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By means of a suitable Green’s function, the Schrédinger equation for the few-body nuclear problem
is written as an integral equation. In this equation, the binding energy of the ground state is assumed known
and the strength of potential required to give this energy is an eigenvalue to be determined. A random walk
can be devised whose collision density satisfies the same integral equation. The simulation of this random
walk therefore permits an exact numerical solution by Monte Carlo methods. The calculation has been
carried out with pairwise potentials of square, Gauss, and exponential shape.

I. INTRODUCTION

HE integration of the N-body wave equation for

the ground state of an atom or nucleus is clearly

a very difficult, perhaps impossible, problem. An exact

numerical solution would be very desirable, but it

seems difficult even with the help of modern high-speed

digital computers. It is the purpose of this paper to

propose a specific Monte Carlo method, to show how it

may be applied to the simplest possible nuclear problem,
and to give some numerical results.

It is well known that from a purely numerical point
of view, Monte Carlo methods may be more efficient
than standard finite difference methods for the solution
of many dimensional problems.! The literature contains
some references to the solution of partial differential
equations including the Schrédinger equation? by
Monte Carlo methods. These have involved first
making finite difference approximations and then
introducing a random walk on a lattice. It seemed more
natural and promising to look for an integral equation
formulation of the Schrédinger equation and attempt its
solution by Monte Carlo methods. Since this integral
equation contains the appropriate boundary conditions,
it evades the difficulty in numerical solution which
lies in getting the right behavior at infinity. We shall see
that it is also makes unnecessary the reduction to
center-of-mass system.

Monte Carlo methods are best used in dealing with
problems in which the solutions and intermediate
quantities obtained are positive. Itis desirable, therefore,
that the kernel of the integral equation be positive if
this can be arranged. The operator (—V?+1) has a
Green’s function which is positive definite. This
operator occurs if the binding energy of the system is
assumed known—or else taken as a unit of energy—and
the strength of a potential of some given shape is left
to be determined. In applications to the calculations of
ground-state nuclear wave functions this is most
appropriate since the binding energy is known better
than the nuclear forces.

1 G. Goertzel and M. H. Kalos, in Progress in N uclear Energy
(Pergamon Press, New York, 1958) Series I, Vol. 2 5.
2 N.Metropolis,in S ymposmm on Monte Carlo M, ethods, edited by
H A. Meyers (John Wiley & Sons, Inc.,, New York, 1956),
29. G. W. King, IBM Seminar on Scientific Compulatlon
November, 1949 (unpubhshed)

II. THE INTEGRAL EQUATION

Let the coordinates of the N particles be xi, Xo,
- -Xy. The Schrédinger equation is

hz
=X (e G (e )
’ =B (xy, - oxw). (1)
Suppose that the energy is fixed to be

E=—B. 2)

Let
ri= (2M ;B/h?)'2%x,, 3)

and
V(Xl,Xg, e ,XN)= —)\BW(n,rz, e ,IN). (4)

The last equation introduces the eigenvalue A, the
strength of the potential (in terms of B) required to
bind the system. For convenience let us denote by the
3N dimensional vector R, the entire set of 3 dimensional
vectors (ry,- - +,rx). With these changes, the Schrodinger
equation is written simply

(=V+ 1Dy (R)=xW (R)¢(R); ®)

The Laplace operator on the left-hand side of (5) is
understood to be carried out in 3V dimensions.

Equation (5) is to be transformed into an integral
equation by the use of a Green’s function for the
operator (—V2+1):

(= Ve +1)G(Ro,R)=5(R—Ry). (6)

To find a suitable G, we impose the boundary condition
that the wave function ¥ be square integrable as a
function of all 3V coordinates. This implies that as
a function of R, G(Ro,R) must go to zero at infinity.
Since the boundary condition singles out no direction
(in configuration space), G must fall off in the same way
in all directions and is therefore a function of | R—Ro|.
By transforming Eq. (6) into appropriate spherical
coordinates, it is easy to show that

G(Ro,R)=
[1/2m)*¥ [ Kswje-1(| R—Ro|)/| R—Ro V2], (7)

where K,(z) is the Bessel function of imaginary argu-
ment.3 This conclusion may also be drawn from the

3G. N. Watson, Treatise on the Theory of Bessel Functions
(Cambridge University Press, New York, 1945), 2nd ed., p. 78
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general integral representation? of the Green’s function
of (—v?+1) and an explicit contour integration.

With the Green’s function given by Eq. (7), the
Schrodinger equation is written in integral form

Y(R)=) f R GRBWRW®ER). (@

This Green’s function guarantees that the internal
wave function is square integrable. However, there
remains the question whether, having fixed the total
energy of the system to be — B, any energy is associated
with the center of mass in the final solution. Nothing
depends explicitly upon the coordinates of the center
of mass, so that it is natural to ignore their values.
This means precisely that in obtaining all answers of
interest—the eigenfunctions and eigenvalues—we inte-
grate over the values of the center-of-mass coordinates.
We shall now show that the result of this integration,

“projection” on to the space of internal coordinates,
yields a correct internal wave function with energy — B.

First we note that the isolation of purely internal
coordinates may be accomplished by a unitary transfor-
mation (i.e., a rotation in 3N-dimensional space):

N

Q=N"123 1, ©)
=1

i—1

q=Lil— 1T é

(rf_ rl);

i=2,3,---,N, (10)

L r=q’+ X q2

>1

We may introduce into Eq. (8) a specific integral
representation® of the K, function to obtain

¥(q1,4:)
= (4m) 73\ / _3Nd7/dQ1 /d(h . /d(IN
Xexp[—r——lql (= E e/l
4r 47 >1

XW(q/ W (a/,q). (11)

If we integrate over qi, we obtain

o(q:)= /d(h ¥(q1,9:)

= (47,.)-3N+3)\/ 7_—3N+3d7./dq2'. . ./qu'
0

1
XeXPl: - T—ZZ |q:—a/| 2]W(fh") eo(a). (12)

4P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, New York, 1953), Part I, Chap. 7.
& Reference 3, p. 183.
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TasLE I. Potential depths required to bind the triton.

Range Well depth
Well shape b/Ry b (107%¥cm) Vo/B: Vo (MeV) s
Square 1.35 2.11 3.17 26.9 1.17
1.5477 2.42 2.49 211 1.21
2.0 3.13 1.71 14.5 1.39
Gauss 1.35 2.11 6.60 56 1.09
1.5477 2.42 5.44 46.2 1.18
2.0 3.13 3.67 31.2 1.33
Exponential  1.5477 2.42 17.5 149 1.16
2.0 3.13 11.6 98 1.28
3.0 4.69 6.09 52 1.51
4.0 6.25 4.30 37 1.90

This equation is the correct internal wave equation
which could have been obtained directly. Note that the
Green’s function is the same as in Eq. (11) except that
3N-3 replaces 3N.

More generally, we may project out whichever co-
ordinates are relevant to W (R). For this reason, if a
computation is set up for a four-body problem, a two-
or three-body problem may also be solved if W is made
to depend only on the appropriate number of relative
coordinates. The ability to do an otherwise soluble
two-body problem provides a useful numerical check.

III. ITERATION OF THE INTEGRAL EQUATION

Equation (8) may be solved by iteration: Suppose ¥
is a given function and let \o be any constant. Put

i (R)=2, / dR’ G(R',R)W (R)o(R)),

(13)
brsa(®)=2o [ IR GERER (R (),
Write the last equation symbolically as

Suppose ¥, is expanded in the eigenfunctions ¢ ® of
the operator §

Yo=2 Cy®, (15)
and that A® is the eigenvalue of Y ®,
PO =AW gY®, (16)
Then
Y1=Xo 2. Cy®/\®, (17)
Ya=2 Cl® (\o/A®)™. (18)

As the interation proceeds, the ¢® for which |\®| is
smallest gives the largest contribution to ¥y, providing,
of course, that Cj is not zero for that &. If

)‘0=)\E[I A® ! ]y

then the iteration becomes stable. If As%£)\o, then
although the shape of ¥ reproduces itself the size of ¥
grows or decays according as g is greater or less than A.
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The state ¢® for which |\| is smallest is the stats
bound with the weakest potential, i.e., the ground state.

IV. MONTE CARLO SOLUTION OF THE
INTEGRAL EQUATION

Each iteration of Eq. (13) may be interpreted as a
step of a continuous random walk. Let a population of
points Ry, -+, Ry be chosen so that the expected
number per unit volume in configuration space is
¥ (R). For each of these, compute AW (R.,). Then let
em be an integer chosen at random so that its mean
value is MW (R,,).6 For each point R,, pick e, new
points R according to the probability distribution
function” G(R,,,R). When we average over the distribu-
tions of e, and of R, the expected number of points so
chosen, per unit volume at R, is

/ G(R BRI (R (R) =fnin(R).  (19)

Since the result is a set of points whose distribution is
Yat1(R), a repetition of the procedure generates Y.

The random walk may be carried out to many steps;
if \q is chosen too large or too small the population of
points will fall to zero or grow beyond the capacity of
a computer. It is convenient to choose only a few or
even just one point from ¥ and use the first part of the
calculation for the purpose of iterating to the ground-
state wave function, and also to build up a population of
useful size. The latter is done by temporarily setting
Mo sufficiently large.

When many iterations have been carried out and the
ground state is isolated, more steps of the random walk
must be generated in order to provide good statistics in
estimating \, ¢ itself or any quantities to be derived
fromy.

In the calculations carried out so far, only the value
of X\ required to bind the system has been calculated.
An estimate of A may be derived by integrating (5)
over all configuration space.

/ ¢(R)IR=\ / W (R (R)dR. (20)

Now ¢ is the density with which points are generated
in the random walk. Suppose that after the iteration
settles down to the ground state, the points Rj, R,
-+« Ry occur. Then the Monte Carlo estimate of X is

A= (I/2 W(Ry). 21

8 This is easily done for instance by computing the integer and
fractional parts of A\¢J¥. e is the integer part plus, with probability
equal to the fractional part, one more.

7G is a displacement kernel. To generate a point R,, it is
necessary to pick a displacement vector R,—R, according to
Eq. (7). The procedure for doing this is explained in detail in
the Appendix.
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TaBrE II. Potential depths required to bind the alpha nucleus.

Range Well depth
Well shape b/R, b (108cm) Vo/B. Vo (MeV) s
Square 2.0 1.71 1.17 33.1 0.95
3.0 2.57 0.67 19.0 1.22
4.0 3.42 0.48 13.6 1.56
Gauss 2.0 1.71 2.55 72.2 0.92
3.0 2.57 1.40 39.6 1.14
4.0 3.42 0.97 274 1.40
Exponential 2.0 1.71 9.0 255 0.99
3.0 2.57 427 121 1.06
4.0 3.42 2.94 83 1.30

Future calculations will be carried out so as to
determine also information about the wave function
itself.

V. RESULTS AND DISCUSSION

Calculations have been carried out with pair forces
derivable from square, Gauss, and exponential wells.?
The numerical results for three- and four-body problems
are given in Tables I and II. The widths of the wells
are specified by the intrinsic range parameter, b, of
Blatt and Jackson.® The depths of the wells are given in
units of the binding energy and in MeV. The binding
energy of the triton was assumed to be 8.49 MeV. From
this the unit of length

R¢=ﬁ(2MBt)_”2

turns out to be 1.56X 107 cm. The binding energy of
the alpha was taken as 28.3, so that R,=0.856X10-13
cm. Finally the well depth parameter? s is tabulated.
Note that for a square well

s=(4/7*) (MV o/ B)b*= (2/7*) (b/R)*(Vo/ B). (22)
For a Gauss well of the form

V=—"V,exp[— (1.4354r/b)%],

$=0.09043(8/R)*(Vo/B). (23)
The exponential well has the form
V=—Vyexp[—3.54127/b],
and
s=0.02758(8/R)*(V o/ B). (24)

The numerical results for well depth are estimated
to have an error, mostly statistical, of about 19%,. One
problem, for the three-body Gauss well at a range
b=1.5477 corresponds exactly to a calculation per-
formed recently by Baker et al.® They carried out a

8 A preliminary account of this work was published in the
Proceedings of the Rutherford Jubilee International Conference,
edited by J. B. Birks (Academic Press Inc., New York, 1962).

The numerical results quoted there for the square well are,
however, incorrect owing to an error in the computer code.

9 J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).

10°G. A. Baker, Jr., J. L. Gammel, B. J. Hill, and J. G. Wills,
Phys. Rev. 125, 1754 (1962).
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F16. 1. Depth of Gauss well required to bind alpha particle as
given by variational and by Monte Carlo methods.

numerical integration of the three-body problem using
Gauss potentials. The results for which they quote a
numerical value (Vo=-451.5 MeV, B=9.416 MeV)
gives an eigenvalue V/B=5.47, in very good agreement
with the Monte Carlo result of 5.44.

It is interesting to compare the numerical results with
those from a simple variational calculation. For a
Gauss well and a trial function in the form of a Gaussian
function of relative coordinates, a variational calcula-
tion is straightforward to carry out. General formulas
for this treatment of the few-body problem have been
given by Laskar!* A calculation of this kind gives
B=6.9 MeV for the three-body problem mentioned
above. If variational calculations are made of the
binding energy, and the results converted to give
Vo/B as a function of §/R, the disagreement appears
much smaller. Figure 1 shows a curve prepared in this
way from the variational method together with the
Monte Carlo results for the four-body Gauss problems.
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11 William Laskar, Ann. Phys. (New York) 17, 436 (1962).
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APPENDIX

An essential step of the calculation is the generation
of components of a 3N-dimensional vector, R, dis-
tributed according to

p(R)aR=[1/2r)* * ][ Ksw/p1(R)/RNPJdR. - (A1)

We write
dR=R3"-14QdR,

where Q is a unit vector. Then it becomes necessary to
pick a length R from the distribution

2381217 (3N —1)/2]
I'(1/2)T(3N—1)

pr(R)= R3NI2K 510 ((R)  (A2)

and to generate components of an isotropic unit vector
Q.

As is conventional in Monte Carlo calculations, we
assume that a supply of random or pseudo-random
numbers, £, equidistributed in the range (0,1) is

available. We will show that if &, &, &, -+, &y are
such numbers and if
u=—In(kfe - £av), OSu< » (A3)
and
v=(1—§M D)2 02K, (A4)
then
R=uy (AS)

has the distribution given by (A2).

First we state two laws of the composition of random
variables.’? Let x and y be random variables on the
range (0, «) distributed as f(x) and g(y), respectively.
Let

=%+,

w=2xy.

Then the probability distribution functions (p.d.f.) of
z and w are, respectively,

W)= / f@g (=), (A6)
0
)= / F@gGe/x)dx/x. (a7)
Now let ’
;= —In¢;;
Up=— é Ing;= 2:)1 N (A8)
The p.d.f. of 7 is such that
pa(mdn=p(£)di=dE, (A9)
pa(n)=dg/dn=€"", 0<0< . (A10)

12 H. Kahn, Atomic Energy Commission Report AECU-3259,
April, 1954 (unpublished), pp. 16, 17.
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The p.d.f. of %, is
n—1
Pa(u)= e, 0Su<w, (A11)
(n—1)!

This result is easily proved by induction. It is immediate
for n=1. Then by (A6)

1 u
w1 (2) = / ale % (v=dy  (A12)
=01,
= (1/n)u e
The p.d.f. of v is given by
po(v)dv=—d¢.
po(v)=[d&/dv|.
But (A4) may be inverted to give
g=(1—o?) GN-DR, (A13)
so that
po(0)=[(BN—1)/2]2v(1—?) GN-D/2, (A14)
Finally, from Eq. (A7) we find that
BN—-1) 1t
PR(R)=_"——"/- o(1—92) BN-3)/2
@BN-1)1J
X (R/v)3¥—1g=RIvdy/y. (A15)
Putting {=1/v, the last equation becomes
R3N—-1 00
pR(R)=———/ (12—1)BN=32g—tRqs  (A16)
GBN—2)1/,

One of the integral representatives of the K, function
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given by Watson®® shows that the last expression is
identical with (A2).

A straightforward way of generating isotropic
components wy, - - -wsy of a unit vector Q is to pick a
point at random in the 3V-dimensional unit hypercube.
If this point lies inside the enclosed hypersphere, then
it may be used to define the components w. Because the
ratio of the volume of sphere to cube is very small, this
method seems rather inefficient. A satisfactory but less
direct method consists in picking a vector ({1,{s, * *,{3n)
from the 3NV-dimensional Gaussian

exp(—{—¢f— - —{and),

and then set

wi= (2 ¢

To pick from the Gaussian it seems best to generate
pairs of variables ({1,{2) distributed in a two-dimen-
sional Gaussian

1
P(§1,82)d61d8 2 =— exp(— 12— §22)dS1dS .
™

With the change of variable

$1={ cose,
{2={ sing,

1
P(g‘a‘p):_{ exp(_§‘2)7
™

from which it follows that
£= (~Ing)".
The angle ¢ is equidistributed in (0,27).

13 Reference 3, p. 172,



