the dispersion relation
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FIG. 21. The narrow T= j m —x
resonance approximation 6ts to the
s-wave discrepancy no( &(s) for ta=32
and tg=24. The corresponding short-
range parts are also shown. The
circles indicate the experimental val-
ues of 60( & (s) calculated in Sec. 2.
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determined (experimentally) from our discrepancies
J,(t) =I', (t)/F (t). (i=1, 2) (70) &( '(s), and J;(tg) is calculated directly from (71).

From a unitary relation similar to (67) it follows that
lVNcleoe Form Factors

1 ImJ,(t')
J,(t) =— ct'.

t' —t
(71)

Further consequences follow if we use the isovector
nucleon form factors F,v(t) (i= 1, 2). These obey the
dispersion relations4'

~'(t)vq '(t~ —v)
ImI';(t) = . (s', =1,2)

(t& t)2++2~ 6
(72)

Here we have again ignored difFiculties, similar to those
mentioned above, arising from the fact that the unitary
relation is only strictly valid for 4p, '~(t ~&16@,'.

Using methods similar to those discussed in Sec. 3(vi)
above we can calculate ImI';(t) for 261s2~&t~&a f—rom
our knowledge of the low-energy m —E phase shifts and
the coupling constant f' Thus f.rom (71) (using sub-
tractions if necessary) we can determine J,(t) for t&&4ts'.
For t&~4ts', J;(t) is real, and

g t "g (t')dt'
—F2"(t) =—+-
e M &r 4„~ t'(t' —t)

(76)

Here g=1.853 is the (anomalous) gyromagnetic ratio,
and

g;(t) = —2t—'~'q 'F *(t)F;(t)
= —2t '"Vs'IF. (t) I'~ (t) (~:=1,2) (77)

For a narrow resonance,

So for a narrow resonance

ImI';(t)=wt~S;(t, )S(t—t,).
g;(t) = —(2&rC;t&r'"/y) I& (t—t&r).

(73) Substituting in (76) gives

(78)

This gives agreement with the usual 6-function ap-
proximation'

s,» (t) =—(1+ ),
ImI';(t) =srC, (& (t—t&r), (i = 1, 2) (74)

(79)

on putting4'
C;= trr J;(tlr). (73) where

Equation (75) is the first c(&nsequence of the narr(&w u = 2C»'/'Y4 i b = (M/g) 2C2/ y4 . (80)
resonance hyPothesis which can be checked. C; is Since, by observation so P,v(t) (~/g)P, v(t)

4~ J. Bowcock, N. Cottingham, and D. Lurie, Nuovo cimento
19, 142 (1961).

48 In II w'e used yI =7f-CI, y2 ——7f3fC2. The same notation is used
by S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
1960).

4' G. F. Chew, R. Karplus, S. Gasiorowicz, and F. Zachariasen,
Phys. Rev. 110, 265 (1958); P. Federbush, M. L. Goldberger,
and S. Treiman, ibid. 112, 642 (1958).' R. Hofstadter and R. Herman, Phys. Rev. Letters 6, 293
(1961).
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Fro. 23. Calculated values oi the functions J&(t) and J2(t).

I'i (0)= —0.1415,

I's (0)=+0.0088,

I'i'(0) = +0.0409,

I' '(0) = —0.00586.

(82)

Using these values and Eq. (69) with tit 30, y =0.3"——
functions J;(t) are determined" for t~&4. Vick's result
for J,(t) is shown in Fig. 23.

(iv) Calculation of J;(t)
We have to find J;(t) for t~&4 using Eq. (71). The

numerator in the integrand is Iml';(t)/F (t), since
Ii (t) is real for t(4. ImI';(t) has been calculated in the
interval —26~&t~&a by Frazer and Fulco." In order
that uncertainties in the values of ImI';(t) for t(—26
should not make our calculation of J,(t) worthless, it
is necessary either to make subtractions in (71) or to
use some justi6able cutoff procedure. Sy the method
of Ball and Wong" I";(0) and I','(0) can be evaluated
in terms of m —E scattering data, and the subtractions
in (71) are made at 1=0. Vick" has recalculated these
subtraction constants, getting

('v) Comparison of Experiment with Theory

We shall assume that the 7= 1, J= 1 zz resonance
occurs at ttt ——30 (767 MeV) and note that a half-width
of 56 MeV would give y=0.30. In Sec. 4(ii) above we
saw that our discrepancies give C»= —1.05+0.2 for
ted=30, and from Fig. 23 it is seen that the calculated
value of Ji(1=30) is —0.104. It follows from (75) that
the calculated value of Ji(tie) is too large by a factor
of 3. If we were to reduce tg the disagreement would
become greater as that reduces

~
Ci~ more rapidly than

ttt
~
Jt(4) ~. )Here the dependence of Ji(t) on tie has to

be allowed for.j
Now we examine the relation (80) between the

nucleon form factors and the discrepancies. This
relation is independent of the calculated value of J,(ttt).
To fit the form factors F;v(t) with ttt=30 we use a=1.6
in Eq. (79). With Ci ———1.05+0.2 Eq. (80) gives
y=0.24&0.05, which is in reasonable agreement with
the experimental value 0.22~&y~&0.33. Next we have
Eq. (81). The ratio of the calculated values Js(ttt)/
Ji(tie) is 0.24, which is to be compared with the experi-
mental value 0.27. The agreement here is not as good as
one might hope.

Thus the relations (75) and (81) which involve the
calculated values of J;(tie) have not been verified with
any precision. In Sec. 4(i) above we pointed out that
errors could arise because inelastic processes, which
may be important, have been ignored in the dispersion
relation (71) (or in its subtracted forms). There are
further possible reasons for this failure to verify (75)
and (81). The only appreciable T=1 7r 7r int—eraction
about which we have Arm and useful information is the
resonance at the high energy kg~30. Thus, the continu-
ation of F (t) to negative values of t using Eq. (69)
may involve appreciable errors. " Since the important
values of t (tutti) are so large, the evaluation of the
subtracted form of the dispersion relation (71) may
introduce substantial errors in J;(t) due to uncertainties
in the subtraction constants ReI",'(0) (or possibly due
to uncertainties in Iml', (t) for t(g). For example a
10% error in Rel', '(0) would lead to a 100% error in
Ji(tie) on using the double subtracted relation.

In short, any verification of Eqs. (75) and (81) is up
against the difhculties usually encountered when dis-
persion relations are used at moderately high energies.
These difhculties only refer to the calculated values of
J;(tie) obtained from Eq. (71). They do not in any
way invalidate our identification of the T= 1, J= 1 z —w

effect in low-energy vr —lV scattering, or its relation to
the nucleon form factors and the observed J=1 x —x
resonance around 760 MeV through Eq. (80).

5. DISCUSSION OF THE RESULTS

57 See reference 28. ImF;(t) has been recalculated
latest m —X low energy data,"L.L. J. Vick (to be published).

» The values of J;(t) are insensitive to y.

using tl1e
Ke have shown how the dispersion relations for the

s- and p-wave tr —!7 scattering amphtudes can be used

6'For example, this would be the case if the 71-—71- phase shift
descended to zero again at, say, t =60@',
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Actually the Ã/D pole solutions with t t~& —30 and
the conformal solution (1) give the best fits to our
data. "Thus low-energy x—Ã scattering really suggests
a somewhat narrower range of values of ag thy, g. that
given in Table II, say,
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FIG. 24. The solid lines are the effective-range plot for our
phase shifts goo (cf. Figs. 16 and 20). The broken lines are the
(JMO} X= —0.2, (TT) X= —0.15, and (BM) X= —0.2 solutions
of the Chew-Mandelstam equations.

to break down low-energy (lab energy ~&200 MeV)
m —X scattering unambiguously into its main constitu-
ents: Born terms, x—& interactions, short-range inter-
actions. We have also seen that this yields valuable
information about the low-energy T=O, J=O m

—m

interaction and some information about the T= 1 x —x
interaction. We now examine the relation of our results
to other information on m —m and x—Ã interactions.

(i) The T=O, J=O eo-ss Interaction

We saw in Sec. 3 that several sets of T=O, J=O x —w

phase shifts 80 give good agreement with the three
discrepartcies 6t+&(s) which we derived from the ex-
perimental data on s- and p-wave or —1V scattering.
'These sets of values of 5oe are given by the E/D pole
solutions /Sec. 3(ix)7 having the pole at vs= —5, —30,
or tr« —30 (cf. Fig. 16). Also, there is solution (1)
(cf Fig. 20) of the conformal mapping method LSec.
3(xi)j. The corresponding values of the T=O s-wave
m —m scattering length ao are shown in Table II.

The values of ao are spread over a fairly wide range
because low-energy x—Ã scattering only depends on a
weighted average of the T=O x—m interaction taken
over an appreciable range of the x —x energy. Thus a
small value of ao, as in conformal solution (1), is
compensated by values of bo which do not fall off
noticeably at high 7r—or energies (cf. Fig. 20).

Common features of the solutions mentioned above
are that 800 is positive at all energies, and that 80' rises
to around 25 or 30 at low pion energies. We conclude
that there is a moderately strong attraction between
two pions in the T=O, J=O state at low energies.

CoreParisort with Sohttions of lhe or —or Eqgatioms

Recently solutions of the Chew-Mandelstam" equa-
tions for x —m scattering have been derived by several
authors. "—"These give a fairly strong T=O s-wave
m
—sr attraction which is consistents4 with the p-wave

m —~ resonance.
In I'ig. 24 we show the effective-range plot for bo'

given by Bransden and Moffat (BM) with X= —0.2,
by Taylor and Truong (TT) with X= —0.15, and by
Jacob et al. (JMO) with X= —0.2. X is the or —or coupling
parameter. For comparison we also show our Ã/D pole
solutions with v~= —5 and v~= —30, and the conformal
solution (1).

Figure 24 can be used to pick out those solutions of
the Chew-Mandelstam equations which are consistent
with low-energy s and p-wa-ve n=S scattering. For
the range of values of X which is of interest here, the
(BM) and (TT) solutions are almost identical, and
we do not distinguish between them. The (BM), or
(TT), solution with X= —0.15 is close to our E/D pole
solution with or= —30."Also, (TT) give" as ——1.2 for

TABLE II. Values of the T=0 s-wave m —71 scattering
length ap for our various solutions.

Solution

N/D pole, o, = —5
Ii/D pole, rq= —30
III/O pole, rz& —30
Conformal solution (1)

ao (in units it=c=to=1)

2.0
1.3

1.0 &gp &1.3
0.6

o' We do not consider conformal mapping solution (2) which
we exclude for the reasons stated in Sec. 3 (xiii)."K.Ishida, A. Takahashi, and Y. Veda, Progr. Theoret. Phys.
23, 731 (1960), and A. V. Efremov, V. A. Meshcheryakov, and
D. V. Shirkov, Soviet Phys. —JETP 12, 308, 766 (1961),obtained
up —1 from a dispersion relation method applied to the small p
wave m —E phase shifts."G. F. Chew and S. Mandelstam, Phys. Rev. 119,467 (1960);
G. F. Chew, S. Mandelstam, and H. P. Noyes, ibid. 119, 4'18
(1960)."B.H. Bransden and J. W. Moffat, Proceedings of the Azx en-
Pronence International Coeference on Elementary Particles (Centre
d'Etudes Nucleaires de Saclay, Seine et Oise, 1961),Vol. I, p. 343;
Nuovo cimento 21, 505 (1961);23, 598 (1962);Phys. Rev. Letters
8, 145 (1962). We are indebted to Dr. Bransden for giving us
further details of these calculations.

"M. Jacob, G. Mahoux, and R. Omnhs, Proceedings of the
Azx en Provence I-nt-creational Conference oe Elementary Particles
(Centre d'Etudes Nucleaires de Saclay, Seine et Oise, 1961),
Vol. I, p. 331; Nuovo cimento 23, 838 (1962)."J.S. Ball and D. Y. Wong, Phys. Rev. Letters 7, 390 (1961).

o' J. G. Taylor and T.N. Truong, Nuovo cimento 25, 946 (1962}.
6 See also V. V. Serebraykov and D. V. Shirkov, Zhur. Eksp.

i Teoret. Fiz. 42, 611 (1962).' The agreement ig eye better for ag. Q/D pole solution @rites

P1 & —30,
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(b) If we add to our sr —X analysis the criterion that
our solutions should be of the same general form as the
solutions of the Chew-Mandelstam equations, then
conformal solution (1) is to be excluded, ' and the
scattering length ap is determined much better than in
Eq. (83). On this basis a rough estimate is

ap= 1.3+0.4 (85)

The p+d ~ He'+ (Zsr) Experiment

In this experiment" the momentum of the recoil He'
is measured and a marked bump is found in the number
of events occurring just beyond the two pion threshold.
This could be caused by a strong m —x attraction at
low energies in the T=O, J=O state, and early theo-
retical estimates suggested that a large x—m scattering
length @~~2.5 was required. "

Recently, using a new formulation for dealing with
the final-state interaction, Jacob et hatt.

"have obtained
very good agreement with the results of the p+d
experiment by using the (JMO) phase shift, boo with
X= —0.2 (ao ——1.6) shown in Fig. 24. The (JMO) phase
shifts bo' for X= —0.22 (tto ——1.8) and X= —0.18 (as
=1.3), respectively, give good and fairly good agree-
ment with the p+d experiment. The (JMO) phase
shifts bp' are characterized by a comparatively large
scattering length and a sharp drop in the values of bp'

at high energies. The (BM) and (TT) sets of values of
Bp do not have these properties to such an extent, and

The (BM) solution with 'A= —0.1 gives a0=0.67 and puts
the p-wave 7r —71- resonance at t~=25. However this solution
yields values of 800 which are too small to account for the size
of the T=O 2i- —x effect in x —X scattering.

7'A. Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev.
Letters 5, 258 (1960).

7'A. Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev.
Letters 7, 35 (1961); B. R. Dessi, iNd 6, 497 (1961). .See also
S. Fubini, Proceedings of the Aix en Provence -In-ternational
Conference on EtenMntary Particles (Centre d'Etudes Nucieaires de
Sa,clay, Seine et Oise, 1961),Vol. II, p. 52.

"M. Jacob, G. Mahoux, and R. Omnes, Nuovo cimento 23,
838 (1962).

X= —0.15.The (JMO) solution with X= —0.2 (ao ——1.6)
is close to our tV/D pole solution with or= —5. Our
et= —5 solution is also in fair agreement with a (JMO)
solution having slightly smaller ~) ~. Our conformal
mapping solution (1) is not in agreement with any of
the (JMO), (BM), or (TT) solutions, as is to be
expected from the way in which it is derived. Also, the
published solutions of Ball and Wong" are not similar
to any of our solutions.

We make the following deductions:

(a) If we fit to a (JMO) solution we have to use a
slightly more negative value of ) than we require for
fitting to (BM) and (TT). However, allowing for the
divergence between these authors, our analysis of the
~—E data suggests that the m.—m coupling parameter is

X= —0.18+0.05.

they are therefore not expected to give such good
agreement with the results of the p+d experiment. If
5so is more like the (JMO) solutions than the (BM),
(TT) solutions, 'then the p+d experiment is in good
agreement with our analysis of x—S scattering.

The Process sr+N -+ sr+sr+%

Analysis of the process 7r+cV ~sr+sr+fq at low
energies also gives information about the m —m scat-
tering lengths. Schnitzer'4 uses a model based on static
theoryrs and applies it to data (differential and total
cross sections) at (lab) energies between 360 and 500
MeV. He finds two possible sets of values (i) ao ——0.50,
ai ——0.07, as ——0.16; (ii) as=0.65, tti ——0.07, as ———0.14
where ao and a2 are the T=O and T=2 s-wave m —m

scattering lengths and ttt is the T=1 it-wave sr —sr

scattering length. Ceolin and StroBolini ' examine the
eBect of peripheral interactions and analyze experi-
mental data between 225 and 31'I MeV. They find
that ap must be less than one unit.

Thus, the analyses of the process sr+X —+ sr+sr+1V
suggest that up&1.0. However there may be no contra-
diction between these results and the p+d experiment,
or a value of ao around 1.3. The analysis of Schnitzer
is based on a T=O sr —z interaction of the form X,g'
the value of ), and hence of ap, being determined from
the sr+% ~ sr+sr+X experimental results. The experi-
ments used are well above the threshold for 7r+X —+

sr+sr+tV (which is 171 MeV). From Fig. 16 it is seen
that 80' rises steeply at very low energies and then falls
off. Schnitzer's analysis relates to the region of energies
where bp is falling off, so he will underestimate ao
Lwhich is determined from (sin8o')/qs, where qs is the
pion momentum in sr —n scattering]. The analysis of
Ceolin and Stroffolini does not appear to be self-
consistent. Using their predictions for the total cross
section"' for sr +p-+ sr +sr++n, we see that the data
below 280 MeV do require ap(1.0. However, two
experimental points between 280 and 320 MeV require
a~~1..3, while da, ta" around 380 MeV suggest that
up~2. 6.

Thus the main features of the sr+/ —& sr+sr+/
experiments" have not been shown to contradict our
value as= 1.3&0.4 given in Eq. (85).

"H. J. Schnitzer, Phys. Rev. 125, 1059 (1962)."C. J. Goebei and H. J.Schnitzer, Phys. Rev. 123, 1021 (1961).
"C.Ceolin and R. Stroffolini, Nuovo cimento 22, 437 {1961);

S. Fubini, Proceedings of the Aix en Provence -I-nternational
Conference on Etementary Particles (Centre d'Etudes Nucleaires
de Saclay, Seine et Oise, 1961),Vol. II, p. 52."See S. Fubini„reference 76, I'ig. 12.

7 I~'or details of the experimental results see H. Schnitzer,
reference 74.

"If the experimental data on the total cross sections for
7l- +p ~ m. +m++n below 280 MeV, and its theoretical analyses
(see references 74 and 76) are reliable then a0&1.0 is favored.
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v--Decay

The original analysis of w-decay events based on the
work of Khuri and Treiman gave a2—a0~0.7. The
results of Schnitzerrs above give ~as~ 0.15, and Kirz
et al " obtain

~
as

~
~&0.15 from a study of pr++p -+ pr+

+pr++tp. These results would contradict our value of
ap, (Eq. (85) above]. However, recent work by Beg
and De Celles" shows that the situation is very different
if the effects of the p-wave pr —pr resonance (p) are
included in the analysis of r decay. They also give a
rough estimate of the size of the effect. Using the
values of ap and X given by (85) and (84) and the
parameters of the p resonance given in Sec. 4(iii), this
estimate gives good agreement with the 7-decay data.

Coeclusi on

Our analysis of low-energy s- and p-wave rr /t/—
scattering proves that there is a fairly strong x —x
attraction in the T=O s state at low energies. Com-

paring our results (Fig. 24) with solutions of the
Chew-Mandelstam equations for m —m. scattering, we

get good agreement with the T=O s-wave (BM)'4 and
(TT)sr solutions for X= —0.15 (as=1.2) or with the
(JMO)s' solution for X= —0.20 (ap ——1.6). The P+d
experiment favors this (JMO) solution, r' while the
pr+1V ~7r+rr+E experiments possibly favor the
(BM) and (TT) solutions. Our estimates of ap and X

are given in Eqs. (85) and (84).

(ii) The 7=1 pp-pp Interaction

Our analysis of low-energy x—S scattering can only
give qualitative information about the values of t
ft= (energy)'j for which the T=1, 7=1 pr —pr inter-
action is strong Pcf. Sec. 4(ii)$. However, the observed
T=1, 1=1 pr —pr resonance (p) occurring at about 760
MeV would give rise to our low-energy x —X results
[in the (—) charge combination). In particular Eq.
(80), which relates (a) the magnitude of our discrep-
ancies 6& &(s) for s- and p-wave pr —X scattering, (b)
the isovector nucleon form factors, (c) the observed
position (Eg) and width (y) of the resonance p, is
satisfied by the data.

Relation (75) which gives the magnitude of the
discrepancies 6& & (s) in terms of the helicity amplitudes
f~'(t) for the process pr+ pr ~ Jt'/+E (via the functions
Jr(t) and Js(t)), and Eq. (81) which relates the gyro-
magnetic ratio to J'r (4)/ Js (1~), are only satisfied
qualitatively. This is attributed to errors in the calcu-
lation of J,(t) (r'. =1, 2) from the dispersion relation
(71). Reasons were given in Sec. 4(v) for expecting

~ N. N. Khuri and S. B.Treiman, Phys. Rev. 119, 1115 (1960).
See also F. Lomon, S, Morris, E. J. Irwin, and T. Truong, Ann.
Phys. (New York} 13, 359 (1961).

8 J. Kirz, J. Schwartz, and R. D. Tripp, Phys. Rev. 126, 763
(1962).

8~ M. A. B. Beg and P. C. De Celles, Phys. Rev. Letters 8, 46
(1962).

TAax.z III. The first four rows give the various contributions
to Reppr, 2q= (sin2apf' p J)/2g' at the physical threshold. F is
defined by (value at s= 59.6—value at s =80.6)/(value at s= 59.6
+value at s=80.6).

Born
(long Crossed

2T, 2J range) integral

31
13
33

—0.202 0.026—0.051 0.006—0.052 0.006
+0.104 0.001

0.4 0.2

Core T=O m.2r T=1 ~sr

0.026
0.002
0.005
0.012

~0 1

0.024
0.024
0.026
0.026

~0 4

0.032—0.016—0.005
+0.003

0—1

Rescat-
tering

0.003
0.001
0
0.079

that, with present techniques, the calculated values of
J';(4) might be subject to appreciable errors. This does
not invalidate the agreement with Eq. (80) mentioned
in the previous paragraph, since that equation is
independent of the calculated values of J,(1g).

Equation (75) does suggest that a T= 1, J=1 pr —pr

resonance at 560 MeV (f ), if it exists, does not have a
large effect on low-energy x —E scattering. As was
shown in Sec. 4(ii), reducing the value of tn will reduce
the magnitude of the parameter C~ more rapidly than
~tgJ(trr)

~
is decreased. If the f resonance contributes

appreciably, then tg has to be reduced to, say, 24 in
order to give some mean energy for the T=i z —7I-

interaction. As this noticeably increases the disagree-
ment in (75), it is unlikely that t' is important here.

Finally, we note that Schnitzer'4 obtained a~=0.07
and Goebel and Schnitzerrs got at~0.04 for the P-wave
7t-—m "scattering length. "As was pointed out by Goebel
and Schnitzer, '5 ai is so defined in their work that it
will be appreciably greater than the actual scattering
length, if the T=1 x—x resonance occurs at a high
energy. From Eq. (72) we see that the true scattering
length is ai y/tri 0.01. ——

(iii) Breakdown of Low-Energy P-Wave
~-N Scattering

In III (Sec. 7A and Fig. 10), low-energy s-wave pr —X
scattering was resolved into constituent parts arising
from the short-range x —E interaction, the T=O and
T= 1 x—x interactions, and rescattering. That analysis
is almost unaltered by our new calculations, and the
results will not be repeated.

The results of Secs. 3 and 4 above make it possible
to do a similar analysis for the p-wave pr —X phase
shifts. This is done by picking out the contribution of
the various terms in the dispersion relation (5) for the
partial wave amplitude Reps&, ss ——(sin2nsr, ss)/2q'.
Their values at the physical threshold are given in
Table III. The separation of short-range terms (which
we call core terms) and the pr —pr terms was carried out
with the aid of Figs. 15 and 22. The T=G x —m term is
for the 1V/D pole solution with scattering length Gp= 1.3
(sr= —30) and the T= 1 7r —pr term is for gg~30.
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The Born term here, and in what follows, is the
long-range part arising from the pole s=M' and the
short cut (M —p,'/M)'&s&M'+2ti' The crossed inte-
gral is the contribution from the cut 0&~s~& (M—p)'.
Except in the case of Repss it is mainly due to the crossed
term coming from the (ss, ss) resonance. "The core term
comes from that part of the circle ~s~ =M' —p,

' for
which

~
args

~

)66', and from the cut —~ &&s &&0. The
two ~—7r terms come from the arc

~
argsj ~&66' of the

circle. These five terms can be regarded as the contri-
butions to the scattering amplitudes from the various
interactions which give rise to low energy x —iV scat-
tering. Those with small (large) values of ~F~ corre-
spond to interactions with short (long) ranges. The
rescattering term is the contribution to Repsr, sq from
the physical cut (M+y)s &~s &~ ~ . It is very small except
in the case of pss where it is large and varies rapidly.

Several interesting deductions can be made as to the
causes of p-wave m

—N scattering.

(a) For p» at low energies'4 (lab energy &250 MeV)
the crossed integral and the T=1 m —m interaction"
are unimportant. The Horn term gives a strong long-
range attraction, and the core gives a modest short-
range attraction. The T=O m. —~ interaction gives an
attraction which is more than twice as large as the core
term at threshold and even at 250 MeV is bigger than
the core term. Therefore any theory which attempts to
obtain the position of the (-,',—,') resonance from first
principles, must allow for the strong T=O ~—m attrac-
tion as well as the short-range (core) attraction.

(b) At threshold the dominant term for pii is the
strong long-range Born repulsion. The crossed integral,
the core, and the two m. —m. interactions all give moderate
size attractive terms. The fact that the magnitude of
the Horn term falls o6 more rapidly with increasing
energy than these other terms explains why the large
scattering length u~~= —0.104 is consistent with the
much smaller value Repii= —0.024 found at 98 MeV.
Similarly it is easy to understand why n~~ changes sign
and becomes positive before 200 MeV is reached.

(c) The two amplitudes psi and pis have long been
known to be very similar in behavior at low energies. "
From Table III we see that their long-range Born
terms, T=O x—m terms, crossed integrals, and core
terms are almost identical at low energies. The only
appreciable difference is that the T=1 m —w term
(which is repulsive for psi and pis) is three times as
large in the case of psi as it is for pis. This causes the
scattering length a3~ to be slightly more negative than

8'In the case of Rep33 the crossed integral at s= (M+@)' is
made up of 0.002 due to a33, and —0.001 due to o;I~, a31, n~, and a~.

~ In this section "energy" means lab pion energy. "I.ow energy"
is used to mean lab energy ~& 250 MeV.

» $. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960) have pointed ont that the T=1 7r —s interaction is sma]1
in the p33 case.

See for example, F. H. Harlow and B. A. Jacobsohn, Phys.
Rev. 93, 333 (1954).

ais Lasi ———0.040, ais ———0.030, by Eq. (16)j. The
fact that about half of the long-range Born repulsion
is cancelled by the T=0 +—m attraction is the main
reason for the smallness of the phase shifts o, a~ and o.~3

in the low-energy region.

T'+&=-'(T aT+), (87)

where T+ are the scattering amplitudes for +++p~
~*+p (upper sign to go with upper sign, etc.). Low's
relation'7 which enables us to cross from the physical
cut (M+p)'&s& ~ to the cut 0(s((M—ti)s can
easily be expressed in terms of T+ and T (without
any use of charge independence notation). On crossing
this gives T'+) ~ T(+) and T' ) —+ —T' ), and using
(86) this gives 2&+& ~ &At*&, Bi+& —+ WB&+&. These
are just the relations which were used in our calculation
of the crossed integral terms, and they do not depend
on assuming charge independence.

On going over to the third channel (m+w —& N+N)
we note that by the usual substitution law of relativistic
quantum field theory a ++p +a-++p are-both related
to ~++~-~ p+7&. It is easy to see that T'+' and Ti &

are related to x+x states having charge conjugation
quantum number C=+1 and —1, respectively. So
T'+& (T, t &) are related to states a.++a. —+ p+ p having
even (odd) angular momentum J.

If we do not assume charge independence, then G
invariance may not be true, and this may affect the
unitarity assumptions made in solving equations like
(17) for the helicity amplitudes for ~+m ~N+N.
I'or the T(+' case we saw that the J=O state in this
channel was dominant )Sec. 3(iv)j, so our pair ~+m

is in a 0+ state. Since there is no 0+ state with three
pions, the unitarity relation between (7rw~NN) and
(ma. ~~n.) still holds over the range 4&a'~&t&~16ti'. For
the T' ' case our ~+m pair is in a 1 state, and there
is a 1 x+x'x state. Here the unitarity relation need
only be valid for 4p'~&t~&9p'.

Thus if we do not assume charge independence for
the a+7r —+ N+N channel (or for high-energy processes

See, for example, J. Hamilton, Theory of L&'lementary Particles
(Oxford University Press, New York, 1959), p. 328.

(iv) Charge Independence

Charge independence appears to be well satisfied
(experimentally) for a.—N scattering, at least up to
400 MeV, ' but charge independence has not been
proved for processes like m+7r —+ N+N or ~+a-~
~+a.. We shall examine to what extent our analysis
depends on assuming charge independence for the
latter processes.

The x—E scattering amplitude is, in the notation of I,
T= A+iy Q—B

where A, 8 are the invariant amplitudes. We used
throughout the (&) charge combinations. These are
given by
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in the other channels), our deductions from mE—
scattering about the T=0, J=0 7t- —7t. phase shift 80"

remain valid, but our conclusions about. T= I, J=1
x —x scattering may be modified.

(v) Validity of the Mandelstam Representation

The observed s- and P-wave m —iV data give the six
discrepancies 6'+&(s) and d' &(s) on the physical cut
s~& (M+p)' and the crossed cut s~& (M —p)'. In Secs.
2, 3, and 4 we showed in a variety of ways that the
behavior of these discrepancies was of the same general
form as we would expect from x—x interactions con-
tributing via the front part of the circle

~

s
~

= (M' —p')
(Fig. 1). If the Mandelstam representation for m+E-+

m.+E were not valid, there could be other poles and
cuts in the s-plane besides those shown in Fig. 1. If
such singularities had a strong effect anywhere near
the points s = (M&p)' we would not expect our analysis
to show the self-consistency just mentioned.

Further, the s-wave and both p-wave discrepancies
are (reasonably well) 6tted by the same T=O, J=O
and T=1, J=1 w —m interactions, and these inter-
actions are in fairly good agreement with other (experi-
mental) information about the m. —~ interactions. This
provides some proof of the validity of the substitution
law which is used to go over to the channel m+pr ~
1V+E, and the validity of the unitary relation between
(pre. ~SE) and (m7r~mm) (this is particularly so in the
T=0 case).
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APPENDIX I. PROPERTIES OF THE DENOMINATOR
FUNCTIONS D(v)

Integration of Eq. (41) in Sec. 3(vii) gives

where

I' -F(v) —F(vg)
ReD(v) = 1+— —F'(v,),

1+@
F(v) =x ln for s)0 and y& —1

= (2/y) arctany for —1&v&0.

Here
=L /(+»j'"; y=L(+1)/( —)S'".

By simple algebra it can be seen that

F(v) ~ ln( —4v) as v —& —~,
F(0)=0,
F(v) —+ ln(4v) as v —++~.

Also
F'(v) ~0
F'(v) —+ —oo

F'(v) —+ 2

F'(v) ~0

as p~ —~,
as v —+ —0,

as v —++0,
as v~+ po.

Further, F'(v)&0 and F"(v)(0 on —~ (v&0 and
F'(v))0 on 0&v& po. These relations are sufhcient to
establish the properties of D(v) which were used in
Sec. 3(vii). The function D(v) used in Sec. 3(x), Eq.
(61) for the case X(v) =np is readily seen to be given by

ReD(v) =1+ (up/m. )F(v).

The properties of D(v) used in Sec. 3(x) follow directly.


