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Monte Carlo Calculations of the Ground State of Three- and Four-Body Nuclei
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By means of a suitable Green's function, the Schrodinger equation for the few-body nuclear problem
is written as an integral equation. In this equation, the binding energy of the ground state is assumed known
and the strength of potential required to give this energy is an eigenvalue to be determined. A random walk
can be devised whose collision density satisfies the same integral equation. The simulation of this random
walk therefore permits an exact numerical solution by Monte Carlo methods. The calculation has been
carried out with pairwise potentials of square, Gauss, and exponential shape.

I. INTRODUCTION II. THE INTEGRAL EQUATION

'HE integration of the A-body wave equation for
the ground state of an atom or nucleus is clearly

a very difficult, perhaps impossible, problem. An exact
numerical solution would be very desirable, but it
seems difficult even with the help of modern high-speed
digital computers. It is the purpose of this paper to
propose a specific Monte Carlo method, to show how it
may be applied to the simplest possible nuclear problem,
and to give some numerical results.

It is well known that from a purely numerical point
of view, Monte Carlo methods may be more efficient
than standard 6nite difference methods for the solution
of many dimensional problems. ' The literature contains
some references to the solution of partial differential
equations including the Schrodinger equation' by
Monte Carlo methods. These have involved hrst
making finite difference approximations and then
introducing a random walk on a lattice. It seemed more
natural and promising to look for an integral equation
formulation of the Schrodinger equation and attempt its
solution by Monte Carlo methods. Since this integral
equation contains the appropriate boundary conditions,
it evades the difhculty in numerical solution which
lies in getting the right behavior at infinity. We shall see
that it is also makes unnecessary the reduction to
center-of-mass system.

Monte Carlo methods are best used in dealing with
problems in which the solutions and intermediate
quantities obtained are positive. Itis desirable, therefore,
that the kernel of the integral equation be positive if
this can be arranged. The operator (—V'+1) has a
Green's function which is positive definite. This
operator occurs if the binding energy of the system is
assumed known —or else taken as a unit of energy —and
the strength of a potential of some given shape is left
to be determined. In applications to the calculations of
ground-state nuclear wave functions this is most
appropriate since the binding energy is known better
than the nuclear forces.

Let the coordinates of the Ã particles be xl, x2,
. x~. The Schrodinger equation is

pe�(xi, xtr)+ V(xi, xy)f(xi, ~ ~ xts)
s 2';

=&4(xi," ») (1)

Suppose that the energy is fixed to be

(2)
Let

r, = (2M;B/A')"'x;,
and

V(xi,xs, ,xtv) =—XBW(ri, rs, ,rtv). (4)

The last equation introduces the eigenvalue P, the
strength of the potential (in terms of B) required to
bind the system. For convenience let us denote by the
3Xdimensional vector R, the entire set of 3 dimensional
vectors (ri, ~,tv). With these changes, the Schrodinger
equation is written simply

(—V'+1)l( (R)=) ~(R)P(R); (5)

The Laplace operator on the left-hand side of (5) is
understood to be carried out in 3E dimensions.

Equation (5) is to be transformed into an integral
equation by the use of a Green's function for the
operator (—V'+1):

(—g~s+ 1)G(Rp, R)=8(R—Rp). (6)

To find a suitable G, we impose the boundary condition
that the wave function f be square integrable as a
function of all 3X coordinates. This implies that as
a function of R, G(Rp, R) must go to zero at infinity.
Since the boundary condition singles out no direction
(in configuration space), G must fall off in the same way
in all directions and is therefore a function of

~
R—

Rp ~ .
By transforming Eq. (6) into appropriate spherical
coordinates, it is easy to show that

G(Rp, R)=
D/(2sr)s~t'jpEstrtp r(( R—Rp))/) R—Rp[s""—'j, (7)

where K„(s) is the Bessel function of imaginary argu-
ment. ' This conclusion may also be drawn from the

' G. Goertzel and M. H. Kalos, in Progress in Nuclear Energy
(Pergamon Press, New York, 1958), Series I, Vol. 2, p. 315.

2 N. Metropolis, in Symposium on Monte Carlo 3IIethods, edited by
H. A. Meyers (John Wiley k Sons, Inc. , New York, 1956),
p. 29. G. W. King, IBM Seminar on Scientific Compulation,
November, 1949 (unpublished).

' G. N. Watson, Treatise on the Theory of Besset Fnnctsons
(Cambridge University Press, New York, 1945), 2nd ed. , p. 78.
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Range Well depth
b/R b (10 "cml Vo/J3 Vq (MeV} sWell shape

Iv. MONTE CARLO SOLUTION OF THE
INTEGRAL EQUATION 1.71

2.57
3.42
1.71
2.57
3.42
1.71
2.57
3.42

1.17
0.67
0.48
2.55
1.40
0,97
9.0
4.27
2.94

Square 33.1 0.95
19.0 1.22
13.6 1.56
72.2 0.92
39.6 1.14
27.4 1.40

255 0.99
121 1.06
83 1.30

2.0
3.0
4.0
2.0
3.0
4.0
2.0
3.0
4.0

Each iteration of Eq. (13) may be interpreted as a
step of a continuous random walk. Let a population of
points R~, .

, R~ be chosen so that the expected
number per unit volume in configuration space is
f„(R).For each of these, compute ROW(R ). Then let

be an integer chosen at random so that its mean
value is ROW(R ).' For each point R, pick e new
points R according to the probability distribution
function" G(R,R). When we average over the distribu-
tions of e and of R, the expected number of points so
chosen, per unit volume at R, is

Gauss

Exponential

Future calculations will be carried out so as to
determine also information about the wave function
itself.

V. RESULTS AND DISCUSSION

The state P "& for which ~y~ is smallest is the stat TAnzz II. Potential dePths required to bind the alPha nucleus.

bound with the weakest potential, i.e., the ground state.

G(R', R)ROW(R')p„(R') =it,+g(R). (19)

Since the result is a set of points whose distribution is

f„+~(R), a repetition of the procedure generates $„~2.
The random walk may be carried out to many steps;

if 'Ap is chosen too large or too small the population of
points will fall to zero or grow beyond the capacity of
a computer. It is convenient to choose only a few or
even just one point from $0 and use the erst part of the
calculation for the purpose of iterating to the ground-
state wave function, and also to build up a population of
useful size. The latter is done by temporarily setting
A, p su%.ciently large.

%hen many iterations have been carried out and the
ground state is isolated, more steps of the random walk
must be generated in order to provide good statistics in
estimating X, it itself or any quantities to be derived
from it.

In the calculations carried out so far, only the value
of X required to bind the system has been calculated.
An estimate of X may be derived by integrating (5)
over all configuration space.

V = —VD expL —(1 4354r/b)' j.

s =0.09043 (b/R)'(Vo/B).

The exponential well has the form

(23)

Calculations have been carried out with pair forces
derivable from square, Gauss, and exponential wells. '
The numerical results for three- and four-body problems
are given in Tables I and II. The widths of the wells
are specified by the intrinsic range parameter, b, of
Blatt and Jackson. ' The depths of the wells are given in
units of the binding energy and in MeV. The binding
energy of the triton was assumed to be 8.49 MeV. From
this the unit of length

R,=A(2MB, )

turns out to be 1.56&&10 " cm. The binding energy of
the alpha was taken as 28.3, so that E =0.856)&10 "
cm. Finally the well depth parameter' s is tabulated.
Note that for a square well

s= (4/vr') (MV /b')b'= (2/m') (b/R)'(Vo/B). (22)

For a Gauss well of the form

P(R)dR=), W(R)it (R)dR. and
V = —Vo expt —3.5412r/g,

s= 0.02758(b/R)'(Vo/B). (24)

Now f is the density with which points are generated
in the random walk. Suppose that after the iteration
settles down to the ground state, the points R~, R2,
~ Rq occur. Then the Monte Carlo estimate of X is

(21)

' This is easily done for instance by computing the integer and
fractional parts of X0W. e is the integer part plus, with probability
equal to the fractional part, one more.

G is a displacement kernel. To generate a point R„, it is
necessary to pick a displacement vector R„—R according to
Eq. (7). The procedure for doing this is explained in detail in
the Appendix.

The numerical results for well depth are estimated
to have an error, mostly statistical, of about 1/c. One
problem, for the three-body Gauss well at a range
5=1.5477 corresponds exactly to a calculation per-
formed recently by Baker et al. '" They carried out a

A preliminary account of this work was published in the
I'roceedings of the Rutherford Jubilee International Conference,
edited by J. B. Birks (Academic Press Inc. , New Vork, 1962).

The numerical results quoted there for the square well are,
however, incorrect owing to an error in the computer code.

J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).' G. A. Baker, Jr. , J. L. Gammel, B. J. Hill, and J. G. Wills,
Phys. Rev. 125, 1754 (1962).



1794 M. H. KA LOS
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APPENDIX

An essential step of the calculation is the generation
of components of a 3S-dimensional vector, R, dis-
tributed according to

P (R)d R = L1/(2s)»/'jPKss//, (R)/Rsr//' ']dR.— (A1)

%e write
d R=Rs~ 'd QdR

where Q is a unit vector. Then it becomes necessary to
pick a length R from the distribution

2.0

pg(R) =
2s~/s 'Pl (3%—1)/2]

R'~/'Ks~/s r (R) (A2)
P (1/2) I' (3/Y —1)

l, 5

l.o

b

and to generate components of an isotropic unit vector
Q.

As is conventional in Monte Carlo calculations, we
assume that a supply of random or pseudo-random
numbers, $, equidistributed in the range (0,1) is
available. We will show that if Pp, ]r, $s, , $s/p are
such numbers and if

Fxo. 1. Depth of Gauss well required to bind alpha particle as and
given by variational and by Monte Carlo methods.

u= —1n($r)s ass/), 0~& u& ~

&
—(1 ( 2/(ss/ —1))1/2 0& s& 1

(A3)

(A4)

numerical integration of the three-body problem using
Gauss potentials. The results for which they quote a
numerical value (Vp=+51.5 MeV, 8=9.416 MeV)
gives an eigenvalue V/8= 5 47, in very. good agreement
with the Monte Carlo result of 5.44.

It is interesting to compare the numerical results with
those from a simple variational calculation. For a
Gauss well and a trial function in the form of a Gaussian
function of relative coordinates, a variational calcula-
tion is straightforward to carry out. General formulas
for this treatment of the few-body problem have been
given by Laskar. " A calculation of this kind gives
8=6.9 MeV for the three-body problem mentioned
above. If variational calculations are made of the
binding energy, and the results converted to give
V p/73 as a function of $/R, the disagreement appears
much smaller. Figure 1 shows a curve prepared in this

way from the variational method together with the
Monte Carlo results for the four-body Gauss problems.
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The p.d.f. of u„ is

p„(u) = e, 0 &u( ~.
(23—1)!

(A11)

x" 'e *e (" /dx (A12)

= (1/23!) u"e ".

The p.d.f. of v is given by

P„((t)de= —dP.

p. (~)= Id~/d~l.

Hut (A4) may be inverted to give

This result is easily proved by induction. It is immediate
for n=1. Then by (A6)

given by Watson" shows that the last expression is
identical with (A2).

A straightforward way of generating isotropic
components co~, ~3~ of a unit vector Q is to pick a
point at random in the 3X-dimensional unit hypercube.
If this point lies inside the enclosed hypersphere, then
it may be used to define the components ~. Because the
ratio of the volume of sphere to cube is very small, this
method seems rather inefficient. A satisfactory but less
direct method consists in picking a vector (fi,t'2, ,t 3N)
from the 3X-dimensional Gaussian

exp( tl f2 ''' f3N)

and then set

To pick from the Gaussian it seems best to generate
pairs of variables (t'l, &2) distributed in a two-dimen-
sional Gaussian

so that
(A13) p(f 1 $2)df id/ 2

—exp( —gi' —f2 )dfldf 2.

A14
With the change of variable

p/2 (R) =
(31V—2)!

(/t2 1 ) (3N—3)/2e —t Bd( (A1 6)

One of the integral representatives of the E, function

Finally, from Eq. (A7) we find that

(3X—1)
P (R) 2/(1 lt2) (3N 3)/2—

(XV —1)! o

&&(R/(/)'N 'e "/'dl//(/. (A15)

Putting 3= 1/2, the last equation becomes

g3N—1

t i=i costt,

t 2=i sinqt,

P(f,4) =-f' exp( —t 2),

from which it follows that

The angle p is equidistributed in (0,22r).

"Reference 3, p. 172.


