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Low energy s- and p-wave =~V scattering is analyzed by partial
wave dispersion relations. I'rom the experimental #— N phase
shifts we derive the ‘‘discrepancies” in the physical energy region
and on the crossed cut. We are able to separate the discrepancies
into the short-range (£0.2X 107 cm) =— NV interactions and the
x—m contributions to #— N scattering. The =—= contributions
found in this way satisfy several stringent tests which show the
validity of our method for deriving and separating the =—m
contributions.

The (+) charge combination of s- and p-wave #— N amplitudes
yields considerable information about the 7'=0 7— interaction
at low energies. The T'=0, J =0 = — scattering is dominant, and
we determine possible sets of the corresponding phase shift §;°.
Several of our solutions for §° agree with recent solutions of the
Chew-Mandelstam equations for =—m scattering. Comparison
with the latter suggests that the w—= coupling parameter is
A=—0.184-0.05, and the =—= scattering length is ¢p=1.3+£0.4

1. INTRODUCTION AND SUMMARY

N earlier papers' a method was developed for
obtaining information about pion-pion interactions
from low-energy pion-nucleon scattering. This was
based on the dispersion relations for the partial wave
7— N amplitudes. In IT and IIT there was a preliminary
account of the information about m—m interactions
which was obtained from s-wave m— NV scattering. In
the present paper we give the results of an improved
calculation for the s-wave #— N case, and in addition
give a similar analysis of p-wave 7— N scattering.

We find that there is a strong low energy attraction
between two pions in the 7=0, J=0 state, and that it
plays an important part in low-energy s- and p-wave
m— N scattering. We give values of the =0, J=07—m
phase shift 8,° which reproduce the 7— N data, and we
show how these values compare with values of 8 which
have been obtained by several authors from solutions
of the Chew-Mandelstam dynamical equations for r—
scattering. This comparison enables us to give an
estimate of the 7—m coupling parameter A and the 7'=0
s-wave w—m scattering length ao. Our results for a,
and the value of §,° at low energies are compared with
other sources of information on §,°, such as the p-4d
experiment, the 74N and w7/ experiments, and
the 7-decay data. It is shown that our results are, by
and large, not in disagreement with the theoretical
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(in units where Z=p=c=1). Other information, from the p--d
and 7+N — 7+7+N experiments and from 7 decay, is con-
sistent with our proposed values of §;°.

The (—) charge combination of s- and p-wave r— N amplitudes
gives information about the 7'=1, J=1 =—n= interaction which
is consistent with the observed p resonance. However in the 7'=1,
case, complete prediction of our w—N results via the helicity
amplitudes for 77 — N-+N is not yet satisfactory. Possible
reasons for this are given.

The p-wave =— N interaction is separated into its constituent
parts, and for example, it is seen that any attempt to determine
the position of the (3, §) resonance must include the 7’'=0, J =0
m—m interaction. The extent to which our analysis depends on
assuming charge independence is examined. We also discuss how
our results can be regarded as a fairly good physical proof of the
Mandelstam representation.

analyses of these experiments. Our analysis gives some
evidence for a T=0 d-wave w— interaction, but it
appears to be of no great importance in 7— N scattering
up to 200-MeV lab energy.

The information we obtain about the I'=1 71—
interaction is consistent with the effects which would
be produced by the p resonance (at approximately
760 MeV). There is however some difficulty in calcu-
lating the helicity amplitudes for 7+r — N+N in the
T=1, J=1 state. This is probably due to the fact that
we have to solve the appropriate Omnés equation for
comparatively high energies.

In III we showed how low-energy s-wave w— IV
scattering could be broken down into its constituent
contributions from 7’=0 and 7'=1 r—= interactions,
core (short-range) effects, crossed as; resonance effect,
and rescattering. Here we do the same for low-energy
p-wave w—DN scattering. In addition to the above
effects we have, of course, the long-range Born term in
the case of p-wave mw— NV scattering. This breakdown
of the p-wave m— N scattering gives some interesting
results; for example, the 7=0, J=0 =—= interaction
gives an important contribution to the (§,%) =#—N
amplitudes, and the position of the (%,%) resonance
could not be calculated without taking this into account
as well as the short-range attraction.

Our analysis of low-energy =— IV scattering uses the
latest values of the phase shifts given by Woolcock.?
These are partly taken directly from the accurate
experimental data, and partly result from an analysis
along the lines of Chew, Goldberger, Low, and Nambu?.
This analysis uses single variable 7— IV dispersion rela-
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F16. 1. Location of
, the pole and cuts of
(M'P;f / Mep) the x—N partial
wave amplitudes in
the complex s plane.

tions for fixed momentum transfer. The =—m inter-
actions only appear in these relations in the form of
subtraction constants, and these subtraction constants
are determined by using experimental data. Thus, in
no sense are we working in a circle: the 7— N phase
shifts from which we start are directly or effectively
experimental values. )

The paper is set out as follows. In Sec.52;the method
and evidence for its validity is discussed. In Sec. 3 we
derive the 7’=0, J=0 phase shifts and in Sec. 4 we
discuss the T'=1 7—= interaction, and the relation
between low energy w—/V scattering and the nucleon
form factors. In Sec. 5 we examine the relation of our
results to other information on the 7'=0and I'=17—x
interactions. There, we also give the breakdown of
p-wave 7— N scattering into its constituent parts, and
make some comments on the validity of charge inde-
pendence and on the validity of the Mandelstam
representation.

2. CALCULATION OF THE DISCREPANCIES
(i) The s-Wave =-N Discrepancies

The same notation is used as in ITL. s=[(M>+¢*)!2
+ (u2+¢»)'2 P is the square of the total energy in the
c.m, system in the channel 74N — 7+N. M and p
are the nucleon and pion masses, and ¢ is the momentum
in the c.m. system. The s-wave partial #— NV amplitudes
are fo™(s) where T=%, 5 is the isotopic spin; these
are normalized so that in the elastic region fo™(s)
=¢¥D (sindD) /g, where 67 is the phase shift. We
shall use the combinations

JoP()=3[fo" ()4 /o (s) ],
S =3LL" ()~ fo"P (s)],
where fo(™(s) and fo(™"(s) are the s-wave scattering

amplitudes for #+p—7+p and 7t4p — 7t+p,
respectively.

M

The Dispersion Relation

The singularities of the partial wave amplitudes as
functions of s are shown in Fig. 1. Knowing the position
of the singularities we_canwrite down the dispersion
relations*

1 Imfo® (s)
Refo® (s)= P (5) 4+~ ds' ——— ~ ~
TJ (M) s'—s
1 pr—w? Im fo™® (s)
—{——/ ds’——«l————l—A()(i)(s), (2)
w™Jo S—3

4For a discussion of convergence and possible subtractions
see IIT, Sec. V (ii).
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where s lies either on the physical cut (M+u)?<s< o
or on the “crossed cut” 0<s< (M —p)?2 One of the
integrals on the right will be singular and it has to be
evaluated as a principal value integral. P (s) denotes
the sum of those Born terms which arise from the pole
s'=M? and the short cut (M—u2/M)2<s'<M2H2u2.
We call the first integral on the right of (2) the physical
integral and the second integral will be called the
crossed integral. The physical integral gives the contri-
bution to Refo(s) due to rescattering, and the crossed
integral gives the effect of the crossed graphs. The
%,3) and the higher #— N resonances contribute to
the s-wave w—N amplitude through the crossed
integral.

We call A¢™® (s) the s-wave discrepancies. These are
made up of the contributions to (2) arising from the far
unphysical cut — o <s’<0 and the circle |s'| = M2—u2.
The former is equivalent to #— N interactions of range®
S /Me, while the circle arises solely from the channel
m+a — N+N. The left half of the circle also is equiva-
lent to short-range interactions (range <7#%/Mc). The
right half of the circle, and in particular the part near
s'=M?—p? gives a comparatively long-range inter-
action between the pion and the nucleon which is due
to low-energy =—m scattering.

We evaluate A¢®(s) in the physical region s
2 (M+p)® by substituting the known s-wave m— N
phase shifts on the left of (2) and in the physical
integral on the right. The Born terms P®(s) are
calculated using the coupling constant f2=0.081 (these
Born terms are very small in' the s-wave case, as was
shown in I). The crossed integral is evaluated by
means of the crossing theorem using known s-wave,
p-wave, - -+ #— NN phase shifts and using certain infor-
mation about high-energy =#— XV scattering.® Equation
(2) then yields Ay (s).

S ——tpe
° 30/M-u)? 40 50 60 70 8lo
2
(Mo}J)
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<
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F16. 2. The discrepancy Ay (s) for s-wave m— N scattering.
The solid curve is obtained by assuming Imf,"(s) behaves like
s712 ag s — 0, and the broken curve is obtained by assuming
ImfyM(s) — 0 as s — 0. The cross at s=20 indicates where the
solid curve would end if we neglected d waves.

5For a definition of the range of the equivalent interaction,
see IIT, Sec. T (ii).
6 For details see I1I.
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Applying the crossing theorem to Refo® (s), we can
also evaluate Ao (s) on the right-hand part of the
“crossed cut” 0<s< (M —p)? In practice the accuracy
of this calculation is limited by our knowledge of the
m—N scattering phase shifts at moderate and high
energies. We have carried out the calculation for
202K s (M —p)?=32.72, and our results are quite
reliable for 252K s < 32,742

Separation of the Low-Energy m—w Effects

We have seen that the effect of low-energy m—w
interactions on w—V scattering comes from the front
of the circle |s'|=M?—p? (ie., the part nearest s’
= M?—u?). This will result in a fairly rapid variation
of Af®(s) with s over the range of values of s where
we have calculated it. The remainder of A¢® (s) comes
from the more distant parts of the cuts and is expected
to be a slowly varying function of s over the range of
our calculation. In fact this remaining part of A¢™® (s)
should be well approximated by a constant” plus a
single pole somewhere on the cut — »<s’<0. This
part of A¢®(s) is due to the short-range part of the
7—N interaction, and we shall call it the core inter-
action (the corresponding range of interaction is
Sh/Mc).

This interpretation of Ay‘® (s) is supported by certain
symmetry properties which were derived in IL. In
particular the low-energy w—= part of Ay (s) is
expected to be approximately of the form

(const)

(s—Resy)?+ (Imsl)2,

3)

where® s;~~(M?—p*)e?! and ¢, is some angle less than
about 35°. Figure 2 shows the calculated values of
Ay (s). Clearly it is well represented by the form

7 The constant arises from the far unphysical region, where s’
is large and negative.
8 Note that M22245u2.

(3) plus a term which varies slowly with s. The low-
energy m—m part of Ay (s) is similarly expected to be
approximately of the form

(const) (s—Resy)
(s—Res/ )2+ (Imsl’)z’

where s/ is defined in the same way as s; above.
Figure 3 shows the calculated values of Ay (s).
Expansion (4) plus a constant gives a rough approxi-
mation to the form of Ay (s). In particular, it explains
the noticeable difference between the values of Ay (s)
for s< (M —p)? and its values for s> (M ~+pu)2 It is also
shown in II that if the #— interaction in the isotopic
spin state T'=1 is only appreciable for moderate, but
not low, w—m energies, say for {>20u® where ¢ is the
square of the energy of the m— state in its c.m.
system, then (4) is only a rough approximation to the
m—m part of Ay (s). Comparison of (4) with Fig. 3
suggests that this is, indeed, the case.

In the present paper we improve considerably on the
information which can be obtained using (3) and (4).
Various forms of the s-wave m— phase shift 6,°(f) are
used to calculate the low-energy =—= part ofAy™® (s).
Adding a slowly varying function of s and comparing
the result with Fig. 2, we can determine the s-wave
m— scattering length, etc. As a check on our results
we can require the same s-wave m— phase shifts to
give agreement between the theoretical and the calcu-
lated values of the discrepancies Ay;2™ (s) and Ay 2™ (s)
in the dispersion relation for p-wave w— N scattering
(cf. Sec. 3). We similarly fit the Ay (s) curve in Fig. 3
by assuming various resonances in the 7’'=1, J=1r—r
system, and again a check on our results is given by
the requirement of also fitting the p-wave w— N dis-
crepancies A1;2 (s) and Az (s).

@

7— N Phase Shift Data Used

The new values of Ay (s) and A (s) shown in
Figs. 2 and 3 are in several ways superior to the values
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I'16. 4. Values of the 7—N s-wave amplitude Res;= (sin2«;3)/2¢
where ¢ is the momentum in the c.m. system.

given in II and IIL. The range of s in the physical
region has been extended to 59.6= (M +u)*<s<80
(we use units =u=c=1 throughout), ie., from
threshold to pion (lab) energy 215 MeV. In the crossed
region the range is 20K s<32.7= (M —p)%

s-wave m—N shifts. In the original calculation two
sets of discrepancies were given because of ambiguities
in the high-energy values of the s-wave #— NN phase
shifts oy and a3. In the present calculation Woolcock’s®
values for these phase shifts up to 400 MeV are used.
These values are given in Figs. 4 and 5. Woolcock’s
values of a; and a3 (and of the small p-wave phase
shifts discussed below) are derived partly from an
improved form of the dispersion relation method of
Chew ef al.,'® and partly from certain particularly
accurate experimental phase shift determinations. The
as plot shown in Fig. 4 passes through, or close to the
accurate experimental values at 31, 98, 120, 224, and
310 MeV. The a; plot in Fig. 5 passes through or close
to the accurate experimental values at 31, 98, 120, and
224 MeV. Above 250 MeV Woolcock’s values of ay lie
about half way between the two sets of values of a;
used in IT and III.

Woolcock’s values give us Refo™® (s) with consider-
able accuracy in 59.6<s<80 (i.e., for lab energies up
to 215 MeV). For the physical integral and the crossed
integral we require Im fo® (s) at higher energies. Above
2 BeV we use the value Imfy("=0.22/q as suggested
by the partially opaque optical disk [cf. Eq. (9) of II1];
here T'=%, % is the isotopic spin. Between 400 MeV
and 2 BeV we join up Imf® (s) with smooth curves.
As was pointed out in III, the errors arising from our
rough approximations above 400 MeV are likely to

9 W. S. Woolcock, Ph.D. thesis, Cambridge University, 1961
(unpublished) ; and Proceedings of the Aix-en-Provence Conjerence
on High-Energy Physics (Centre d’Etudes Nucleaires de Saclay,
Seine et Oise, 1961). See also J. Hamilton and W. S. Woolcock
(to be published). We are indebted to Dr. Woolcock for permission
to quote his results and reproduce Figs. 4, 5, and 7.

10 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).
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raise or lower the Ay (s) curves bodily, but should
not tilt or deform them appreciably.

In calculating Re fo™® (s) and Im fo¥ (s) in the crossed
region s< 32.7 we require the p-wave and possibly some
d-wave w— N phase shifts as well as the s-wave phase
shifts. From Table IV of IIT it is seen that to find
fo® (s) in 25<5s<32.7 we require these phase shifts up
to 200 MeV, and for 20<s< 32.7 we require them up
to 400 MeV. We shall not place much reliance on
A¢® (s) in 20K 5K 25.

p-wave — N phase shifts. The main contributions to
A¢® (s) from az; come from the region of the (3,3
resonance, and small errors in a3 away from the
resonance are relatively unimportant. For convenience
of calculation simple parametric fits were used for ass.
Below the (3, £) resonance as; was expressed in a simple
power series in ¢, so as to give agreement with Wool-
cock’s value of the scattering length as; [see Eq. (16)
below] and the accurate experimental data. Above the
resonance another simple parametric form was used.
This gave good agreement with the accurate experi-
mental values such as that at 310 MeV.!* The values
of az3 used in calculating A¢™® (s) are shown in Fig. 6.
It should be noted that any inaccuracies in Ay (s) due
to the kink in a33 just above the resonance will only be
noticeable for 20<s< 23, i.e., at the very lower end of
our range. It should also be noted that in calculating
the p-wave m— IV discrepancies it was necessary to use
a more accurate set of values for as;. These are described
in Sec. 2(ii) below.

The a3 phase shift is the predominant p-wave effect
in AP (s) for s<32.7. However we also included the
small p-wave phase shifts a1, a3, asi. For these we
used the values calculated with great care by Woolcock
up to 400 MeV.? Figure 7 shows the values up to 100
MeV. They are in fairly good agreement with accurate
experimental values at 31, 98, and 120 MeV (a3;),*

0.20
0.18 |
0.16
014

9 0.2
O

0.10 |

.08}

1
(0] 100 200 300 400
Lab pion K.E. (MeV)

FIG.5.

F1c. 5. Values of the 7—N s-wave amplitude Res;= (sin2a:)/2¢
where ¢ is the momentum in the c.m. system.

11 J.H. Foote, O. Chamberlain, E. H. Rogers, and H. M. Steiner,
Phys. Rev. 122, 959 (1961).
12 Rochester University result (Set I). We are indebted to Dr.
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F16. 6. Values of Reps; = (sin2a33) /2¢% where ¢ is the momentum
in the c.m. system. The broken line shows the values used in
Sec. 2 (ii).

and are consistent with measurements at 224 MeV.!
The curves in Fig. 7 are also in agreement with Wool-
cock’s® values for the p-wave scattering lengths [Eq.
(16) below | which are a best fit obtained from a variety
of distinct methods. So far as Ay (s) are concerned we
can safely ignore any errors in these small p-wave 71— N
phase shifts. For higher energies (above 400 MeV) the
absorptive part of the p-wave amplitudes is joined
smoothly on to the form 0.22/¢ which is used above
2 BeV. Errors here will not affect our analysis of
Ao (s).

d-wave w—N phase shifis. We can neglect these
except for 633 which contributes to Imfo® (s) for the
small values of s. We assumed that the 600-MeV m7— NV
resonance is an almost elastic!® T'=%, Dy, state, and
the resonant part of the total cross section o, was

Barnes, Dr. Kinsey, and Dr. Knapp for communicating these
results.

13 T jverpool University result. We are indebted to Dr. Edwards
and Dr. Massam for communications about these experiments.

14 A, Loria ef al., Nuovo cimento 22, 820 (1961).

15 J. Deahl, M. Derrick, J. Fetkovich, T. Fields, and G. B.
Young, Phys. Rev. 124, 1987 (1961).

16 This assumption may not be correct. See R. Omnes and G.
Valladas, Proceedings of the Aix-en-Provence International Con-
ference on Elementary Particles (Centre d’Etudes Nucleaires de
Saclay, Seine et Oise, 1961), Vol. I, p. 467.
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estimated. The values of 8;3 below the resonance were
estimated partly from the width of the resonance and
partly from Woolcock’s? low-energy values of 6.
Figures 2 and 3 show that the &;3 contribution to
Ay (s) is only appreciable for s-<23.

In evaluating the crossed integral for Ay (s) the
unknown behavior of Imf™(s’) as s’— 0 might
appear to give rise to difficulty. As was pointed out
in IIT, this behavior is related to backward =— N
scattering at very high energy, and it is tied up with the
question whether the neutron behaves like a Regge
pole in these circumstances. The discrepancy Ay (s)
was calculated for the two assumptions Imf,™ (s") — 0
as §'—0 and Imfy™®P ()~ ()2 as s’— 0. The
resulting values of A (s) are shown in Fig. 2; the
difference between them is unimportant.

The errors in the calculation of the s-wave discrep-
ancies A¢® (s) have been discussed in detail in III;
the errors in the new values of Ay® (s) are certainly
no greater than those given in ITI.

(ii) The p-Wave Discrepancies A% (s)
and Ag/z(:b) (S)

Let f1-M(s) and 1™ (s) be the p-wave v— N partial
amplitudes for the states with angular momentum
J=% and J=3, respectively (I'=3%, £ is the isotopic
spin). We use the amplitudes por, 1= f1-"(s)/¢* and
pars= f1.0(s)/¢*. These amplitudes por,2; obey dis-
persion relations of the same form as (2). They are

1 = , Impar,2s(s)
Repor,2s ()= Qur 00 (s)+— ds’ ————

™ J (M+4p)?

1 0= Tmpop o7 (s7)
+- / W, Tate. O
m™Jo

s'—s

§ =S

In the same manner as before (cf. III for the details)
we use crossing symmetry to evaluate Repaor, 27 (s) and
Impser,2s(s) on the crossed cut 0<s< (M—p)2. The
long-range Born terms Qqr,2s(s) which arise from the
pole s’=M? and the short cut (M—u?/M)><s’< (M2
+24?) are readily calculated. In the p-wave case these
Born terms are large ; this shows that the single nucleon
pole and the long range part of the corresponding
crossed process give a very important contribution in
low energy p-wave m— NV scattering. The same conclu-
sion was reached by Chew ef al.Y using a different
method.

0.05 |
Lob pion K.E.(MeV)
F1G. 7. Values of the small ol——20 40 60 80 w0
p-wave 7—N amplitudes M
Repor,2r= (sin2asr,25)/2¢°
where ¢ is the momentum 005 E Re b,
in the c.m. system. Rep
n
-0.10

p- WAVE  AMPLITUDES (0-100 MeV)
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We shall use the (=4=) charge combinations defined
analogously to (1). Our dispersion relations for par,27(s)
are now used to evaluate the p-wave discrepancies
Ays®(s) and Ayp™®(s) where the subscript is the
angular momentum. These discrepancies give the effect
of the low-energy =—= interactions on p-wave w—N
scattering, coming from the right half of the circle,
plus the effect of various short-range interactions
(range <7/Mc) coming from the left half of the circle
(|arg(s”)| 2 «/2) and the cut — «<s'<0.

Again we should be able to distinguish the low-energy
m—m parts of Ayp™® (s) and Az® (s) from the short-
range parts by the fact that the former will vary
rapidly with s in the range we use (20<s<32.7 and
59.6<5s<80), while the short-range parts can be
represented by a pole on the cut — «<s'<0 and
contribute to A;® (s) and Az®(s) a term which
varies slowly with s. This separation of the low-energy
m— effect should be somewhat easier here than in the
case of s-wave m— NN scattering because of the extra
factor g2 in the definition of the amplitudes por,2s(s).
On the left half of the circle and on the cut — ©<s'<0
the factor |g|—2 is very small.

The presence of this factor ¢g~%in par,2s(s) also makes
it much easier to evaluate the dispersion relations for
per,2s(s). This is because in the physical region
Impor,as(s)~g? as s — o by unitarity, so the physical
integral converges faster at high energies than in the
s-wave case. Also g2 — « as s — 0, so that the crossed
integral is easier to evaluate; uncertainties about the
7— N phase shifts at the higher energies are not so
important as in the s-wave case, and also Impar 27 (s") —
0 as s'"— 0. The price we pay for these considerable
advantages is that we must know the p-wave m— NV
phase shifts accurately at low energies.

Threshold behavior on the crossed cut. The p-wave m— N
amplitudes fi—(s) and fi1.(s) for angular momentum
J=% and J=4%, respectively, are expressed in terms of
the amplitudes fi, f2 (cf. I for notation) by

+1
f()=1 / A5 [Pu() fik £,

©)
fre()=1 / 0 [P2(&) fuk- Paa) /],

—1

where x=cosd and ¢ is the #— NV scattering angle in
the c.m. system. Also

[i=[(E+M)/8xW I[A (s,0)+ (W —M)B(s,t) ],
Jo=[(E—M)/8xW [—A(s,)+ (W+M)B(s,0) ],

where E= (M?+¢*)'/? and W=s'2. Applying the cross-
ing relation to the invariant amplitudes A4 (s,t) and
B(s,t) in (7) and substituting in (6), we find f1.(s) on
the crossed cut 0<s< (M —p)? in the same way as in
III. However, we wish to use the dispersion relation

™)

MENOTTI,

OADES, AND VICK

(5) for the amplitudes par,os which are derived from
f12(s) by dividing by ¢%. Also ¢*=0 at s= (M—p)?,
so there may be singularities in por, 27 (s) as s — (M —pu)2
We shall now show that the behavior as s — (M —pu)?
causes no difficulties.

From (7) we get

1 ne W+M W-—-M
- ‘yt = - ’
e = o Yak
&)
1 1 1
—B(s,t)=~- fit o
4qr E+M E—M

Also, for small physical momentum ¢”, and physical
scattering angle ¢”,

fr=fo(g")+3 cost” f1.(¢")+0(¢"),

©)
fo=(f1-(¢") = fir(¢"N+0("™),

where fo, fi-, and fi. denote the s and p-wave 7— N

amplitudes. Using (6) and Eq. (10) of III, we see that

for 0<s< (M —u)?,

+Refi_ P (s)= xdx

(H/_{_M)?__u‘z/-ﬂ
327 W2 —1

X[Red® (s" &) — (W—M) ReB® (s" &) ]

(W—MP—pu2 [+
+————/ dx [—Red P (s" x")

327 W?

—1

— (WHM) ReB® (s" )], (10)
where the superscripts (&) are as usual the charge
combinations given by Eq. (1). Also &”’=cos9”. Using
(6) a similar equation holds for Refi, & (s) for 0<s
S (M—p).

On the crossed cut 0<s< (M —u)?, we have

s= O+ g G+ )T,

and ¢ increases from 0 as s decreases from (M —wu)%
Also x=cosd is used in defining the partial wave
amplitudes on the crossed cut. When s is close to
(M —u)?, the variables (¢%x) on the crossed cut are
related to the variables (¢’%,%") in the physical region
by [cf. Egs. (14) and (15) of IIT]

S P >+0<u2 }
e _ % ),
|1t )
(1)
2u u
= —(1—x2)+0<~—).
M M2
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The behavior of Re par2s(s). Using (8) and (9) we
see that for ¢’ small,

1 Iz
— Red (s %")= (1-!———-)03
2M

4

—2Mu(ap—an)+0(¢"), (12)

1 1
— ReB(s" &) =——as+2M (a,;—a,3)+0(¢""?),
4r oM = a0l

where a,, a3, and a,3 are the appropriate s- and p-wave
m—N scattering lengths. Substituting in (10) we see
that because of the factor x in the first integral, this
term behaves like ¢* as ¢?— 0. The kinematic factor
outside the second integral ensures that the second term
in (10) has the same behavior. Hence Repar,2s(s) —
const as s — (M —u)?

The behavior of Impar es(s). For Impor es(s) the
position is not so simple. For example, Imfi & (s) is
defined by an equation analogous to (10) except for a
reversal of signs [Eq. (17) of IIT]. In the integrals on
the right of (10) we now replace ReA™® and ReB®®
by ImA® and ImB®| respectively. Instead of (12),
for small ¢"" we get

(1/4x) ImA (s",&")= (14-p/2M)a2q"+0(¢'"),

13

(1/4m) ImB(s" &)= (1/2M)a2q"+0(q""). 13
Substituting (13) in the analog of Eq. (10) gives

Impar 2s(s)=cor,27/q+0(g) as ¢—0, (14)

where cor,2; are constants. [In this case the leading
term does not vanish on integration over x, because
the relation (11) between ¢’ and ¢ itself involves .

Now consider the crossed integral in the dispersion
relation (S) for Repor,2s(s). It is

: (15)
S =S

1 (M—p)? ImPZT,ZJ (Sl)
IQT,2J(S)E_P/ ds’ ——.
s 0

Ass'— (M—p),
Impor,es ("= {d2T,2J/[(M—#)2_"S,]1/2} +0 (q/)>

where dor,2s are constants. Clearly the integral (15) con-
verges if s (M —u)% Further, by a standard theorem
on the limiting behavior of principal value integrals,'”
Ior,27(s) tends to a finite value as s — (M —u)% In the
actual computation we used an algebraic method to
evaluate that part of the crossed integral arising from
values of s" close to (M —u)2

Phase Shifts and Errors

The phase shifts used in calculating A;2™® (s) and
Agje'P (s) were, with the exception of as;, the accurate

17 See for example, J. Hamilton and W. S. Woolcock, reference
9, Sec. 2(ii) for details.
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values described in Sec. 2(i) above. The values of as;
in the range 0 to 500 MeV were given by (i) Woolcock’s
calculated values for Reps; from 0 to 100 MeV, (ii) a
Chew-Low fit to the experimental values from 80 to
180 MeV, and (iii) a smooth curve drawn through the
accurate experimental values above 180 MeV. Assuming
complete elasticity, these values gave Repss and Impss
up to 500 MeV. Above 500 MeV the plot of Imps; was
continued smoothly to fit on to a resonance peak at
1.3 BeV, and then to fit on the high-energy behavior
0.22/¢® above 2 BeV. From these initial values we
calculated

1 Impss(s)
RCPss(S)"‘ —‘P/ ——‘:)‘——-‘dé‘,,
(M+p)?

T s'—s

and made small adjustments in a3 in the neighborhood
of the joins of the different ranges so as to smooth out
any kinks in this function at the joins. (These small
adjustments were within the estimated errors on the
initial values of a33.) The final values of a3; are shown
in Fig. 6; these values were used in our computations
of A;®(s) (J=1,3%). (The p-wave discrepancies are
plotted in Figs. 15 and 22 below.)

The total error in the discrepancies Ay ™ (s) arising
from errors in the phase shifts e, ais, asi, ass are
estimated to be around =40.005 for 25<s<32.7 and
59.6<s<75. For 75<s<80 the errors could rise to
twice this value, and they may be even larger in
20< 5K 25. The total error in A2 (s) from the same
source are estimated to be about 259, greater than
those just quoted for Az @ (s). The nature of the
errors in Ay™ (s) was discussed fully in IIT. For A; (s)
(J=4%,%) we again expect that the shape of the dis-
crepancies is not subject to large errors except for the
largest and smallest values of s. The effect of the
above errors is mainly to shift the curves A;®(s)
bodily up or down.

In the crossed region there are also errors arising
from 7—N s waves, d waves, etc. For s waves the
contributions to the real part and to the crossed integral
tend to cancel, and the errors arising from «; and a; are
estimated to be small. Below 400 MeV the d-wave phase
shifts are small and the d-wave contribution is only
noticeable (in the real parts) for s <25 (it comes from
813). Apart from the region 20<s<25 errors due to
uncertainties in the d waves are negligible. The above
estimates of the p-wave errors in A; P (s) (J=4%,%) are
therefore believed to be good estimates of the total
errors in Ay (s).

Errors near the thresholds. It will be seen below that
the values of A;®(s) (J=3%, %) near the thresholds
s= (M=p)* are of particular interest, and we examine
the errors in these regions in more detail. The contri-
butions to Ay (s) from the s-wave phase shifts a; and
a3 show the sort of cancellation mentioned in the
preceding paragraph, and thus the main contribution
to errors in the shape of A; (s) near the thresholds
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comes from the p-wave phase shifts. The errors are
only important in Repar,s(s) and their size can be
seen from the errors given by Woolcock? for his p-wave
scattering lengths (A=p=c=1):

as=0.214--0.004,
a1=—0.104=-0.006,
a51=—0.040+0.004,
a13=—0.030=-0.005.

We shall discuss in Sec. 3(xii) below the extent to
which some of our deductions depend on (16) giving a
realistic estimate of the errors in the p-wave scattering
lengths.

(16)

3. THE T=0 = INTERACTION

In the preceding sections we found the experimental
values of the discrepancies Ay (s), A2 (s), and
AgysP (s) for the s, pije, and py/e partial wave 7—N
amplitudes, respectively. Now we try to find the low
energy w—m interaction in the 7'=0 isotopic state
which reproduces these discrepancies. In each case we
can add to the m—m contribution a slowly varying
function of s which represents the short range part of
the 7— NV interaction, as discussed in Sec. 2(i) above.
We also attempt to assess how unique is our result for
the low-energy T=0 w—= interaction.

(i) Absorptive Parts on the Circle |s|=M?—y?

The absorptive parts of the amplitudes 4@ (s,t),
B@® (s,¢) in the channel 7+m — N-+N are given by'8

ImA - (s,8)
8r
=% U+ <ip_qs>J[PJ<cosos> Imf, ()
p_2 J=0

—_ m COS’(93PJ’ (COS’(?‘;;) Imf_./ (1)}, (17)

ImB. P (s,1)
= (J+3)

=8r) —
PRI+

(ip_gs)71P ' (cosds) Tmf_7 (9.

Here g3 and ip_ are the pion and nucleon momenta (in
the c.m. system) in the channel 77 — N4N. They
are given by

g=t/4—p2, pr=M>—1t/4. (18)
Also

cosdy= (s— p_24-¢s*)/ (2ip_gs) (19)

gives the scattering angle #; in the channel #4r—
N+N. Further, f,7(¢) are the helicity amplitudes for
7+n— N+N (for states having total angular mo-

18 See W. R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420
(1960).
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mentum J) as defined by Jacob and Wick.!® In finding
the discontinuity of a w—/V partial wave amplitude
across the circle |s| =M2—yu? we use® (17) with £> 442
Frazer and Fulco'® have shown that the Legendre
expansions in (17) converge only for that part of the
circle given by |args| £66°. We shall, throughout, only
calculate the circle contribution coming from this arc;
this will include all the long-range effects of the 7—=
interaction on w—N scattering. The contribution to
A™) (s) from the remainder of the circle (66°< |args|
<180°) is assumed to be included in the short-range
part of the #— NV interaction. In the charge combina-
tions given by the superscripts (4) and (—) only even
and odd values of J, respectively, appear on the right
of (17). Also f_°(t)=0.

(ii) Symmetry Properties of A™ (s) if the J=0
=-= Interaction only Contributes

Now we consider the (+) case and assume that we
can ignore any low-energy =— interactions in states
with angular momentum J 2 2. Then by (17)

ImA 7P (s,8)=[4x/ (M*—1/4) ] Imf,°(2),

(20)
ImB, P (s,/)=0.

The contribution of this /=0 w—7 interaction to the

scattering process #+/N — 74N at energy s and c.m.

angle ¢ is given by*

1 = ImA ., D (s,t)
A 7P (s,c089) =— / v
¢

7 J y—apr ' 4-2¢2(1—cosd) (21)

B, (s,cos)=0,

where ¢ is the c.m. momentum in the channel 7N —
7+N.

It is now easy to find the 7=0, #—= contribution
to any w—N partial wave amplitude. For example
consider the p-wave amplitudes f1/2™ (s) and f3,2 (s)
where the subscript is the angular momentum. [ When
divided by ¢? these give the amplitudes par,27(s) used
in Sec. 2(ii) above.] Using Egs. (10) and (21) the
T=0 r—= contribution is

[Ref1/2(+) (S):]”-
(W+My—p
=-—-—/ dx x4 P (s, x)
3272 1
(W—=M)2—p2 4
_— / dx Po(2)Anr® (5,2), (22)
327 W2 1
1 M. Jacob and G. C. Wick, Ann. Phys. (New York) 7, 404
(1959).

2 See I and IIT for the details of this relation.
21 See 111, Eqgs. (45) and (46).
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F1c. 8. Test of Lovelace’s relation
for the s-wave w—N discrepancy
A¢(s).

*)

1 1

w' Ewh-w A w)
Wi-w i

60.60
[Refs2 (5) Jnr
(W+M)2—}L2 +1
=——————/ dx 24 P (5,%)
32xW? -1
O —My—i
U — % Po(x) Az (5,2), (23
B IR 2 CYRCERNED

where x= cosd and W=s'2, By (20) and (21) 4. (s,x)
is a function of ¢* and x only (i.e., s does not appear
explicitly in this special case). Now to each positive
value of ¢* correspond two values of W given by

W= <M2+ q2)1/2+ (M2+q2)1/2’
Wl — (M2+ q2)1/2____ (1‘2+q2)1/2, (24)

where we take the positive value of the square roots.
W lies on the physical cut s> (M+p)? and W’ lies on

1
65.60

1
70.60 75.60

s —r

the crossed cut 0 “s< (M —u)? and they are related by
WW'=M?>— 2. (25)

The kinematic factors appearing outside the integrals
in (22) and (23) can be written
WEMy—p 1 M2—p?
(e
we w

+2M ) (26)

Apart from the common factor W1, these expressions
on the right of (26) are unaltered if we replace W by
W'. Hence, using the subscript 77 to denote the J=0
m—m contribution to the p-wave discrepancies A™ (s)
(j=3%,%), we have

WA1/2,1r1r(+) (W) = W,Al/2,1r1r(+) (W,))
WAs/z.,r,,—(-H (W) = W’A3/2,7r-r(+) (W’).

@n
(28)
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Similarly it is obvious that for the s-wave discrepancy,
W Ao, wx® (W) =W Ao,zx P (W). (29)

In this proof it has been assumed that the integration
over ¢’ in (21) extends over all values greater than 4u2.
In the actual calculations (as was pointed out above)
we confine the integration over the =+x— N+4+N
channel to the front part of the circle given by |args|
£66°. This procedure is equivalent to replacing the
upper limit of integration in (21) by #'=%(1—x){max,
where? t0x =4[ u? cos?(33°)+ M? sin?(33°)]. Clearly the
symmetry relations (27), (28), and (29) are still valid;
the subscript o= now indicates that part of the dis-
screpancy which is due to the /=0 r—= interaction
and comes from the front of the circle, |args| <66°. We
are much indebted to Dr. Lovelace for pointing® out the
existence of these relations (27), (28), and (29).

(iii) Test of Lovelace’s Relations
A. s-wave Discrepancy

We now examine how well these symmetry relations
(27), (28), and (29) are satisfied. Consider first the
s-wave m—N results, and use the values of A, (s)
shown in Fig. 2. Let

AP (W)= Do, (W)+Fo (W), (30)

where Ag, .. (W) is the long-range contribution from
the /=0 7— interaction as defined above and Fo(W)
is the remainder (it comes from short-range effects
associated with the cut — ©<s<0, and with the
left-hand part of the circle: |args|>66°; it might also
include some long-range effect from any low-energy
J=2 r— interaction which contributes to the front
of the circle). By (29),

WA (W= WA (W) W Fo(W')—WEFo(W)

(1)
w—w W—w

Suppose Fo(W) is due entirely to short-range effects.
Then to a fair approximation we can represent these by

Fo(W)=—a—8/W? (32)

where «, 3 are constants. Also, the general discussion
of the form of Ay (s) given in II and IIT suggests
that both « and B are positive. With this form for
Fo(W) the right-hand side of (31) becomes —a-+3(M?
—u?)7* so it is independent of W. We plot the left-hand
side of (31) in Fig. 8. The variation of this function
with W is seen to be small. This fact is further confirma-
tion of our general assertion that the rapidly varying
part of A (s) in the regions 20<s<32.7 and 59.6<s
<80 is almost entirely due to a low-energy J=0 7—
interaction.

22 See Eqs. (3) and (4) of IIT.
28 C. Lovelace (private communication).
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Possible evidence for J=2 w—m interaction. The
function [W/'A/H (W) —W A (W) ]/ (W'—W) shown
in Fig. 8 is not a constant, but varies slowly with W.
This could be due either to the fact that (32) is not a
good approximation to the short range part of the
discrepancy, or to the presence of some J=2 7—r
contribution. If we use the somewhat better form

Fo(W)=—a—g/(W*+W¢) (33)

(where @, 8, and W are positive constants) for the
short-range part, we can readily evaluate the right side
of (31). Although the use of (33) could possibly give
the full variation with W shown in Fig. 8, it seems
more likely that a small effect due to J=2 7—m scat-
tering is present.

B. p-wave Discrepancies
The values of

WASPW)=WASDW) ) W'=W), (j=% %),

are shown in Fig. 9. Apart from the small kinks for
59.6<sX 65, the curves are very smooth and slowly
varying functions of W. (The small kinks may well be
due to small errors in the #— NV data near threshold.)

This again is consistent with our general picture,
namely, that the rapidly varying parts of the p-wave
discrepancies A;™(s) (j=4%,3%) are due to the effect
of the low-energy J=0 m— interaction. In this case
the presence of the extra factor ¢ in the ampli-
tudes [por,2s(s)] means that the contribution to
AP (s) from the very front of the circle (i.e., near
s=M?—u?) is enhanced relative to other contributions.
This is because the factor |g|=2 is small on all parts of
the cuts which are far away from the thresholds
s=(M=p)? (cf. Fig. 1), so the contributions from
these parts of the cuts are suppressed in the dispersion
relations (5) for por,es(s). This tends to make the
discrepancies Aq;2™ (s) and As/s™ (s) themselves obey
(27) and (28).

0.02
o
WA, (W)W &) I
0.02 W-w
; . . .
60.60 65.60 . 7060 7560
s =wi~
0.04
0.02f
/, w
WK"Ig (w?) -WA(\Z;(W)
0 N W-w
o0.02}
. ‘ . .
60.60 65.60° . 7060 75.60
s-wi—

IF16. 9. Test of Lovelace’s relation for the p-wave 7 —N
discrepancies Ay (s) and Az (s).



PION-NUCLEON

o.oz’-
oot \_/
F1c. 10. The difference of the or
p-wave m— N discrepancies [Az/2 (s)
— Ayt (S)] -0.011
-0.02¢

SCATTERING AND PION-PION

INTERACTIONS 1891

An(s) - Ay fs)

—

1 L 1 . 1 2 1 . L 1

25 30

(iv) The Difference [A; (s) — AP (s)]

It is readily seen from (6), (17), and (20) that if the
low-energy T=0 w— interaction is negligible in the
states J 2> 2, then

[As/2,7P ()= A2, (5) ]/
34372, (5)FA1/2,2. D () J=0 '/ M?).  (34)

Here ¢’ is a weighted average of the value of ¢ for which
the contribution from the 77=0, J=0 7—r interaction
to low-energy w—N scattering is important. We
estimate #~10p?>—15u2. Thus Eq. (34) suggests that
[As/2P (s)— A1/ (s)] is predominantly due to short-
range effects. The experimental values of this quantity
are shown in Fig. 10. The general behavior is a slow
falling off as s increases from 20 to 80. The small devi-
ations from a monotonically decreasing function of s
could be due to small =0, J=2 w— effects, and to
the fact that the right-hand side of (34) is not actually
zero. However the general behavior of Aj™ (s)
— A1 (s) over the wide range 20<s< 80 is further
confirmation that the main effect which we are detecting
in the (+) case is the 7=0, J=0 7— interaction.

(v) Determination of Imf,°(f) from
the Discrepancies

Suppose now that we can isolate the w—m parts of
the A® discrepancies in the ranges 20<s<32.7 and
59.6<5<80. Denote them by Ag,+P(s), Aj P (s)
(=1, %) and ignore any J=2 m— contribution to the
discrepancies. We shall examine the kind of information
which this gives us about the absorptive part of the
helicity amplitude Imf,9(¢) for 2> 4u2

Using (17), (22), (23), and the analogous equation
for the s-wave case, we can write

56u2

A0,1r1r<+) (S)= K0(+) (*Y;t) Imf+0 (t)dt)

2

(35)

4p
56u2

Aje @ (5) = / K, (s,) Tmf00dl, (=1,3) (36)
4;12

where we have cut off the integration at ¢=56u* The

2 The largest value of ¢ which can contribute to the arc of
the circle |args| <66° is 56u2.

35 40 45 50 55 60 65

S—

kernels Ko (s,t), K;P (s,f) are fairly complicated
functions of various kinematic factors. The values of
these functions for the s-wave and ps-wave (j=3%)
cases are shown in Figs. 11 and 12 for various values
of s. The form of Ky/2™ (s,f) is almost the same as
K30 (s,0). (The relative scales of K;P and K™ are
unimportant.)

We note the following general properties of the
kernels.

(i) For different fixed values of s, the kernel K™ (s,t)
gives functions of ¢ (some of them are shown in Fig. 11).
Over the range 8u>< £< 30u? these are almost geometri-
cally similar functions® of ¢ This is true except for s
near the extreme values (s=20 and s=80). The kernels
K (st) (=%,%) tend to have the same property,
but not to such a marked extent.

(ii) In the kernels K;®P (s,f) (j=4%, %) small values
of ¢ (4u*<t< 15u?) are much more important than the
larger values of ¢ (¢>15u?). This effect is much less
marked in K¢t (s,f).

(iii) In general, the kernels are larger for the crossed
cut (s<32.7) than for the physical cut (s> 59.6).

2.0x10° 2.0x10%,

$:20.72

1.0x16° 1.0x10°

10 30 50

S = 59.60

$:70.60_ S :80.60

1.0x10°

05536 50 AT

F1c. 11. Examples, for various values of s, of the kernels
Ko™ (s,t) which relate the helicity amplitude f,°(f) to the m—x
part of the discrepancy for s-wave =— N scattering [Eq. (35)].

1.0x10°)

1.0x10”) 1.0x16°

°%6 36 0 9 o 50

2 By this we mean that if, for different fixed values of s, we
multiply the functions K;™ (s,f) by constants so as to make them
equal for t=15u2, say, they will then be almost equal over the
range 8u®< 1< 30u2
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|
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F1c. 12. Examples, for various values of s, of the kernels
K315 (s,8) which relate the helicity amplitude f,°(¢) to the 7 —=
part of the /=% p-wave discrepancy [Eq. (36)].

We draw the following conclusions:

(a) [from (i)] The shape® of the function Ag,. (s)
is, to a first approximation, independent of the values
we choose for Imf,°(§), particularly if we ignore values
of s close to the extremes (s=20 and s=80). Combined
with the fact that we can choose values of Imf,°(¢)
which give good agreement with our experimental
values of A (s) [cf. Secs. 3(viii) and 3(x) below ],
this provides further strong confirmation that we are
here detecting the T=0, J=0 m—m effect’” in 7—N
scattering. Conversely, it is clear that AP (s), to a
first approximation, only determines one “moment” of
Imf.°(#) (this is given, for example, by (35) with
$s=59.6).

(b) [from (i) and (ii)] The experimental values of
AN (s) (=14, %) give us “moments” of Imf,°(f) which
are heavily weighted for the smaller values of z. Hence,
the p-wave discrepancies are strongly influenced by
any low energy J=0 rm— scattering.

(c) [from (iii)] The m—= effect for s<32.7 is in all
cases stronger than the w— effect for s259.6. Also,
the m—= effect falls off with decreasing s (s<32.7) in
a manner which cannot be confused with a short-range
term (cf. Figs. 2, 15, and 19). Therefore good and un-
ambiguous evidence about the “moments” of Imf,°(¢)
[as given by (35) and (36)] should be obtained by
fitting the discrepancies in the crossed region, s<32.7
as well as in the physical region, s> 59.6.

(vi) Calculation of Imf,°(f) in Terms of the
J=0 =—= Interaction

We now discuss how the quantity Imj.°(¢) is calcu-
lated for 2 4u? assuming certain simple forms for the
J=0, T=0 7—m phase shift §(f). We shall require
that the calculated function Imf1°(¢) gives the observed
w— part of the discrepancies.

26 We use the word in the sense that M:(s) has the same shape
as (s), where \ is a constant.

27 A low-energy T'=0, J =2 7 — interaction would give A, (s)
a different shape.
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The helicity amplitude f,°() for the process 7+ —
N+N has cuts® along — © << aand 4u?< ¢S o, where
a=4u?(1—u2/4M?). The value of Imf.°() on 0<¢< e
is given by the Born term alone, and is readily calcu-
lated using f2=0.081 for the #— N coupling constant.?
For —252<¢< 0 we also have contributions to Imf,°(¢)
from the m— IV partial wave amplitudes.? It is sufficient
for the purpose of the present work to use the (3,5
amplitude alone. [The small p-wave #— N amplitudes
give a negligible contribution. The s-wave w— N ampli-
tudes give rise to an integrable divergence in [Tmf, () J*
at t=0, but this gives no trouble in the dispersion
relation for the helicity amplitude, Eq. (52) below. In
fact, it turns out that the s-wave contribution to
Imf,°(?) is negligible. Also, the m— N d-wave terms are
unimportant for > —25u2.]

We find that the (3,5) #—N amplitude gives a
contribution to Imf,°(f) which increases like |¢| when
¢ takes large negative values. For {<—25u? the partial
wave expansion for Imf,°(f) in terms of the =—N
amplitudes is expected to diverge’® and we cannot
reliably determine Imf,%(f) in this region. Figure 13
shows Im f,°(¢) for < a.

By unitarity, f4°(f) has the phase exp[#8s’()] when
4u2<t<16u2. We assume that, because of the small
phase space available for 4r states, this unitarity
relation is also approximately true when £ lies somewhat
above 16p% say for < 30u2 Ignoring further inelastic
contributions on the remainder of the right-hand cut
we solve for Imf,°(¢) in the usual way,* assuming 8" (¢)
is known for ¢> 4u?. Because of the approximate nature
of the unitary condition for 16x?<¢< 304% and because
of neglecting inelastic contributions on the cut ¢2> 30u?,
there will be errors® in our values of Imf,°(¢) for the
larger values of ¢ (say, 20u?<¢<56p?). However the
kernels K@ (s,t) (Figs. 11, 12) are small when ¢ is
large, so that these errors are unimportant in calculating
the discrepancies.

(vii) The N/D Pole Method

We use the N/D method to give a convenient
parametric description of the T'=0, J=0 w— phase
shift §,°(¢) at low energies. The invariant form of the
T=0, J=0 w—m partial wave amplitude is

y+1\1"2
A@)= ( ) ¢’ sing¢’,

14

(37

28 Compare with W. R. Frazer and J. R. Fulco, Phys. Rev.
117, 1603 (1960).

2W. S. Woolcock, Proceedings of the Aix-en-Provence Inter-
national Conference on Elementary Particles (Centre d’Etudes
Nucleaires de Saclay, Seine et Oise, 1961), Vol. I, p. 459.

% R. Omnes, Nuovo cimento 8, 316 (1958); and W. R. Frazer
and J. R. Fulco reference 28.

3 Several authors [J. S. Ball and D. Y. Wong, Phys. Rev.
Letters 7, 390 (1961) ; M. Jacob, G. Mahoux and R. Omnées, Nuovo
cimento 23, 838 (1962)7] have suggested that the inelastic con-
tributions do not produce large errors.
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F16. 13. The value of Imf,°(#) for

—25< ¢< a. The Born and rescattering
terms are to be added.
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where 6¢” is real in the elastic region; v=gs, where ¢;
is the pion momentum in the c.m. system, and u=1.
A (v) has cuts along — ©<»<—1 and 0<r< o, and
we can write

A@)=N(v)/D(). (38)

The only singularities of N(v) and D(») are cuts along
— o<v{—1and 0K < «, respectively.
It is easy to see that®

ImN (»)=D(y) Im4 (v), »<—1 (39)
=0, r>—1
and
» A2
ImD(V)z—-'N(V)R( ) , v20
v+1 (40)

=0, <0

where R is the ratio of the total to the elastic cross
section for 7+ in the I’=0, /=0 state. Putting R=1
and using one subtraction at »=v,, Eq. (40) gives

v—wy [* vo\12 N
|# ) ’
T Jo V41, (V=) (Y —v)

where we have chosen D(vo)=1. On 0<»<3, D(v) has
the phase® exp[—18,"(»)], so D(») f;9(¢) is real on this
segment of the real axis [note that t=4(y-+1)]. Writing
g)=D)f:°(t), we have for >4 the approximate
solution for f,9(¢) (if no subtraction is necessary),

D(y)=1—

(41)

1 e Img(®)
g()=— / dat . (42)
TJ ’—t
Thus for ¢ >4
« D@ Imf o)
0(f) = at TN @)

D) J y—t

2 See G. F. Chew, in Dispersion Relations, edited by G. R.
Screaton (Oliver & Boyd, Edinburgh, 1961).

3 As discussed above, we assume also that this is approxi-
mately true when 3 »S6.

The Effective-Range Formula and the Behavior
of the m—m Solutions

In the spirit of the effective range formula we replace
the discontinuity in Im4 (') for — «<»'{—1by a §
function at v=y; where »; is negative. Thus

ImA (v')=—aT6(v—r1), (44)
where T' is a constant. By (39) this gives
N@»)=D)T/(r—r1).
We can choose vo=v1 50 D(v;)=1, and
N@@)=T/(v—m). (45)

The two real parameters »; and I' determine the phase
shift 8,°(¢). Substituting (45) in (41) gives

I‘ 00
D(y)=1— —(u——vl)/ dv'

yo\2 1
X . (46
(V'—}—l) ' =) (v —v) (46)

As »1<0, the factor (»'—»1)? in the denominator gives
no trouble. The explicit form of D(») is given in Ap-
pendix I. We have

ReD(»)=1+—

™

P(M —Fe)), @)

V—UVy

where the real (and positive) function F(») is given in
Appendix I. Equation (47) is true for all real » and for
any® »;<0.

Positive values of I' correspond to an attractive
equivalent potential for the T'=0, J=0 r—= system.
The relation of the phase shift 8 given by (37) and
(38) to the usual effective-range formula,

v \2 11
( ) cotd’=—+—rp+-- -,
V+1 Qg 2

3¢ Solutions obtained using (44) and (45) with »; in the range
—1<»,<0 turn out not to give satisfactory agreement with
our discrepancies [Sec. 3 (ix) below].

(48)
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Fic. 14. The N/D pole approxi-
mation fits to the s-wave discrepancy
AP (s) are given by the solid lines.
The corresponding short range parts
are given by the broken lines. The
circles indicate the experimental
values calculated in Sec. 2.
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is given by

1 (=») 1

(_1_= ’ — —-I:F(V1) — (Vl):lr

1 2 1 1 )
—=—"t—— —~F'(V1).

2 « T Ly

Also, F(v1)—viF'(v1)>0 (for »,<0), and a bound state
of the m— system appears when I" has increased to a
critical value given by

W/Fcrit:F(Vl)/(" V1)+F'<V1)- (50)

It follows from the properties of F (v) given in Appendix
I that for I'>Terit, D(v) has one zero on the negative
axis at v» where »;<v2<0. In this case ReD(v) also
vanishes on the real axis at v=v3>0, so at =3, cotd,’
=0. Also, for 0<r<w3 cotd’<0 and for vs<v< oo,
cotd’>0. It is therefore convenient to use the con-
vention, which would follow from Levinson’s theorem,
that for I'>Terit, 6°=7 when »=0 and 8" decreases
through 7/2 at »v= 3. Thus, strictly speaking, we do not
have a resonance® at v=vs.

For 0<T <Ti; there is no bound state, and 8, starts
from zero at »=0 stays positive, and does not pass
through /2. In the repulsive case m/F’(v1) <I'<0 the
phase shift 6 starts from zero at »=0 and stays
negative. The case I'<w/F'(v1) is not of physical
significance, since D(v) then has a zero to the left of »;.
In all cases 8¢ goes to zero like (const)/v as v — oo,

(viii) Subtractions

Since Imf,°(#') is diverging like |#'| near ¢'=—25u2,
and D(»') > 1— (I'/7)F'(v1) as v’ — — o, we have to
make two subtractions in (43). These are made at {=0.
One subtraction gives

1
D(®»)

120 =~ Dlo=—1) Ref4(1=0)
¢ e D) Imfo)
+-P / v ____L__} (51)
T Jn Y =)
35 A pole in the scattering amplitude on an unphysical sheet in

the lower half plane (Im v »<0) will always give a phase shift
which increases through = /2.

The second subtraction gives

14

1
0= )[D<u= —1) Ref,9(t=0)

d
+i5?(D(V") Refy (")) ermo

1 8 o DG)Imfo)
+-pp f ap— } (52)
T ot ) = E =8 lyreo
In the second term on the right, ¢’=4(1+»").
We require the subtraction constants Ref,°(0) and
(3/08) Ref4%(t)| 4=0. These have been evaluated by

Menotti*® from the forward #— IV scattering data using
an extension of the method of Ball and Wong.?” He gets

Ref,0(0)=—1.9-£2, (53)
Ref," (0)=2.8=-0.9. (54)

(The units Z=c=u=1 are used in numerical results
throughout.) In this evaluation the as; and the s-wave
w— N phase shifts are important. Also the small p-wave
scattering lengths have to be used, and uncertainties
in these are included in the estimated errors. The error
in Ref.°(0) is large because terms of the order of 100
cancel in this calculation. In the calculation of Ref,% (0)
there is no cancellation of large terms. In evaluating
the dispersion relation (52) the integral dominates for
low values of ¢ (¢>>4) ; in this term the Born contribution
to Imf,°(¢') is predominant, so the value of the integral
is readily determined to high accuracy. For large ¢ the
term in (52) which is linear in ¢ will dominate. Com-
paratively large errors in this term have a small effect
on the discrepancies because of the small values of the
kernels K™ (s,t) for large ¢ (cf. Figs. 11 and 12).

(ix) Results of the N/D Pole Method

In Figs. 14 and 15 we show fits to the discrepancies
AP (s), AP (s), and Az (s) using the two pa-
rameter form N(v)=T/(v—»1). In fitting the discrep-

3 P, Menotti, Nuovo cimento 23, 931 (1962).
377. S. Ball and D. Y. Wong, Phys. Rev. Letters 6, 29 (1961).
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Fi6. 15. The N/D pole approxima-
tion fits to the p-wave discrepancies
Aye™M (s) and Ag;e™(s) are given by ot
the solid lines. The broken lines are
the corresponding short-range parts.
The circles indicate the experimental

values calculated in Sec. 2. 0041
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ancies we first calculate the #—= contribution coming
from the front of the circle (]args| < 66°) for a particular
choice of ' and »;. The remaining parts of the discrep-
ancies are then fitted by linear short-range terms in
the following way:

(1) AP (s). Here we expect the threshold terms to
be fairly accurate, and we fit the linear short-range
term a—bs at the two thresholds s= (M +pu)?.

(i) A1e™®(s) and Aj;™P(s). We assume that the
errors at the two thresholds are due mainly to errors in
the p-wave scattering lengths [see Sec. 3(xii) below ].
Thus the errors in Ay;2™ (s) and Az (s) at s= (M —p)?
are related to those at s=(M-+u)? (see Table I for
details). Consequently, in each case only one parameter
is needed to determine the linear short-range term, and
this is obtained by fitting the discrepancies at s=69
(i.e., about 100 MeV) where we have accurate experi-
mental confirmation of Woolcock’s values of Repy/o™
and Reps/e™. It should be noted that the short-range
terms are small and vary very slowly with s.

Reasonable fits to the discrepancies cannot be ob-
tained for »;>—35. However as »; decreases below —35
there is a slight improvement in the goodness of the
fit over that for »;=—3. Figures 14 and 15 show the
curves corresponding to scattering lengths ao=2 (v1=
—35) and @¢y=1.3 (»1=—30) (a0 is in units of 7%/uc).
The agreement with the experimental values is good;
even for the p-wave discrepancies the difference be-
tween the experimental and theoretical values is never
more than twice the standard errors in the p-wave
m— N data. Slightly better fits can be obtained with
smaller values of ¢, and even more negative values of »;.

This tendency to get large negative values of »; from
our analysis suggests that we are meeting the same
difficulty as occurs in the solution of the dynamical
equations for w—m scattering.’® There it appears that

3 J.S. Ball and D. Y. Wong, Phys. Rev. Letters 7, 390 (1961).

S —>

the nearby part of the left-hand cut does not play a
significant role in determining low-energy 7— scat-
tering. It may be that the position of the pole in our
s-wave w—m solution is far to the left for the same
reason as has been suggested by Frazer®® in another
connection. If N (v) for »<—1 has an attractive and a
repulsive part, both occurring for moderate values of
—v, approximating by a single pole as in (45) could
lead to large values of — ;.

The w—= phase shifts 6,°(f) corresponding to our
solutions are shown in Fig. 16. In each case I'>0, but
there is no bound state. General features common to
the phase shifts 8,°(¢) are that they rise to a maximum
value of about 30° and then fall off to about 15° by
t=50 (¢5=3.39). As »; becomes more negative the
energy at which &(f) is maximum increases, reaching
t=8 (¢gs=1) for v;=—230. Improved fits to the discrep-
ancies can be obtained if 8,°(¢) rises more slowly (corre-
sponding to a<1.3) reaching a maximum of about 30°
for £>10 (¢s>1.24). This corresponds to large nega-
tive values of »;.

(x) The Conformal Transformation Method

We saw in Sec. 3(v) that the discrepancies A™ (s)
only determine certain ‘“moments” of the helicity

TaBrE I. Contributions from the p-wave scattering lengths
asr, 27 to Repor, o5 at the thresholds s= (M =u)2. Terms of relative
order (u/M)? have been ignored at s= (M —u)2.

s=M+p)? s= (M —u)*
Repse™®  (1/3)(a13+2a35)  (1/9) (@13+2a33)+ (2/9) (a11+2as:1)
Repi2™®  (1/3)(aun+2as)  (4/9) (@13+2as3) — (1/9) (a11+2a31)
Repsn™  (1/3) (a13—ass) — (1/9) (@13—ass) — (2/9) (a11—as1)
Rep1e™  (1/3) (an—aa) — (4/9) (a13—ass)+ (1/9) (a1 —as1)

% See W. R. Frazer, in Dispersion Relations, edited by G. R.
Screaton (Oliver & Boyd, Edinburgh, 1960), p. 256.
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F16. 16. The T'=0 s-wave =— phase shifts for our N/D pole
approximations. ¢s is the pion momentum in the c.m. system in
units Z=p=c=1.

amplitude Imf,°(¢) for 1> 4. It is therefore of interest
to show some other forms of 8,°(#) which give agreement
with the low-energy m— N data. For this purpose we
use the conformal mapping method of Ciulli and
Fischer® and Frazer to generate functions D(») which
give simple forms of §(f). Equation (52) then gives
Imf,9(¢) for ¢ 4. We rely on the fact, which was shown
by the original form of the Omnés method,® that
Imf,°(t) for :>4 is determined uniquely by knowing
8(¢) for t2>4 and Imjf,°(f) for 1< a=3.98.

In the low-order approximations which we use, the
numerator functions N (v) do not appear to be physi-
cally significant. It would be necessary to go to higher
order approximations to obtain values of ImA (v) for
v< —1 which are like what we would expect from a
dynamical theory of low-energy m— interactions. In
the present section we use the conformal mapping
method merely to exhibit simple forms of §,°(f) which
[together with our values of Imf.°(s) for ¢<a] give
the observed discrepancies. It will be seen that there
are considerable similarities between the phases 8¢°(f)
derived in this way and the values derived above by
the N/D pole method.

The transformation

r=[1= G+ DY 1+ (41

maps the top sheet of the » plane cut along — 0 <»
< —1 into the interior of the circle |7| < 1. Writing

(56)

(55)

v=—1-+4re',
where 7>0 and —w<J<m, it is seen that the upper
side of the cut — o< »< —1 goes into

1—irth?

1-irts2

9 S, Ciulli and J. Fischer, Nuclear Phys. 24, 465 (1961).
4 W_R. Frazer, Phys. Rev. 123, 2180 (1961).

=exp(iY),

HAMILTON, MENOTTI,
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where tan(y/2)=—7"2 and the lower side of the cut
goes into p=exp(—p). The segments of the real axis
~1<»<0 and 0K »< = go into the segments of the
diameter 0<7< 1 and —1< <0, respectively. Figure
17 shows the transformed plane. We notice that near

v=0, n=—%r+00?).
The phase shift 8,°(¢) is generated by using
N@)=artamtam+- -, (S7)

where ag, ai, s - are real parameters. This gives
ImN(»)=0 on —1<»< . The discontinuity in N (»)
across the cut — <y —1is 24 ImN (») where

ImN (v)=c sing+as sin(2¢)+ - - -.

For example using only the first two terms in (57),
viz., N (v)=caotam, we get

ImN (v)= — 20172/ (1+7).

(58)

(=esrs—1) (59)

In this case |ImN (v)| is greatest at =1, i.e., v=—2.
We shall use the form N (v)=ao+am to fit our results.

The denominator function is given by (41), and it is
convenient to subtract at vo=0, so that

v [® 1 N(@)
D(y)=1—- —f dv’ .
wJo O/ +0)72 v —y

Thus D(0)=1. Using a finite number of terms in (57),
N (v) is bounded, and the integral in (60) converges well.

(60)

A Special Case

An interesting special case occurs if we use only the
first term in (57), i.e., N (v)=aq. Then

ap [® v’ 1
D(y)=1— —v/ .
T Jo (@ H))2Y —y

A simple calculation shows that in the notation of

(61)

T ELANE,

Bottom edge of cut

hlsg o<y g1

gzt pREQ OXis

(y-300)

v\Top edge of cut
-0 V-1

Fic. 17. The transformation of the top sheet of the cut » plane
into the circle |7| =1 given by Eq. (55).
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F1c. 18. The conformal mapping
solution fits to the s-wave discrepancy 0.3
AP (s) are given by the solid curves. :
The broken lines are the corresponding
short-range parts. The circles indicate o4
the experimental values. The param- T
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Appendix I,
]
ReD(»)=14+—F(v). (62)
T
For v — 4= oo, we have
Qo
ReD(»y) > —In(4v) as v— +
T
and (63)

ap
D(y) > —In(—4») as v— —o,
v

The divergence of |D(v)| as In|»| when |v] —
does not invalidate the derivation of (61) since the
contribution from the circle at infinity vanishes due to
the subtraction in (60). The corresponding dispersion
relation for N (v) also requires one subtraction, and in
this special case the integral vanishes and the result
N (v)=ay is given by the subtraction constant.
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Also
v/ (1) T2 cotde®= 1/ao+ (1 /%) F (»). (64)

Since F(»)20 (the equality occurring at »=0) for
ao>0, 8¢ is positive and does not reach 7/2; also D(»)
does not vanish on the negative real axis »<0. For
ao<0, cotdy’ is negative for small » and it has one zero.
Also in this case, by (62), D(») has one zero on — o<
<0. So for ag<0 there is a bound state and §¢ drops
from = at »=0 and falls through /2 as » increases. In
both cases 6 behaves like w/In(4») for sufficiently
large ».

(xi) Results of the Conformal Mapping Method

In Figs. 18 and 19, we show fits to the discrepancies
Ay (s), A1 (s), and Ag™(s) using the two pa-
rameter form N (v)=ao+am. The method of fitting is
similar to that used for the N/D pole method. Reason-

Conformal Mapping for N

©,
0.04 A é(s) 1t o, 08, %,:2-0.9
1 2 : < =-06, o%,2-2,9
0.03
2 5 o © O o o
0.02 ° o
g
. 0.01 - o __ _Short ranget _ — e —
F1c. 19. The conformal mapping — — -
solution fits to the p-wave discrepan- obb i Short ronge2 __ 0 e — — — — — —
cies Aye™)(s) and Ag;e™(s) are given 005
by the solid curves. The broken lines - ( A9
are the corresponding short range
parts. The circles indicate the experi- 0.04}
mental values.
003 |
002 |
001 fm — — e Short ronge 1
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F1c. 20. The T'=0 s-wave =—= phase shifts for our conformal
mapping solutions. g is the pion momentum in the c.m. system.

able fits to Ay (s) are obtained for ey in the range
—1<ay<1 Solution (1) (@e=0.6, a1=—0.9) gives the
best fit to Ay (s) near s=32.7, while solution (2)
(ao=—0.6, a1=—2.9) gives the best fit to A (s) near
5§=59.6 and also gives better fits to Ay (s) and
Ay (s).

The corresponding =— 7 phase shifts 8¢(f) are shown
in Fig. 20. Solution (1) has the scattering length
ao=0.6(%/uc), and 8 is everywhere positive, rising to
between 25° and 30° for ¢>9. Solution (2) has the
scattering length ao=—0.6(%/uc) and & is negative
for 4<#<9.5(0<¢q3<1.17). For larger values of ¢, 8¢ is
positive and it rises to between 50° and 60° for £>9.5
(g5>1.17). It will be seen that, in general, the phase
shift given by the two parameter conformal mapping
method does not fall off as rapidly for the larger values
of $(30<¢<50 or 2.55<¢3<3.39), as that given by
the N/D pole method. For both the solutions (1) and
(2) D(») has no zero on the negative real axis, so there
is no bound state. In both solutions |8¢°| never reaches
/2.

Thus we can choose a two-parameter fit of type (1)
which gives good agreement with the s-wave discrep-
ancy Ao (s). [The disagreement between the theo-
retical and experimental values of A¢™(s) for s>70
may be due either to inaccurate values of the s-wave
phase shifts ai, az above 200 MeV, or to the severe
restriction imposed by using a linear short-range term. ]
As was explained in Sec. 3(ix) above, only one arbitrary
parameter is involved in each of the short-range terms
in the case of the p-wave discrepancies. The same
values of 8 (f) now give good agreement with Az/2™® (s),
the difference between experimental and theoretical
values being nowhere greater than twice the estimated
standard errors in the p-wave #— N data. For Ay (s)
the agreement is not so good, but this is not surprising
since the experimental determination of the p-wave
phase shifts a1; and as; is particularly difficult.

ENOTTI
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Solution (2) partly allows for the fact that the p-wave
experimental values of A;P(s) (7=1, %) all fall below
solution (1) near the two thresholds s= (M=pu)2.
Solution (2) gives better agreement with AP (s) in the
region 59.6<s< 70 and it gives much better agreement
with Ag/s™®(s). For Ay (s) the agreement is not so
good, but the fit is within the estimated errors. In all
the p-wave cases the short-range term is small and
varies very slowly with s.

A common feature of our solutions for §¢(f) obtained
both by the N/D pole method and the conformal
method is that the phase shift §(¢) is positive over the
greater part of the range 4<¢<30 (0 ¢3<2.55) and it
rises to around 30° (or more) for moderate values of ¢
(1056£25, ie., 1.225¢:52.29). The only ambiguity
in the general behavior of §0°(¢) is the possibility that
it becomes negative for small ¢ It is clear that such
a change in sign of §0°(f) would not be easy to under-
stand on the basis of a dynamical theory of the r—=
interaction.” We therefore examine what changes are
required in the #—N p-wave scattering lengths to
remove all support for solutions in which §¢°(¢) has a
Zero.

(xii) Behavior of Ay ® (s) and Az (s)
near the Thresholds

Apart from terms which vary comparatively slowly
with s, the values of A;®(s) near the thresholds
s= (M+u)? and s= (M —u)? are mainly determined by
the Born terms, the (direct and crossed) a3z terms and
Repor,2s(s). The first two can be calculated accurately,
so it is reasonable to blame any errors® on the values
of Repar 2s(s) near the thresholds. This suggests that
near s= (M==u)? the main source of error is the values
of asr,2;7—the p-wave m— N scattering lengths—which
are given in (16). In Table I we show the contributions
of the p-wave scattering lengths to Reper,2s(s) near
the thresholds; there are corrections of relative order
(u¥/M?) at s= (M — u)? which we have not included.

By changing the values of a@1342as3, ¢1+2as we
can bring the experimental values of Ays™(s) and
Agys™ (s) at s= (M £u)? into agreement with the values
given by solution (1) (Fig. 19). For this purpose it is
necessary to increase @¢i3+2as; and a11+2a3 by 0.025
and 0.030, respectively. These changes in the scattering
lengths also imply small changes in Woolcock’s p-wave
m— N phase shifts® in the region 0-100 MeV, and these
would be such as to improve the agreement between
the experimental values of Ay;2™ (s) and Az (s) and
the solution (1) values* shown in Fig. 19 in the regions

42 We have not attempted to find such a solution by the direct
N /D method since this would require two poles in N (»), i.e., a
4-parameter fit.

 The contribution of the s-wave =—N phases a; and a3 via
Imp.r, 2J(S) near s= (M —pu)? is unlikely to lead to appreciable
errors in A;#)(s) near s= (M —u)?. The d-wave 7—N contribu-
tions are unimportant near s= (M —p)%

4‘11 Small adjustments in the short-range terms might also be
made,
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27<5<32.7 and 59.6< s< 67. Agreement with the N/D
pole solutions (Fig. 15) would similarly be improved.

A1y2(s) and Ay (s) near the Thresholds

If the kinks in the experimental values of the dis-
crepancies A; P (s) (7=1, %) near s= (M=u)? are due
to small errors in the scattering lengths @sr 2 the same
might be true for A;7(s) (=%, 2). As will be seen in
Sec. 4(ii) and Fig. 22 below, there is better agreement
between the theoretical and experimental values of
A(s) (j=%, %) near s= (M2=u)? than there is in the
case of A;®)(s). It will be seen by looking at Fig. 22
and Table I that in the case of A;(s) (j=%, %) the
agreement in the physical and crossed regions can be
made even better by increasing @13—as; and ai—ay
by 0.009 and 0.007, respectively.

Combining these changes in the (4) and (—) cases
gives (h=p=c=1)

0.219  (0.214-£0.004),
a1=—0.090 (—0.104-£0.006),

as=—0.032 (—0.040--0.004),
a13=—0.016 (—0.030--0.005).

a33=

(65)

The values in parentheses are those due to Woolcock?®
[Eq. (16) above] which have been used in our calcu-
lations. It will be noted that only in the case of the
smallest scattering length a3 is the change significantly
more than two standard errors, while for a;3, which is
the best known, it is just over one standard error.

(xiii) Strength of the Evidence for Solution (2)

We can now see the degree of accuracy which is
required in the experimental and theoretical analysis
of low-energy m— N experiments if we are to assert
firmly that 8,°(#) must change sign at low energies as in
solution (2) [Sec. 3(xi) above and Fig. 207]. To assert
this we would have to be certain that the values of
@sr,25 on the left in (65) were incorrect and the values
in brackets were correct. As we cannot be certain of
this at present, the evidence for solutions of type (2)
is weak.

The fact that smaller changes are suggested in the
(—) combinations ai3—ass, @1;;—as; than in the (4)
combinations @13+ 233, @¢11-+2a3; may be related to
the fact that the single variable dispersion relations
used by Woolcock® in analyzing the low energy =#— N
data, are more reliable in the (—) case than in the (4)
case. In particular, the A relation requires a sub-
traction and this is well known to give the possibility
of errors in the resulting phase shifts.

The relation of our results for the 7=0, J=0 7—=
phase shift to information obtained by other methods
is discussed in Sec. 5(i) below.
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4. THE T=1 w-= INTERACTION
(i) Narrow Resonance Approximation

First we show that the A™(s) discrepancies can be
reproduced very well by assuming there is a narrow
resonance in the T'=1, J=1 7—r state. In order to
link up with the nucleon form factors as well as 7— NV
scattering we require the pion electromagnetic form
factor®® F.(f). It is given by the dispersion relation

t ° ImF, ()
—dr

Fr()=1+4~ (66)
7S ¢ (' —1)
Also, by unitarity, we have for 4u? << 1642,
ImF . (f)= (real const)4d*(t)F.(t), 67)

where A;(¢) is the invariant r—= scattering amplitude
for angular momentum J=1. In order to calculate the
discrepancies we must know F,(f) accurately around
t=230y?% and approximately for values of ¢ up to S0u.
Because the phase space for 4w processes is not large
for 16u2< ¢ 30u?, we expect (67) to be approximately
true in this range. However, this is not a large enough
range of ¢ for our purpose, and our neglect of inelastic
processes (for larger #) may introduce errors into the
results [a similar situation occurs in the calculation of
Ji(f) using Eq. (71) below]. These errors due to
neglecting inelastic processes are probably more serious
in the T'=1 case, where we are interested in values of ¢
around 30u?, than they were in the T'=0 case [Sec.
3(v) above] where we only had to know the helicity
amplitude f,°(¢) accurately for < 20u2.

For the present we assume Eq. (67) is valid for all
values of ¢ (#24u?) which we require. The J=1 r—=
phase shift §;(¢) associated with a narrow resonance is
given by

7933

exp (401) sind;= (68)

tR'—lf—-’L"yqf’

where ¢s is the pion momentum in the c.m. system.
The resonance occurs at {=¢z and has half-width (in
units of £) yqg®, where tr=4(u?+¢zr?). In practice iz
and v are of the order of magnitude of 30 and 0.3,
respectively. By (66) and (67), we have

Fr(t)= (tr—7)/ (tr—1—ivgs®). (69)

From (66) or (69) it is seen that on the real axis F,(Z)
is real for (<4u2.

Following Frazer and Fulco®® we introduce the
functions T';(¢) (¢=1,2). For i=1, 2 these functions
are closely related, respectively, to the electric and
magnetic nucleon isovector form factors F;¥(f). Also
they are linear combinations of the helicity amplitudes
f41() for 77— N+N in the J=1 state, so they give
the A®) discrepancies.*® We introduce the functions

45 For details see W. R. Frazer, reference 39.
46 See IT and III for details.
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J:)=T:(0)/F-(@). (i=1,2) (70) A9 (s), and J;(¢g) is calculated directly from (71).

From a unitary relation similar to (67) it follows that

1 o ImJ ()
Ti(t)=— / —
t—t

(71)

TJ—0

Here we have again ignored difficulties, similar to those
mentioned above, arising from the fact that the unitary
relation is only strictly valid for 4u2<#< 162

Using methods similar to those discussed in Sec. 3(vi)
above we can calculate ImT';(¢) for —26u2<¢<a from
our knowledge of the low-energy =— NV phase shifts and
the coupling constant f2 Thus from (71) (using sub-
tractions if necessary) we can determine J;(¢) for £> 4u2.
For t24u?, J:(P) is real, and

Ji()vgs tr—)

ImT; ()= . (=1,2) (72)
(iR_ t)2+’Y2Q36
So for a narrow resonance
Iml‘i(t)zthJi(tR)a (t—- tR). (73)

This gives agreement with the usual é-function ap-
proximation®

ImI's()=7Cid(t—1r), (i=1,2) (74)
on putting?®
Ci=trJ i(tr). (75)

Equation (75) is the first consequence of the narrow-
resonance hypothesis which can be checked. C; is

47 J. Bowcock, N. Cottingham, and D. Lurié, Nuovo cimento
19, 142 (1961).

48 In IT we used y1=nC1, y2=mMC,. The same notation is used
by S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
1960).

Nucleon Form Factors

Further consequences follow if we use the isovector
nucleon form factors F,”(¢) (i=1, 2). These obey the
dispersion relations*?

2 Lo og($)ar

SR () =14~ ,

e a2 (1)

2 g t r°g@)d

—F 2V (t) = {‘ .

e M 7)ot (1)
Here g=1.853 is the (anomalous) gyromagnetic ratio,
and

(76)

gi(t)=—2t7"1q3F*(O)F (1)

=207 | ()[2:().  (i1=1,2)  (77)
For a narrow resonance,
gl(t)= —_ (27rCitR1/2/'y)6(t——tR). (78)
Substituting in (76) gives
e at
O ]
2 tr—1t
(79)
eg bt
sz(t)=—<1+ >,
where M tr—t
a=—2C;/vig'?, b=—(M/g)2Cs/vtr"2.  (80)

Since, by observation,® F." ()~ (M/g)F." (¢), we have

9 G. F. Chew, R. Karplus, S. Gasiorowicz, and F. Zachariasen,
Phys. Rev. 110, 265 (1958); P. Federbush, M. L. Goldberger,
and S. Treiman, zbid. 112, 642 (1958).

a ;:5% Hofstadter and R. Herman, Phys. Rev. Letters 6, 293
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Cy~(g/M)C1=0.27C;. Determining a from the nucleon
form factors and C; from the discrepancies, Eq. (80)
gives v. This can be compared with the value of ¥
derived from the experimentally determined width of
the 7#—m resonance. This relationship is independent
of the calculated values of J;(¢).

Finally, the calculated values of J:(f) [obtained
from Eq. (71)] should obey

Jo (tR)/]1(tR)Qg/M. (81)

(ii) Fitting the Discrepancies

The w—= contributions to the A®) discrepancies
were calculated using (74) with C3/C1=0.27. The
integration extended over the arc |args| <66° of the
circle |s|=M?—pu?. The method of calculation has
already been given in III. Again the short-range terms
were restricted to the linear form a-Bs. Figures 21
and 22 show the experimental values of Ay (s),
A1 (s), and Az (s) and the calculated values for
a narrow resonance at tg=32 or f{z=24. We get C;
—1.33 for tg=32 and Ci=—0.90 for tz=24. Toler-
able, but not as good agreement is also obtained using
C1=—0.53 for {g=16. Thus as has been noted above,
the value of ¢z is not readily determined from low-
energy m— N scattering.

In the case of the p-wave discrepancies, Ay (s)
and Az (s), the short range terms are fairly small
and vary very slowly with s. This is particularly
noticeable for Az, (s); in this case the w—m inter-
action is the predominant effect. For Ay (s) it should
be noted that the form of the discrepancy in the
unphysical region (s<32.7) gives very strong confir-
mation that we are here detecting the J=1 =—m effect.
For Ay (s) there is a noticeable disagreement between
the experimental and calculated values for s<25. As
was pointed out in III this is not surprising since the
errors in the experimental values of Ao« (s) could well
be large for s<25.

The value of C; is mainly limited by the fit to
A (s) and removing the restriction that the short-
range term in A¢(s) be linear in s could lead to
somewhat smaller values of C;. For this reason we
reduce the above values of C; by 159, and for ¢z=30
we shall use Cy=—1.05. [In IIT we gave C;=—0.740.1
for tg=25. The value just given would correspond to
C1=—0.80 for ¢g=25.] The errors in the values of C;
thus adjusted are estimated to be 2=20%,.

(iii) Experimental Data on the T'=1
== Interaction

Recent work®—5 on the process #+N — r+7+N
shows very clearly that there is a #—= resonance (p)
in the state =1, J=1 having energy (765+10) MeV.
The half-width (at half-height) is not accurately known
yet, but a conservative estimate® suggests it is in the
region 40-60 MeV. Similar conclusions follow from
proton-antiproton annihilation experiments.’® It has
been suggested® that, in fact, there are two narrow
resonances close together, but we shall not pursue that
idea at present.

Further work on w+N — w4 N has led to some
evidence®® in favor of a T=1 w—m resonance ({) at
(575£20) MeV. However, other experiments® do not
show this low-energy resonance.

8 Saclay, Orsay, Bari, Bologna Collaboration, Nuovo cimento
25, 365 (1962).

2 E. R. Erwin et al.; Proceedings of the Aix-en-Provence Inter-
national Conference on Elementary Particles (Centre d’Etudes
Nucleaires de Saclay, Seine et Oise, 1961), Vol. 1, 249; D. D.
Carmody and R. T. Van de Walle, Phys. Rev. Letters 8, 73 (1962).

8 For earlier work see the references in III.

54 See D. L. Stonehill and H. L. Kraybill (to be published).

8 J. Button, G. R. Kalbfleisch, G. R. Lynch, B. C. Magli¢,
A. H. Rosenfeld, and M. L. Stevenson, Phys. Rev. 126, 1858
(1962); and University of California Radiation Laboratory
Report UCRL-9814 (unpublished),

% R. Barloutaud, J. Heughebaert, A, Leveque, and J, Meyer,
Phys. Rev. Letters 8, 32 (1962); V. P. Kenney et al., Nuovo
c(imento 23, 245 (1962); B. S. Zorn, Phys. Rev. Letters 8, 282

1962). )
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Frc. 23. Calculated values of the functions J;(f) and J5(Z).

(iv) Calculation of J;(f)

We have to find J;() for £24 using Eq. (71). The
numerator in the integrand is ImI';(f)/F.(t), since
F.(t) is real for £<4. ImTI';(¢) has been calculated in the
interval —26<¢<a by Frazer and Fulco.’” In order
that uncertainties in the values of ImT';(¢) for < —26
should not make our calculation of J;(¢) worthless, it
is necessary either to make subtractions in (71) or to
use some justifiable cutoff procedure. By the method
of Ball and Wong® T';(0) and I'/(0) can be evaluated
in terms of #—/V scattering data, and the subtractions
in (71) are made at £=0. Vick®® has recalculated these
subtraction constants, getting

I, (0)=—0.1415,
I'y (0)=-0.0088,
Ty (0)=+0.0409,
Iy’ (0) = —0.00586.

(82)

Using these values and Eq. (69) with =230, y=0.3 5
functions J;(¢) are determined?® for > 4. Vick’s result
for J;(¢) is shown in Fig. 23.

57 See reference 28. ImT';(¢) has been recalculated using the
latest #— N low energy data.

8 1. L. J. Vick (to be published).

5 The values of J;(f) are insensitive to v.
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(v) Comparison of Experiment with Theory

We shall assume that the T=1, J=1 7= resonance
occurs at 1=230 (767 MeV) and note that a half-width
of 56 MeV would give y=0.30. In Sec. 4(ii) above we
saw that our discrepancies give C;=—1.054-0.2 for
tr=30, and from Fig. 23 it is seen that the calculated
value of J;(¢=230) is —0.104. It follows from (75) that
the calculated value of J,(fz) is too large by a factor
of 3. If we were to reduce fz the disagreement would
become greater as that reduces |C;| more rapidly than
tr|J1(¢r)|. [Here the dependence of J;(¢) on #z has to
be allowed for. ]

Now we examine the relation (80) between the
nucleon form factors and the discrepancies. This
relation is independent of the calculated value of J;(¢z).
To fit the form factors F,V (¢) with =230 we use a=1.6
in Eq. (79). With C;=-—1.054+0.2 Eq. (80) gives
v=0.2440.05, which is in reasonable agreement with
the experimental value 0.22<y<0.33. Next we have
Eq. (81). The ratio of the calculated values Ja(¢z)/
J1(tr) is 0.24, which is to be compared with the experi-
mental value 0.27. The agreement here is not as good as
one might hope.

Thus the relations (75) and (81) which involve the
calculated values of J;(¢z) have not been verified with
any precision. In Sec. 4(i) above we pointed out that
errors could arise because inelastic processes, which
may be important, have been ignored in the dispersion
relation (71) (or in its subtracted forms). There are
further possible reasons for this failure to verify (75)
and (81). The only appreciable T=1 7=— interaction
about which we have firm and useful information is the
resonance at the high energy ¢r=~30. Thus, the continu-
ation of F.() to negative values of ¢ using Eq. (69)
may involve appreciable errors.® Since the important
values of ¢ (¢i~Ig) are so large, the evaluation of the
subtracted form of the dispersion relation (71) may
introduce substantial errors in J;(#) due to uncertainties
in the subtraction constants ReI';/(0) (or possibly due
to uncertainties in ImI';(#) for ¢<a). For example a
109, error in Rel'/(0) would lead to a 1009} error in
J1(iz) on using the double subtracted relation.

In short, any verification of Egs. (75) and (81) is up
against the difficulties usually encountered when dis-
persion relations are used at moderately high energies.
These difficulties only refer to the calculated values of
Ji(tg) obtained from Eq. (71). They do not in any
way invalidate our identification of the 7'=1, J=17—=
effect in low-energy =—/V scattering, or its relation to
the nucleon form factors and the observed J=1 r—rr
resonance around 760 MeV through Eq. (80).

5. DISCUSSION OF THE RESULTS

We have shown how the dispersion relations for the
s- and p-wave w— N scattering amplitudes can be used

8 For example, this would be the case if the #—=# phase shift
descended to zero again at, say, t=60u2
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to break down low-energy (lab energy <200 MeV)
7— N scattering unambiguously into its main constitu-
ents: Born terms, #— interactions, short-range inter-
actions. We have also seen that this yields valuable
information about the low-energy 7'=0, J=0 7—m
interaction and some information about the 7=1 r—=
interaction. We now examine the relation of our results
to other information on #—= and =— NV interactions.

(i) The T=0, J=0 =—= Interaction

We saw in Sec. 3 that several sets of =0, J=07r—=
phase shifts 8," give good agreement with the three

discrepancies A (s) which we derived from the ex-

perimental data on s- and p-wave mw—N scattering.
These sets of values of 5o are given by the N/D pole
solutions [Sec. 3(ix) ] having the pole at »;=—35, —30,
or 1nK—30 (cf. Fig. 16). Also, there is solution (1)
(cf Fig. 20) of the conformal mapping method [Sec.
3(xi)]. The corresponding values of the T=0 s-wave
w—m scattering length @, are shown in Table IT.

The values of @, are spread over a fairly wide range
because low-energy #— NV scattering only depends on a
weighted average of the 7'=0 w—= interaction taken
over an appreciable range of the w— energy. Thus a
small value of @y, as in conformal solution (1), is
compensated by values of §° which do not fall off
noticeably at high =—= energies (cf. Fig. 20).

Common features of the solutions mentioned above
are that §° is positive at all energies, and that §,° rises
to around 25° or 30° at low pion energies. We conclude
that there is a moderately strong attraction between
two pions in the 7'=0, J=0 state at low energies.
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Actually the N/D pole solutions with »;< —30 and
the conformal solution (1) give the best fits to our
data.! Thus low-energy w— N scattering really suggests
a somewhat narrower range of values® of @, than that
given in Table II, say,

0.6<ao< 1.7, (83)

Comparison with Solutions of the = —m Equations

Recently solutions of the Chew-Mandelstam® equa-
tions for m—m scattering have been derived by several
authors.%—68 These give a fairly strong 7'=0 s-wave
m—m attraction which is consistent® with the p-wave
—m resonance.

In Fig. 24 we show the effective-range plot for 6°
given by Bransden and Moffat (BM) with A=—0.2,
by Taylor and Truong (TT) with A=—0.15, and by
Jacob et al. (JMO) with A= —0.2. X is the 7— coupling
parameter. For comparison we also show our N/D pole
solutions with »;=—35 and »;=—30, and the conformal
solution (1).

Figure 24 can be used to pick out those solutions of
the Chew-Mandelstam equations which are consistent
with low-energy s- and p-wave w—N scattering. For
the range of values of A which is of interest here, the
(BM) and (TT) solutions are almost identical, and
we do not distinguish between them. The (BM), or
(TT), solution with A=—0.15 is close to our N/D pole
solution with »;=—230.% Also, (TT) give® a¢y=1.2 for

TastLE II. Values of the T'=0 s-wave =— scattering
length a, for our various solutions.

Solution ap (in units =c=p=1)
N/D pole, v;=—35 2.0
N/D pole, y;=—30 1.3
N/D pole, »,<—30 1.0<a<1.3
Conformal solution (1) 0.6

8 We do not consider conformal mapping solution (2) which
we exclude for the reasons stated in Sec. 3 (xiii).

62 K. Ishida, A. Takahashi, and Y. Veda, Progr. Theoret. Phys.
23, 731 (1960), and A. V. Efremov, V. A. Meshcheryakov, and
D. V. Shirkov, Soviet Phys.—JETP 12, 308, 766 (1961), obtained
a@0=1 from a dispersion relation method applied to the small p
wave m— N phase shifts.

8 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960) ;
(G. F.) Chew, S. Mandelstam, and H. P. Noyes, sbid. 119, 478

1960).

64 B. H. Bransden and J. W. Moffat, Proceedings of the Aix-en-
Provence International Conference on Elementary Particles (Centre
d’Etudes Nucleaires de Saclay, Seine et Oise, 1961), Vol. I, p. 343;
Nuovo cimento 21, 505 (1961) ; 23, 598 (1962) ; Phys. Rev. Letters
8, 145 (1962). We are indebted to Dr. Bransden for giving us
further details of these calculations.

8 M. Jacob, G. Mahoux, and R. Omnes, Proceedings of the
Aix-en-Provence International Conference on Elementary Particles
(Centre d’Etudes Nucleaires de Saclay, Seine et Oise, 1961),
Vol. I, p. 331; Nuovo cimento 23, 838 (1962).

66 J. S. Ball and D. Y. Wong, Phys. Rev. Letters 7, 390 (1961).

67 J. G. Taylor and T. N. Truong, Nuovo cimento 25, 946 (1962).

68 See also V. V. Serebraykov and D. V. Shirkov, Zhur. Eksp.
i Teoret. Fiz. 42, 611 (1962).

& ’1‘}:;% agreement is even better for an /D pole solution with
v <—30.
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= —0.15. The (JMO) solution with A=—0.2 (¢9=1.6)
is close to our N/D pole solution with »;=—35. Our
v1=—>3 solution is also in fair agreement with a (JMO)
solution having slightly smaller |A|. Our conformal
mapping solution (1) is not in agreement with any of
the (JMO), (BM), or (TT) solutions, as is to be
expected from the way in which it is derived. Also, the
published solutions of Ball and Wong®® are not similar
to any of our solutions.

We make the following deductions:

(a) If we fit to a (JMO) solution we have to use a
slightly more negative value of A than we require for
fitting to (BM) and (TT). However, allowing for the
divergence between these authors, our analysis of the
w— N data suggests that the 7—= coupling parameter is

= —0.18=-0.05. (84)

(b) If we add to our 7— N analysis the criterion that
our solutions should be of the same general form as the
solutions of the Chew-Mandelstam equations, then
conformal solution (1) is to be excluded,”® and the
scattering length a, is determined much better than in
Eq. (83). On this basis a rough estimate is

ao=1.30.4. (85)

The p+-d — He+ (2m) Experiment

In this experiment” the momentum of the recoil He?
is measured and a marked bump is found in the number
of events occurring just beyond the two pion threshold.
This could be caused by a strong =—m attraction at
low energies in the 7’=0, J=0 state, and early theo-
retical estimates suggested that a large m—m scattering
length @¢>22.5 was required.™

Recently, using a new formulation for dealing with
the final-state interaction, Jacob ef al.” have obtained
very good agreement with the results of the p-+d
experiment by using the (JMO) phase shift, §o° with
A=—0.2 (ap=1.6) shown in Fig. 24. The (JMO) phase
shifts 80 for A=—0.22 (ay=1.8) and A=—0.18 (a¢
=1.3), respectively, give good and fairly good agree-
ment with the p+d experiment. The (JMO) phase
shifts 8% are characterized by a comparatively large
scattering length and a sharp drop in the values of &
at high energies. The (BM) and (TT) sets of values of
d¢° do not have these properties to such an extent, and

7 The (BM) solution with A= —0.1 gives ¢,=0.67 and puts
the p-wave w—w resonance at ¢r=25. However this solution
yields values of §° which are too small to account for the size
of the T'=0 r— effect in #— N scattering.

L A. Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev.
Letters 5, 258 (1960).

7 A, Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev.
Letters 7, 35 (1961); B. R. Desali, ¢bid. 6, 497 (1961). See also
S. Fubini, Proceedings of the Aix-en-Provence International
Conference on Elementary Particles (Centre d’Etudes Nucleaires de
Saclay, Seine et Oise, 1961), Vol. II, p. 52.

% M. Jacob, G. Mahoux, and R. Omnes, Nuovo cimento 23,
838 (1962).
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they are therefore not expected to give such good
agreement with the results of the p-+d experiment. If
8¢” is more like the (JMO) solutions than the (BM),
(TT) solutions, ‘then the p+d experiment is in good
agreement with our analysis of 7— N scattering.

The Process m+N — w-+n+N

Analysis of the process 7N — r+r+N at low
energies also gives information about the w— scat-
tering lengths. Schnitzer™ uses a model based on static
theory” and applies it to data (differential and total
cross sections) at (lab) energies between 360 and 500
MeV. He finds two possible sets of values (i) ao=0.50,
a:=0.07, a¢2=0.16; (ii) @p=0.65, ¢;=0.07, a,=—0.14
where ao and @, are the 7=0 and T=2 s-wave m—r
scattering lengths and a; is the T'=1 p-wave m—=
scattering length. Ceolin and Stroffolini’® examine the
effect of peripheral interactions and analyze experi-
mental data between 225 and 317 MeV. They find
that @o must be less than one unit.

Thus, the analyses of the process #+N — r+r+N
suggest that ¢o<1.0. However there may be no contra-
diction between these results and the p+d experiment,
or a value of a¢ around 1.3. The analysis of Schnitzer
is based on a T'=0 w—r interaction of the form \¢*
the value of A, and hence of a,, being determined from
the 74N — r+7+ N experimental results. The experi-
ments used are well above the threshold for 7#+N —
w+m+N (which is 171 MeV). From Fig. 16 it is seen
that 6, rises steeply at very low energies and then falls
off. Schnitzer’s analysis relates to the region of energies
where 8¢ is falling off, so he will underestimate a,
[which is determined from (sind,?)/gs, where g3 is the
pion momentum in 7w—m scattering]. The analysis of
Ceolin and Stroffolini does not appear to be self-
consistent. Using their predictions for the total cross
section” for 7=+ p — 7+ wt+n, we see that the data
below 280 MeV do require a¢<1.0. However, two
experimental points between 280 and 320 MeV require
ar~1.3, while data’ around 380 MeV suggest that
a>~2.6.

Thus the main features of the #+N-—r+7+N
experiments’ have not been shown to contradict our
value ap=1.34-0.4 given in Eq. (85).

7 H. J. Schnitzer, Phys. Rev. 125, 1059 (1962).

75 C. J. Goebel and H. J. Schnitzer, Phys. Rev. 123, 1021 (1961).

76 C. Ceolin and R. Stroffolini, Nuovo cimento 22, 437 (1961);
S. TFubini, Proceedings of the Aix-en-Provence International
Conference on Elementary Particles (Centre d’Etudes Nucleaires
de Saclay, Seine et Oise, 1961), Vol. II, p. 52.

77 See S. Fubini, reference 76, Fig. 12.

" For details of the experimental results see H. Schnitzer,
reference 74.

®If the experimental data on the total cross sections for

7+ p — 7~ +7t+n below 280 MeV, and its theoretical analyses
(see references 74 and 76) are reliable then ¢,<1.0 is favored.
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7-Decay

The original analysis of 7-decay events based on the
work of Khuri and Treiman® gave as—a¢=>0.7. The
results of Schnitzer™ above give |a2|~0.15, and Kirz
et al.8 obtain |as] <0.15 from a study of #t+p— =+
+7t+4-n. These results would contradict our value of
a0, [Eq. (85) above]. However, recent work by Bég
and De Celles® shows that the situation is very different
if the effects of the p-wave w—m resonance (p) are
included in the analysis of 7 decay. They also give a
rough estimate of the size of the effect. Using the
values of @9 and A given by (85) and (84) and the
parameters of the p resonance given in Sec. 4(iii), this
estimate gives good agreement with the 7-decay data.

Conclusion

Our analysis of low-energy s- and p-wave w—N
scattering proves that there is a fairly strong w—m
attraction in the 7=0 s state at low energies. Com-
paring our results (Fig. 24) with solutions of the
Chew-Mandelstam equations for w—= scattering, we
get good agreement with the 7=0 s-wave (BM)® and
(TT)® solutions for A=—0.15 (¢¢=1.2) or with the
(JMO)® solution for A=—0.20 (a,=1.6). The p-d
experiment favors this (JMO) solution,” while the
7+N — 7+7+N experiments possibly favor the
(BM) and (TT) solutions. Our estimates of a¢o and A
are given in Egs. (85) and (84).

(ii) The T'=1 =—= Interaction

Our analysis of low-energy =— V scattering can only
give qualitative information about the values of ¢
[t= (energy)?] for which the I'=1, J=1 r—= inter-
action is strong [cf. Sec. 4(ii) ]. However, the observed
T=1, J=1 w— resonance (p) occurring at about 760
MeV would give rise to our low-energy =—ANV results
[in the (—) charge combination]. In particular Eq.
(80), which relates (a) the magnitude of our discrep-
ancies A©(s) for s- and p-wave m#—N scattering, (b)
the isovector nucleon form factors, (c) the observed
position (#z) and width (y) of the resonance p, is
satisfied by the data.

Relation (75) which gives the magnitude of the
discrepancies A (s) in terms of the helicity amplitudes
f41(#) for the process w+x—> N+N (via the functions
J1(¢) and J»(#)), and Eq. (81) which relates the gyro-
magnetic ratio to J1(fr)/J:(tr), are only satisfied
qualitatively. This is attributed to errors in the calcu-
lation of J;(¥) (¢=1,2) from the dispersion relation
(71). Reasons were given in Sec. 4(v) for expecting

8 N. N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 (1960).
See also F. Lomon, S. Morris, E. J. Irwin, and T. Truong, Ann.
Phys. (New York) 13, 359 (1961).

( 81 ].) Kirz, J. Schwartz, and R. D. Tripp, Phys. Rev. 126, 763
1962).
( 82 N§ A. B. Bég and P. C. De Celles, Phys. Rev. Letters 8, 46
1962).
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TasiE IIL. The first four rows give the various contributions
to Repor,os= (sin2asr,2s)/2¢° at the physical threshold. F is
defined by (value at s=59.6—value at s=80.6)/(value at s=259.6
~+value at s=80.6).

Born
(long  Crossed Rescat-
27,27 range). integral Core T=0nr T=1mr tering

11 —0202 0.026 0.026 0.024 0.032 0.003
31 —0.051 0.006 0.002 0.024 —0.016 0.001
13 —0.052 0.006 0.005 0.026 —0.005 O
33 40.104 0.001 0.012 0.026 +0.003 0.079
|F| 0.4 0.2 ~0.1 ~0.4 0-1 ‘.-

that, with present techniques, the calculated values of
J:(tg) might be subject to appreciable errors. This does
not invalidate the agreement with Eq. (80) mentioned
in the previous paragraph, since that equation is
independent of the calculated values of J;(¢z).

Equation (75) does suggest that a T'=1, J=1 r—n
resonance at 560 MeV ({), if it exists, does not have a
large effect on low-energy w—N scattering. As was
shown in Sec. 4(ii), reducing the value of ¢z will reduce
the magnitude of the parameter C; more rapidly than
[trJ (¢r)| is decreased. If the { resonance contributes
appreciably, then ¢z has to be reduced to, say, 24 in
order to give some mean energy for the 7'=1 7—r
interaction. As this noticeably increases the disagree-
ment in (75), it is unlikely that ¢ is important here.

Finally, we note that Schnitzer™ obtained @;=0.07
and Goebel and Schnitzer’ got ¢;=20.04 for the p-wave
m— “scattering length.” As was pointed out by Goebel
and Schnitzer,”® a; is so defined in their work that it
will be appreciably greater than the actual scattering
length, if the 7’=1 m—m resonance occurs at a high
energy. From Eq. (72) we see that the true scattering
length is a;=1/tz~>0.01.

(iii) Breakdown of Low-Energy p-Wave
=N Scattering

In III (Sec. 7A and Fig. 10), low-energy s-wave m— N
scattering was resolved into constituent parts arising
from the short-range #— N interaction, the 7’=0 and
T=1 w—= interactions, and rescattering. That analysis
is almost unaltered by our new calculations, and the
results will not be repeated.

The results of Secs. 3 and 4 above make it possible
to do a similar analysis for the p-wave w— N phase
shifts. This is done by picking out the contribution of
the various terms in the dispersion relation (5) for the
partial wave amplitude Repor,or= (sin2asr 2r)/2¢%.
Their values at the physical threshold are given in
Table III. The separation of short-range terms (which
we call core terms) and the #—= terms was carried out
with the aid of Figs. 15 and 22. The T'=0 7— term is
for the N/D pole solution with scattering length @=1.3
(v1=—30) and the 7=1 7—a term is for {z~30.
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The Born term here, and in what follows, is the
long-range part arising from the pole s=M? and the
short cut (M —u2/M)?<s< M?+2u2 The crossed inte-
gral is the contribution from the cut 0<s< (M —u)2.
Except in the case of Repss it is mainly due to the crossed
term coming from the (3,%) resonance.® The core term
comes from that part of the circle |s|=M2—py? for
which |args|>66°, and from the cut — o <s<0. The
two m— terms come from the arc |args| <66° of the
circle. These five terms can be regarded as the contri-
butions to the scattering amplitudes from the various
interactions which give rise to low energy =—ANV scat-
tering. Those with small (large) values of |F| corre-
spond to interactions with short (long) ranges. The
rescattering term is the contribution to Repor oy from
the physical cut (M 4-p)?<s< . It is very small except
in the case of ps3 where it is large and varies rapidly.

Several interesting deductions can be made as to the
causes of p-wave m— IV scattering.

(a) For ps; at low energies® (lab energy <250 MeV)
the crossed integral and the 7'=1 w—x interaction®
are unimportant. The Born term gives a strong long-
range attraction, and the core gives a modest short-
range attraction. The 7’=0 7=—a interaction gives an
attraction which is more than twice as large as the core
term at threshold and even at 250 MeV is bigger than
the core term. Therefore any theory which attempts to
obtain the position of the (3,3) resonance from first
principles, must allow for the strong 7=0 =—= attrac-
tion as well as the short-range (core) attraction.

(b) At threshold the dominant term for $y; is the
strong long-range Born repulsion. The crossed integral,
the core, and the two #— interactions all give moderate
size attractive terms. The fact that the magnitude of
the Born term falls off more rapidly with increasing
energy than these other terms explains why the large
scattering length a@;;=—0.104 is consistent with the
much smaller value Repy;=—0.024 found at 98 MeV.
Similarly it is easy to understand why a;; changes sign
and becomes positive before 200 MeV is reached.

(c) The two amplitudes ps1 and p13 have long been
known to be very similar in behavior at low energies.56
From Table III we see that their long-range Born
terms, 7'=0 w— terms, crossed integrals, and core
terms are almost identical at low energies. The only
appreciable difference is that the 7’=1 r—7 term
(which is repulsive for ps; and pi3) is three times as
large in the case of ps; as it is for pi3. This causes the
scattering length as; to be slightly more negative than

8 In the case of Repss the crossed integral at s= (M +u)? is
made up of 0.002 due to ass, and —0.001 due to iy, as1, a1, and az.

8 In this section “energy’” means lab pion energy. “Low energy”
is used to mean lab energy <250 MeV.

8 S, C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960) have pointed out that the T'=1 = —x interaction is small
in the p33 case.

86 See for example, F. H. Harlow and B. A. Jacobsohn, Phys.
Rev. 93, 333 (1954).
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a13 [@31=—0.040, a13=-—0.030, by Eq. (16)]. The
fact that about half of the long-range Born repulsion
is cancelled by the T'=0 w— attraction is the main
reason for the smallness of the phase shifts as; and a3
in the low-energy region.

(iv) Charge Independence

Charge independence appears to be well satisfied
(experimentally) for m— N scattering, at least up to
400 MeV,® but charge independence has not been
proved for processes like 7#+x— N+N or =47 —
m+m. We shall examine to what extent our analysis
depends on assuming charge independence for the
latter processes.

The w— N scattering amplitude is, in the notation of I,

=—A+iy-QB, (86)

where A4, B are the invariant amplitudes. We used
throughout the (&) charge combinations. These are
given by

T®=5(T_£T,), (87)

where T, are the scattering amplitudes for n¥+p—
mE-4p (upper sign to go with upper sign, etc.). Low’s
relation® which enables us to cross from the physical
cut (M+u)?<s<» to the cut 0<s< (M —p)? can
easily be expressed in terms of 7, and 7 (without
any use of charge independence notation). On crossing
this gives 7 — T and TW) — —7T9)) and using
(86) this gives A® — £ AP BH — FB®. These
are just the relations which were used in our calculation
of the crossed integral terms, and they do not depend
on assuming charge independence.

On going over to the third channel (74— N+N)
we note that by the usual substitution law of relativistic
quantum field theory =*4-p — m%+p are both related
to wtta~ — p+p. It is easy to see that T and 7O
are related to a7~ states having charge conjugation
quantum number C=+1 and —1, respectively. So
T (T,9) are related to states 7t+7—— p-+p having
even (odd) angular momentum J.

If we do not assume charge independence, then G
invariance may not be true, and this may affect the
unitarity assumptions made in solving equations like
(17) for the helicity amplitudes for 7+ — N-+N.
For the T™ case we saw that the J=0 state in this
channel was dominant [Sec. 3(iv)], so our pair wtz—
is in a OF state. Since there is no Ot state with three
pions, the unitarity relation between (rr|NN) and
{mm|wmr) still holds over the range 4u?<¢<16u2 For
the 7 case our #t7~ pair is in a 1~ state, and there
is a 1=7+x% state. Here the unitarity relation need
only be valid for 4u?< < 9.

Thus if we do not assume charge independence for
the 7+ — N+ N channel (or for high-energy processes

87 See, for example, J. Hamilton, Theory of Elementary Particles
(Oxford University Press, New York, 1959), p. 328.
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in the other channels), our deductions from =—N
scattering about the 7'=0, J=0 w—= phase shift §,°
remain valid, but our conclusions about 7'=1, J=1
m— scattering may be modified.

(v) Validity of the Mandelstam Representation

The observed s- and p-wave #— N data give the six
discrepancies A™ (s) and A (s) on the physical cut
s2 (M+p)? and the crossed cut s< (M —p)? In Secs.
2, 3, and 4 we showed in a variety of ways that the
behavior of these discrepancies was of the same general
form as we would expect from 7w—u interactions con-
tributing via the front part of the circle |s| = (M2—pu?)
(Fig. 1). If the Mandelstam representation for #+N —
7+N were not valid, there could be other poles and
cuts in the s-plane besides those shown in Fig. 1. If
such singularities had a strong effect anywhere near
the points s= (M ==u)? we would not expect our analysis
to show the self-consistency just mentioned.

Further, the s-wave and both p-wave discrepancies
are (reasonably well) fitted by the same T'=0, J=0
and 7T'=1, J=1 7r—u interactions, and these inter-
actions are in fairly good agreement with other (experi-
mental) information about the m—m interactions. This
provides some proof of the validity of the substitution
law which is used to go over to the channel n+7—
N+N, and the validity of the unitary relation between
(x| NN) and {xr|wr) (this is particularly so in the
T=0 case).
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APPENDIX I. PROPERTIES OF THE DENOMINATOR
FUNCTIONS D (v)

Integration of Eq. (41) in Sec. 3(vii) gives

TrF()—F(v)
ReD(v)= 1—!——[————~ —F’(Vl):|,
™ V—vy
where
1+x
F(v)=xIn|— for »>0 and »<-—1
1—x
=(2/y) arctany for —1<»<0.
Here

a=[v/(+D]?; y=[+1)/ (="

By simple algebra it can be seen that

F(y) > In(—4») as v— — oo,
F(0)=0,
F(») —In(4») as y— 4.

Also
F'(vy)—0 as

y—> —0,

F'(y)—> —w as »— —0,
F'(v)—2 as v— 40,
F'(») >0 as v—+ow.

Further, F'(»)<0 and F"(»)<0 on — o <y<0 and
F'(»)>0 on 0<v»< . These relations are sufficient to
establish the properties of D(v) which were used in
Sec. 3(vii). The function D(v) used in Sec. 3(x), Eq.
(61) for the case N (v)=ay is readily seen to be given by

ReD(v) =1+ (ao/7)F (»).
The properties of D(v) used in Sec. 3(x) follow directly.



