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Theory of Second Harmonic Generation of Light
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A theory is given for the generation of second harmonic light in crystals analogous to the classical theory
of crystal optics. Optical activity and absorption are neglected, but the anisotropy is treated rigorously.
An approximate treatment is also given, valid for most crystals, which retains the essential effects of the
anisotropy and neglects the minor effects. All coherence effects are treated exactly, and special attention
is given to the case of index matching. An exact solution is given for the second harmonic waves produced
in and outside the medium when the fundamental beam enters the medium at a plane surface. A brief dis-
cussion is given of the eGects of the Gnite aperture of the beam. The theory is applied to recent experiments
on KDP and quartz, and values are given for the second-order polarization coefficients of these materials.
Finally, the theory is given for second harmonic generation by focused beams based upon the diBraction
theory of an ideal focus.

I. INTRODUCTION

~ NE of the most interesting applications of the
ruby optical maser' (or laser) is the investigation

of the nonlinear interaction of light with matter. The
second harmonic generation of light (SHG) has been
observed in quartz, ' triglycine sulfate, ' potassium
dihydrogen phosphate, 4 ' and many other piezoelectric
crystals. ' It may be inferred from data now accumulated
that SHG occurs in all piezoelectric crystals except in
cases where there is absorption of the radiations in-
volved. Experiments' have also shown that the eGect
is either absent or very weak in nonpiezoelectric
crystals. This supports the suggestion of Franken
et al. , that the primary nonlinear effect is a dielectric
polarization of second order in the electric field

P=d RE,

where KK represents the 6 components E;E; and d is a
tensor which we shall call the second order poiarisation-
teesor. It follows that the selection rules imposed by
crystal symmetry on d are the same as for the piezo-
electric tensor. ' It has also been suggested' that d may
exhibit additional symmetry, which in many important
cases would reduce it to a single independent constant.
If the additional symmetry is found experimentally, it
means that the origin of the second-order polarization

' R.J.Collins, D. F.Nelson, A. L. Schawlow, W. Bond, C. G. B.
Garrett, and W. Kaiser, )Phys. Rev. Letters 5, 303 (1960).T. H.
Maiman, Phys. Rev. Letters 4, 564 (1960); Nature 187, 493
(1960); Brit. Commun. Electron. 7, 674 (1960).'P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich,
Phys. Rev. Letters 7, 118 (1961). These authors define the
harmonic having twice the frequency of the fundamental as the
second harmonic, and this terminology will be used in this paper.

3 M. Bass, P. A. Franken, A. E. Hill, C. W. Peters, and G.
Weinreich, Phys. Rev. Letters 8, 18 (1962).

4 J. A. Giordmaine, Phys. Rev. Letters 8, 19 (1962).' P. D. Maker, R. W. Terhune, M. Nisenof7, and C. M. Savage,
Phys. Rev. Letters 8, 21 (1962).

'D. F. Edwards, J. G. Mavroides, B. Lax, Bull. Am. Phys.
Soc.

& 7, 14 (1962). B.Lax, J. Mavroides, and D. Edwards, Phys.
Rev. Letters 8, 166 (1962)~ Also private communications by P. A.
Franken, R. W. Terhune, J. A. Giordmaine, R. C. Miller, and
A. Savage.

"Standards on Piezoelectric Crystals, " Proc. Inst. Radio
Engrs. 46, 764 (1958).

D. A. Kleinman, Phys, Rev. 126, 1977 (1962),

is in electronic processes of high frequency compared to
the laser. It has been suggested' that d should be of the
order of an inverse atomic electric held 10 ' esu.
Experimental evidence' favors somewhat smaller values
in the range d 10 " to 10 ' esu. The problem of
determining d will be discussed later in this paper.

The problem considered here is to determine the
nature of the electromagnetic field arising from a
dielectric polarization of the kind that might be
produced at the second harmonic frequency by a laser
beam. Mathematically, the discussion is based upon
Maxwell's equations for a lossless anisotropic medium
free of charges and currents but containing a pre-
scribed source in the dielectric polarization. All linear
induced polarization is assumed to be included in the
dielectric constant tensor. The theory involves the
inhomogeneous Maxwell equations, and therefore is an
extension of the theory"" of the optics of anisotropic
media which is based upon the homogeneous Maxwell
equations. Previously the nonlinear interactions of
electromagnetic waves have been considered extensively
for magnetic materials" and plasmas in a magnetic
field. "These considerations have been directed mainly
toward defining the various nonlinear mechanisms and
evaluating their effects as functions of parameters such
as frequency and magnetic field which are under
control. In both of these cases the nonlinearities arise
from well-known terms in the equations of motion
which lead to recurrence relations between coeKcients
in the Fourier expansion of the field. In making the
Fourier expansion and evaluating the leading coeK-
cients, it is assumed that the expansion converges
rapidly. The leading term, therefore, represents the
usual linearized theory in which all nonlinear terms are

'I am indebted to J. A. Giordmaine and R. W. Terhune for
discussions concerning the value of d.

"M. Born and E. Wolf, Principles of Optics (Pergamon Press,
New York, 1959), Chap. XIV.

"G.N. Ramachandran and S. Ramaseshan, in Handbuch der
I'hysik, edited by S. Flugge (Springer-Verlag, Berlin, 1961), Vol.
BXXV, p. 1.

"D.Douthett, I. Kaufman, and A. Risley, J. Appl. Phys. , 32,
1905 (1961),contains references to earlier work.

"R. F. Whitmer and E. B. Barrett, Phys. Rev. , 121, 661
(1961),contains references to earlier work.
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neglected. The second harmonic then arises from the
nonlinear response of the system to the fundamental.
The same approach is used here by postulating that a
dielectric polarization P exists, arising from a non-

linear material Eq. (1) and a strong fundamental field

E. In general d will be a function of frequency, ' so that
P and E in (1) represent Fourier amplitudes. In this

paper P will represent the second harmonic component,
and the zero-frequency' component predicted by (1)
will be ignored. In this way a theory is obtained for
SHG. In formal appearance the theory has little
resemblance to the previous theories just mentioned,
but strongly resembles the electromagnetic theory of
optics"" for anisotropic media.

The importance of anisotropy in SHG has recently
been emphasized by Giordmaine4 and by Maker et al. '
From the first, ' it was recognized that because of
dispersion a "coherence volume" exists for SHG within
which the second'harmonic wave can remain in phase
with the polarization producing it. By means of anisot-
ropy it is possible to match the refractive indices of
the second harmonic wave and the fundamental wave,
and thereby increase the coherence volume to the entire
illuminated volume of the crystal. This effect has been
demonstrated experimentally4 ' in potassium di-
hydrogen phosphate. In this way intense SHG can be
obtained from unfocussed parallel laser beams. Without
the use of index matching, the output is smaller by
several orders of magnitude unless the laser intensity
is increased by focusing. Both index matching and
focusing are treated in detail in this paper. Particular
attention is given to the case, very important in
practice, in which indices are nearly matched. Also
considered are the waves arising from the boundary
conditions at the surface of the medium. In the interest
of simplicity, optical activity and absorption are
neglected. In anisotropic crystals optical activity is
usually a very small e8ect compared to the bire-
fringence and can be neglected except for propagation
very close to an optic axis direction. "Even in this case
the rotations are of the order of 10' per mm and could
only be important if the coherence volume is large.
On the other hand, the coherence volume is only large
in the nearly matching case which never corresponds
to propagation near an optic axis. The neglect of
absorption is justi6ed by the fact that crystals exist
which exhibit SHG and have very low absorption.
Obviously, absorption at the second harmonic frequency
is undesirable and only serves to reduce SHG. Absorp-
tion at the fundamental frequency would probably lead
to serious burning by the laser beam.

It has been pointed out that the nonlinear interaction
can mix two light beams. ' ' If the beams are plane
waves with wave vectors K, and K2, the polariza, tion at
the sum frequency has the wave vector" K=Ki+Kz.
The theory given here applies equally well to this type
of process as to the second harmonic processes K= 2Ki

or K= 2K2. In any case K can be written

(2)

where co is either the sum or the second harmonic
frequency, si, is a unit vector in the direction of K, and
n' is an eAective refractive index. In general n' will not
equal the refractive index n for a wave freely propa-
gating in the medium in the direction sI, with frequency
co. The effect of normal dispersion is to make n' less
than n, and in the case of mixing a nonvanishing angle
between Ki and K2 further reduces e'. The coherence
volume may be de6ned as the cross-sectional area of
the beam multiplied by a coherence length

where X= (2m-c/cue) is the wavelength in the medium of
the second harmonic wave. A coherence length of
l, 14+ has been observed in quartz by Maker et alt. ,

'
which is typical for nonmatching conditions (e'Ae).

The theory of crystal optics" is based upon the
vector wave equation for the electric field E(r):

where e is the dielectric constant dyadic. If E(r) is
assumed to be a plane wave,

E(r) = Eec(~/c)ns r
)

where n is a refractive index and s a unit vector, a set of
algebraic equations is obtained which may be written

(6)

where n, is the dyadic

0;,= rP(I—ss) —e,

with I the unit dyadic or idemfactor. Since optical
activity and absorption are being neglected, e is real
and symmetric. According to (6), n, must have an
eigenva, lue zero, and the field E is the corresponding
eigenvector. The condition that n, possesses a zero
eigenvalue is

which for a general s defines the two refractive indices n.
For a given s two dyadics n, are then defined and two
fields E, so that two waves E, s, e are completely
defined except for an arbitrary factor. An exceptional
case is when s is along one of the two optic axes, in
which case the two indices become equal and the field
F is only required to lie in a certain plane which in
general is not normal to s. Crystals having a symmetry
axis of threefoM or higher symmetry are uniaxial, since
the two optic axes are required to lie along the sym-
metry axis. Crystals having four threefold axes or three
fourfold axes are optically isotropic, and any direction
may be considered an optic axis. The possibility of
index matching in SHG depends upon the existence of
two different waves F, s, n, and therefore is limited to
uniaxial or biaxial crystals.
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Considerable use will be made in what follows of the
surface, which will be called the index surface, obtained
by constructing all vectors s from some origin and laying
off the distance rt(s) along each s. The resulting surface
has two sheets, corresponding to the two indices,
except for points on the optic axes. This surface is
helpful in analyzing boundary conditions at the surface
of the medium. Let the boundary surface be the plane

N r=0, (9)

where N is a unit vector normal to the boundary and
directed into the medium. Let s„~, s,2 be the directions
of the waves in the vacuum outside the boundary, and
let s~, s2, ~ be the directions of waves inside the
medium. Associated with s~, s2, are the refractive
indices m&, n2, ~ ~ ~ . In order to satisfy boundary condi-
tions at each point r on the plane (9), it is necessary that
the relative phase of all waves be independent of the
tangential component of r. It can be shown" that this
requires

tt&stXN=n~s2XN= = s„&XN=s.2XN. (10)

This is the generalization of Snell's law for anisotropic
media. Now consider the index surface and construct
s, &, which may represent an incident plane wave.
According to (10) s„t—rttst lies along N and similarly
s„&—rt2s&. By proceeding from s„t along the direction N
to intersect the index surface, the refracted waves s~, s2
can be determined.

E(r) —Elei(a)/c) n'sk r (13)

II. GENERAL FORMULATION

In this section we obtain a formal solution to the
problem of the radiation produced by a plane polari-
zation wave

P(r t) = Pe'*'— '. (11)
The wave vector K may be written in terms of I' and
sk as in (2), and (e is twice the angular frequency of the
fundamental wave or the sum of the frequencies of two
mixed waves. The direction and magnitude of P are
determined by the tensor d and the electric fields of the
fundamental or the mixed waves. Given P and K we
must determine the second harmonic electric field from
the inhomogeneous vector wave equation

~X~XE—( /oc)')e E=( ~4(e/c) Pe
ix' (12)

Since we assume that the permeability is the same as in
free space, the magnetic field need not be considered
explicitly. We seek initially a particular solution of (12)
in the form

(xk Uk("=Xk "&Uk&" (j= 1, 2, 3). (17)

Since nk is real and symmetric, the Uk()' are mutually
orthogonal and may be normalized to unit length.
If none of the X~(&) vanishes, the inverse is then

~k '=P; (1/&k"')Uk"'Uk"'. (1g)

For later use we shall also define the eigenvalues and
eigenvectors of e,

with
(t .U &i) —), (i)U, (i)

X.(»=0.

(19)

(2o)

Thus, the electric field for the free wave e, s is in the
direction U, &".

Now consider the matching case e'=e~ in which
&~ko) =0. From (18) we see that this case presents no
difficulty if P.Uk&"=0. If P.Uk")80, there is no
forced wave in the form of a plane wave of constant
amplitude. Therefore, we seek a solution in the form of
a linearly growing wave. Let the field in the matching
case be written

EM(r) =E&(N. r)ei(ra/c) n)esk( r+ p i(ru ec) n/s err kr(21)

where
P =EU (&)

E2, 3—E2U»i(')+ESU»r(').
(22)

We see that ctk is analogous to n, in (7) except that nk is
not required to possess a zero eigenvalue. If n'=a~,
where nj, is one of the refractive indices at frequency ~
for s~, o.I, will possess a zero eigenvalue; otherwise it
will not. If n'/nl„as in the nonmatching or general
case, the inverse dyadic aI, ' exists and the solution of
(14) is

E'=nk —'4vrP.

The wave (13) with E' given by (16) is a particular
solution of the inhomogeneous wave Eq. (12). It can
exist only when the source P(r, t) is present, since it is
proportional to P. The waves (5), on the other hand, can
exist in the absence of any sources in the medium. It is
convenient to call the waves (5) free t&&at&es and (13)
forced waves. Evidently, any free wave can be added to
(13) to construct a solution of (12). The construction
using the index surface shows that in general two free
waves are required for satisfying boundary conditions
on a plane boundary.

Formally the inverse cxI,
' may be constructed as

follows: Define the eigenvalues" AA,
(&' and eigenvectors

Substituting (13) into (12) gives

nk E'=4rP,

where nl, is the dyadic

(14)
Here the subscript k has been replaced by M to indicate
the matching case, and e~ is the refractive index for
s»e= sk. In (21), N is an arbitrary unit vector indicating
the direction in which Ekr(r) grows. Later, it will be

o.k ——rt" (I—sksk) —e. (15)
i4 J. A. Stratton, Etectromagnetec Theory (McGraw-Hill Book

Company, Inc., New York, 1941),p. 491.

'~ See, for example, H. Margenau and G. Murphy, The Mathe-
matics of Physics and Chemistry (D. van Nostrand Company,
Inc. , Princeton, New Jersey, 1943), Chap. 10.
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Ei 2z———ri (o)/c)zz/)r '
XL(N U~"') (s~ U~"') —N. s~] 'P U~"' (24)

Es —(4—z—r/X~('))P U~&2)

—i(c/o))N~$(N Uir(')) (sir Uir('))

+(N U~('))(s~ U~'))j(1/X~('))Ei«(25)

The equation for E3 is similar to (25) with Uir(3), rid(')
replacing U~('), Air&'). Note that Ei has the dimensions
of an electric field divided by a length. Ke see that in
the matching case the free wave which is matched
becomes a linearly growing forced wave. In addition
there is a nongrowing forced wave with its electric
field perpendicular to that of the free wave. The non-

growing component is a slowly varying function of s&,

but the growing wave is rapidly varying and the form
found here is only valid for exact matching SI,——s,&.

III. THE NEARLY MATCHING CASE

The formulation of the preceding section is deficient
in the respect that it provides no convenient means for
treating cases which are arbitrarily close to matching.
In practice the laser beam has a finite angular spread,
so that all of the beam can never satisfy the matching
condition exactly. A proper formulation of the nearly
matching case requires that a forced wave be found
which satis6es (12) and reduces to (21) in the limit
as e, s~ approaches a matching condition. Ke imagine
that I' is a function of s/„so that an effectiz/e zzzdex-
surface can be constructed for the polarization waves.
The simplest case to consider is SHG in which P(r, t)
arises from a single plane wave from the laser in the
direction s~. Then e is a refractive index for s~ at the
fundamental frequency o)/2, and the effective-index
surface is just one sheet of the index surface of the
medium at frequency o)/2. Actually only a small part
of the effective index surface is needed corresponding to
the range of s~ present in the beam. The matching
directions which we shall denote by s~ are determined
by the intersection of the index surface and the effective-
index surface

zz'(sir) = rz(s~r) —=rzir. (26)

In general the intersection will be a continuous curve
on the index surface if matching is possible. For further
comments on the effective-index surface see the end of
this section.

Ke may expect that a proper forced wave for the
nearly matching case can be constructed from the
forced wave (13) and a suitable free wave. If the
surface of the medium is plane only certain free waves

shown that N represents the normal to the surface of
the medium. Substituting (21) into (12) gives

i (o)/c)N~[s~X (NXE,)+NX (s,)rXE,)j
+(o)/c')nor E2 3

——(4zro)/c')P. (23)

The solution of (23) is readily found to be

can be combined with (13). If now N is the inward
surface normal, any free wave e, s which can be com-
bined with (13) must satisfy

zzs XN = zz's/, XN, (27)

because of the considerations which lead to (10). The
two allowed waves can be found using the index surface
by a construction similar to that which gives the
refracted waves from a given incident wave. Construct
the index surface and from the same origin draw e's~,
then proceed along &N to intersect the two sheets of
the surface. We may write (27) in the form

rz's/, —zzs= q N, (28))

From (18) and (28), this can be written

E/, (r)= {P 2 z (1//&/, (»)U/(»U/, (') 4zrp

+(1/$„(i))(U&(r) 'U (r)e—«(n/c)c» r)U„«r). 4~p)
Xe ( / )«nn'sscr (30),

where the second term in brackets is seen to be finite
as X&(') ~0, q

—+0 U/, "' —+ U, &'&. It may readily be
shown that the limit approached by the second term
is, leaving off the exponential factor,

lim ( (1/X/, ('))f (U/, &') —U, &'&)

X@(1)~0

+U, &"i(o)/c) pN r]U, &') 4)rp). (31)

Clearly the 6rst term in (30) is identical with the first
term in (25) representing the nongrowing forced wave
due to components of P which cannot produce a growing
wave in the matching limit. The term containing
(U/, ("—U, &'&) in (31) is to be identi6ed with the term
in (25) proportional to Ei. Finally the growing term
containing N r in (31) is to be identified with Ei(N r),
with Ei given by (24). If these identifications are
correct Ei(r) in (30) approaches E)&r(r) in (21) in the
matching limit.

We now verify that (30) does, in fact, reduce to (21)
in the limit s~ —+ S~I. The identifications mentioned
above will hold providing the following limits are true:

lim (p/X/, ('))
= —(2rzir) 'L(N Uir('))(s~ U~(')) —N s ]—' (32).

where y is a scalar function of s~, measuring how far
s~ is from matching conditions. Of the two waves
allowed by (27), we shall be interested in this section
only in the one which lies on the sheet containing s&,
and this is the wave meant by zz, s in (28). As the match-
ing condition is approached, s~ ~ s~ and also s ~ s~..

It is now clear that zz, s must be added to (13) in such
a way that the singularity in E' as Xz") —+ 0 is removed.
From (14) and (18) we find that the desired form is

(r) &z
—1.4zrPe«(n/c) n'ss r

(1/g„(1))U (1)U„(1).4)rpe«( /c) ns r (29),
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lim

()). (U (i) —'U (i))- where Ei, E2, 3 are defined in (22), (24), and (25), and

1t =(~/2c)qN r. (45)

From (28)

UM('& (NsM+sMN) UM(')
(33)

2/M(»L(N UM(»)(sM UM(») —N sM]

n"—n'= 2n (o(N. s)

to first order in (o. Therefore, from (7) and (15)

ni ——n, +lq&(2N sI—sN —Ns)

to first order in (o. From (17)

), (i)=U (i).~ .U (i)

while to first order in y

U&, (" (r Ui("=0

Thus to 6rst order we have

(35)

(36)

(37)

and substituting for q/X&, ") from (38). This completes
the proof that (30) reduces to (21) in the matching
limit. Therefore E),(r) is a proper forced wave for the
nearly matching case. It should be noted that no
approximations have been made thus far and (30) is
exact.

We now introduce approximations appropriate to
the nearly matching case. The second term of (30) can
be written in the form, leaving off. the exponential
factor,

( l ~"')L( ~"'— "')+ "'( l )q g(' q l )j
~ (Ui') .4v-P), (42)

where g is the function

g(s) = (1—c ')/z. (43)

If, now, we go to the matching limit s~ —& s~ but
retain g, we obtain

Ei(r) = Ei(N'r)g(2g)c((c'(c)cMsM r

+E& &c((chic)nMsM. r (44)

),„(')=2riqLN s—(s U&, "))(N Ui(")j (38)

Now (32) follows immediately from (38) as s~ sM.
The eigenvector equation for U&, ") can be written from
(17) and (35)

n, U), ')+nq(2N sI—sN —Ns) U&, ("=)(&,")U),(') (39)

to first order in y. Taking the scalar product with
U, &'& and retaining only first-order terms gives

)(. (2&U '2& ~ Ui(i) = riq&U (2& ~ ($N+Ns) ~ U&, (i) (40)

The proof of (33) now follows upon noting that

-UM(2) . (Uy(i) —U (i))— -U (2) .Uy(»-
lim = lim

All the essential e6ects of small deviations from the
matching condition are contained in g (2ig) .The
linearly growing amplitude of the E& wave in the
matching limit is due to interference between the
forced wave m', sI, and the free wave e, s. The distance
over which this interference is effective is determined
by q) defined in (28). The coherence length for the wave

l„h may be defined in terms of q as follows: I.et g(2if)
vanish for r= sl„h, then

l,.),——i
2v-c/(Oq

i (N s)-'.

This definition is equivalent to that previously given
in (3).

Consider the index surface and the effective-index
surface in the region of their intersection. It is assumed
that such an intersection exists and that the polari-
zation P (r, t) is a narrow pencil of waves e', s(, which in-
cludes part of the intersection. Let unit normal vectors
be constructed to the two surfaces, N, for the index
surface and N&, for the effective-index surface. Then the
vector N&, XN, lies along the intersection, which, if the
pencil is narrow, may be considered a straight line.
Furthermore, let

6= sg, —sp, j
5 i((1,

where sp is the central wave of the pencil, and let sp be a
matching direction sM. Then from (28) it can readily be
shown that y may be written

q&=rio(N. N, )
—'(sp N&,)

—'

XL(s() N),)(S N, )—(sp N, )(B N&,)J, (48)

where ep is the matching index at sp. It is evident that y
given by (48) vanishes when 6 lies along N&, XN, .
Clearly 6 is perpendicular to sp and therefore may be
expressed in terms of a pair of polar coordinates. Let
(& =

~

6
~

and let 0 be the angle 5 makes with the matching
line N(, XN, projected onto a plane normal to so. Then
it can be shown that p is given by

q =~,(N. N.)-'(1—2ZN, N.+Z')'»~ sinS, (49)
where

R= (so N, )/(sp N)). (50)

If N, , N&, so lie in the same plane, as in uniaxial crystals,

(1—2RN&, .N +R')"'= (sp. N),)-' sinp, (51)

where p is the angle'6 between Nz and N, . In many
cases N. and'N& will be very nearly in the direction so,
and we can write

N, = (1—5 ')"'so+6, so S,=O

N&:= (1—()&')'&'so+4, so'4=0
[a.i'«1,

"The angle p is related to the constant E' defined by Giordmaine
(reference 4) as follows: %=2 tanp.
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Then we have

(1—2ZN, N+Z2)i&2= I5,—S, I. (53)

Then
4 ' (1—P)& sin2sp

F(z) =- d$ (60)'

We now consider the energy Qow in the forced wave
(44) with the aid of two reasonable assumptions which
greal;ly simplify the discussion. We assume that
conditions are very close to matching, so that

22(2

=1—s'/12+ . .

=2/s —4/2rs2+

(61)

(62)'

y&«~,

where X2r= (22rc/222'~) is the wavelength. Then the Ei
wave can be very large compared to the E2 2 wave, '

except near the zeros of g(2') we have

The two expansions cover the entire range of s with
sufficient accuracy for most purposes. At s=2, (61) and'.

(62) give 0.667 and 0.682, respectively; (61) should'.

be used for s(2. We see that there is a transition
between two different behaviors at s=p/6=2. It is
convenient to define a cohere«e /e22gth for the perici/

Eglg))E2, E3, l„'=2/Ph. (63)

S= («/8~)
I
&iI2/'I g(2g) I'.

From (43) it follows that

(55)

Ig(»4) I'= (»nV)/8 (56)

It is clear that 5 varies over the narrow pencil of
waves comprising the laser beam. An individual wave in
this pencil is described by the coordinates 8, 0 in terms of
which f may be calculated from (45) and (49). Thus S
may be averaged over the pencil to give the mean
Poynting vector

(S)= («c/8~)
I
&i I'/'((»n'I/)/8) (57)

The total SHG is the area of the laser beam multiplied
by (S).This includes all the contributions due to mixing
of slightly divergent waves in the pencil.

We may define the average in (57) as a function

where 6 is a measure of the spread of the beam, and
from (49) and (45)

p=22O(~/2c) (N N, ) '(1—2RN& N,+R')'i'. (59)

The form of F will depend upon the distribution of
directions 8, 8 in the beam. The simplest assumption is
that the distribution is independent of 0 and constant
for 8 in the range 0&8&6 and vanishes for 8&h.

where /=N r. The second assumption is that the
medium is not exceptionally anisotropic. The treatment
up to this point has been completely general in regard
to anisotropy. It is well known' that in an anisotropic
medium the Row of energy is not in general along s.
The component of the time average Poynting vector
along s is

S=( /8 )I«I'
where E~ is the transverse component of the amplitude
of the electric field. Since the anisotropies of most
crystals are quite small, of the order of a few percent,
we shall assume that Ei is nearly transverse, and that
S in (54) is essentially the total energy flow. Thus we
write

(S)= (22 /c8 )2rI E I'(2//pd, ). (65)

This shows that l„h' may be regarded as that crystal
thickness at which (S) changes over from a quadratic
dependence on / to a linear dependence. Whether a
crystal is thick or thin depends upon the beam spread
6, which ideally should be as small as possible. In the
thick crystal case the distribution of the beam with
respect to direction 6 will be much different from that
of the laser beam. There will be a marked concentration
of intensity along the matching line 0=0 with rapid
falling oR perpendicular to this direction. The second
harmonic beam therefore should have a marked
elongation along the matching line.

Ideally it would be desirable for the matching line to
shrink to a single point of tangency between the index
surface and the eRective-index surface. The analysis
given above would then not apply for a pencil centered
on the matching point. A detailed analysis for this case
will not be given here, but it is easy to see that q would
vary quadratically with 8. If p aP, the coherence
length for the pencil would be (4c/coals), which for
narrow pencils might be several orders of magnitude
longer than (63).

In this section the concept of the effective-index
surface has been used as a basis for discussing the
analytic behavior of the forced wave as a function of its
direction si, for si, near the matching curve (26). This
behavior has then been used to evaluate the average
Poynting vector (57) for a narrow pencil containing the
matching curve. In this treatment we have assumed
that the most important average is over the angular

This should not be confused with /.,h in (46), the
coherence length for the wave. The pencil contains
many waves with widely varying l„h,' l„I, is a suitable
average over the distribution of l„h in the pencil. We
may distinguish two limiting cases:
(a) Thin crystal: /((/„h'.

In this case (57) becomes

(s)= (22oc/82r)
I
Ei I2/2

(b) Thick crystal: /))/„z'.
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spread of the pencil. There will also be a spread in
frequency, which may be written as a spread in e'
through (2). A spread in n' can also come from the
mixing of 2 beams making a finite angle with s~ and
each having a finite directional spread. The effect of
this spread is to smear out the effective-index surface
into a thin shell, and the matching curve (26) becomes
a thin ribbon on the index surface. The thickness of this
ribbon is (An(&)(s(& N/, )$1—(N. Ni)'] "', where (Ano)
is a measure of the spread in no ——n'(s(&). The treatment
of this section is adequate if the ribbon subtends a
smaller angle than the beam spread A. We estimate
that the subtended angle of the ribbon has the order of
magnitude 100 (hno) 100(d,&u/(s) 10 ' rad in a typical
experimental arrangement employing a cooled ruby
laser. This may be compared with a full width 2A 30'

10 -' rad reported by Giordmaine4 and by Maker
et a/. ' A somewhat different situation is obtained,
however, if P arises from the mixing of two beams
meeting at a finite angle. Then the angular spread of
each beam gives rise to a spread in m' as well as a spread
in the direction sI,. The results of this section may not
apply quantitatively in this case.

(r) —p ei(n/c) sv
'{& (67)

The coeS.cients E„, Ep and the vector K, are to be
determined by the condition that the tangential
components of the electric and magnetic 6elds be
continuous across the surface N r=0. It is sufhcient to
satisfy this condition at a single point r=0, since (27)
insures that the condition will then hold at every point
on the surface. In addition the wave in vacuum must be
the transverse:

IV. SURFACE WAVES

In this section the complete solution to (12) will be
obtained for the case of a semi-infinite crystal having a
single plane surface. The laser beam is incident on this
surface and produces a polarization wave (11) in the
crystal such that N s1.)0. The solution inside the
crystal then consists of the forced wave and the two
free waves n, s which satisfy (27). We shall denote these
free waves bye, s

andean,

sp. There will also be a wave
in the vacuum outside the crystal with wave direction
s„determined by (10). The field in the crystal may be
written

p(r) —pei(&o/c)n's/v r+g 'U (1) i(
e/

)nnccsc. r

+g U (1)ei(n/c) npsp. r ({&6)

where F represents the forced wave. In the non-
matching case one could choose F=E' given by (16).
In the nearly matching case sj,=s~=s /st and I"

may be obtained from (44). The unit vectors U ('&,

Up"& def&ned by (19) and (20) represent the electric
field directions for the free waves. The 6eld in the
vacuum outside the surface is

The continuity conditions may be written

NX E(r)=NX E„(r),
NXVXE(r)=NXVXE„(r) at r=O.

Therefore, from (66), (67), and (69),

(69)

Q- E.=pp., Qp E =p-,
where the following abbreviations have been used:

(73)

p.= spXUp(" pn'Nx (sqXF) —i(c/co)NXVXF]
—n.yUp(') NXF,

pp= s.XU."'Ln'NX (s/, XF)—i(c/&0)NX V XF]
—npyU. (') NXF, (74)

y=s.XU.(') NX(spXUp('&)/(U. ('& NXUp('&),

Q = $(s.xU„(")XN]Xs.—n/rrU "'XN,
Qp=((spxUp")XN]Xs„—n.yUp") XN;

from (68) and (73)

E.= s.X (ppQp —p.Q.)/(s. QpXQ. ). (75)

The formal solution is now given by (72) and (75). The
waves associated with Z, Ep and E„are conveniently
called surface wa(&es, since they arise from the continuity
conditions required at the surface.

It is clear that s„QpXQ WO, since otherwise one
could set F=O and still 6nd a nonvanishing E„. It is
possible, however, to have U "' NXUp(" ~ 0, in which
case E„ is determined by (68) and (70). The correct
answer is readily obtained from (75) by letting y —s cc.
It can be shown that the numerators in (72) also
vanish in this limit making these formulas indetermi-
nate, but expressions for E, Ep in this case may be ob-
tained from (71).

In the nonmatching case F can be chosen a constant
so that V XF=O. It is always permissible to add a free
wave to the forced wave, which corresponds to the
transformation

p ~ p+p U (1)ei(n/c)(nese —n'ss) r

+P 'U (1)ei(vc/c) (npsp n's/v) r (7{&)—

NX E.=A.NX U ")+EpNX Up"'+NXF, (70)

NX (s„XE„)=E.n.NX (s XU.(")+EpnpNX (spx Up(")
+n'NX (s/, Xp) —i(c/~)NX V XF, (71)

where F is to be evaluated at r=0 if it depends on r.
These equations may be solved together with (68)
as follows: Scalar multiplication of (70) with U, ('& and
Up(" gives

Z = (Up~')XN E„—Up(". NXF)/(Up"&. NXU (") (72)

Zp=(U (')XN E„—U (» NXF)/(U„('& NXU, (&).

scalar multiplication of (71) with s XU (" and spX Up("
followed by use of (72) to eliminate E, and Ep gives

E. s„=0. (68) and F then depends on r. We should expect that such a
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U &'&.NXU &'& 47rp U&, &'&

U o&

U &'&.NXU &'&
(79)

The factor in brackets approaches unity in the limit
Py"' —+0. It follows immediately that the singular
part of E is exactly the free wave assumed in (29), and
furthermore, no singularity arises in Ep since
U o& XN. U "'=O. The theories of this section and the
preceding one are, therefore, consistent if N is
interpreted as the surface normal.

The problem of this section is formally equivalent
to the problem of finding the rejected and transmitted
waves when a plane wave is incident on the plane
surface of an anisotropic medium. The transmitted
waves are given by (72) and the reffected wave by (75)
for an incident wave

@~i (co&t c) sip .r (go)

with n'=1 in (73) corresponding to free space. The
forced wave is therefore analogous to an incident wave
in ordinary optics and produces an analogous result.
Thus (72) and (75) constitute generalized Fresnel
formulas" which reduce to the familiar form in the
special case of an isotropic medium.

"Reference 10, p. 39.

transformation would merely change E, Ep ..

E +E—F—, J p~Ep Fp—, (77)

so as to cancel the additional free waves in (66). This
indeed follows from (72) when it is observed that p„pp,
and hence E„, are invariant to the transformation (76).
Although F, as given by (16), has a singularity in the
matching limit, there is no singularity in E„, since the
procedure of the preceding section which eliminates the
singularity in F is equivalent to a transformation of
the form (76). This may be of experimental importance
in connection with obtaining reliable measurements of
the second-order polarization tensor d, since the vacuum
wave should be quite insensitive to the coherence
length. It is of interest to consider the free waves as
matching conditions are approached. All singularities
are, of course, avoided if F is taken to be

F(r) = Ei(N r)g(2')+E& 3, (78)

according to (44), but it is more instructive to let F be
given by (16).It may be recalled that in the derivation.
of (44) and in the discussion of the matching case (21)
the presence of a surface is implied by the vector N,
although at that time no boundary conditions were
explicitly considered. We may now ask whether the
detailed theory of the surface waves can provide a
physical explanation for the free wave needed in (29)
to eliminate the singularity in (16) at the matching
hmit. Therefore, let F be given by (16), let e'si approach
e„s, and consider the term in E which becomes
singular; from (72) this term is

In a practical experiment to observe SHG, the sample
will ordinarily have two parallel surfaces. The second
surface produces surface waves which can be treated
by the methods of this section, although the general
solution is quite complicated and will not be given here.
Of primary interest is the vacuum wave E„', s„' emerging
from the second surface. Its direction

F=-E,U.&»(N r)g(2@), (82)

an approximation already introduced in (53). It is also
permissible to neglect VXF in (74), since this is of the
same order as the neglected waves. The free waves
U o&, s "& and Up&'&, sp "& in (66) must be replaced with
two other free waves satisfying (27) but propaga. ting
into the crystal from the second surface. Also s„must
be replaced with s, '. When all these replacements have
been made, (75) gives E„'. It may be expected that
if the beam is not too far from normal incidence
(s„-N), the transmission coefficient for the intensity
will be close to unity.

V. APERTURE EFFECTS

We shall call the diameter of the laser beam in the
crystal the aPerture a of the system. The finite aperture
gives rise to two kinds of effects, the more familiar of
which is difI.'raction. In so far as diRraction causes a
spreading of the beam to form a pencil of waves it has
already been taken into account in Sec. III. DiAraction
will be considered again in the last section in connection
with focussed beams. The other effect is due to the
anisotropy of the medium, which causes the energy in a
wave to be propagated in a slightly different direction
than the wave direction s." This will be called the
aP er&lure effect.

When the coherence length is very long in a thick
crystal the aperture effect can limit the intensity of the
SHG. The laser beam enters the crystal as a pencil of
waves of diameter a propagating in the direction sA, .
The energy in this beam propagates in a slightly
different direction t~. If sk= 8 is a matching direction,
a linearly growing second harmonic amplitude is
generated. The second harmonic energy propagates in
the direction t, and in general

ties&

tA, . It is physically
evident that SHG occurs only within the pencil of tA, .
The effective coherence volume in the matching case is
not infinite, but is no greater than the volume which is
common to the pencils of tA, and t. The maximum path

'8 Reference 10, p. 665.

s.'=s„—2(N s„)N

is the reflection of s„ in the surface. The same vector N
may be used as the normal for both surfaces since the
theory is independent of the sign of N. If the laser beam
is a pencil containing the matching line y=O [see
discussion following (47)j, all waves but the growing
wave may be neglected. Thus we may take
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of the ray t within the pencil of tJ, is

&& .=a/1 —(t t&,)']—"'
which may be taken as a measure of the maximum
effective coherence length. If t, is less than the crystal
thickness the entire pencil of t~ generates second
harmonic radiation, but the growing wave Ei(N r) in
(21) never achieves an amplitude greater than
Eil, (N s&,).

We consider briefly the magnitude of the effect in
potassium dihydrogen phosphate (KDP). In the
experiments, '' where matching has been observed, to
be discussed more fully in Sec. VII, the laser beam
passed through the crystal as an ordinary wave. This
wave is transverse and hence t~ = s. The second harmonic
is produced as an extraordinary ray, which is not
transverse, and hence t/t&. For meiuxial crystals a
formula can readily be derived giving t s for the
extraordinary wave

1+@tan'P
t.s=

(1+tan'P) ~(1+P4 tan'P) ~

where $=n, /ri„measures the anisotropy and f is the
angle between s and the optic axis. For most crystals
the anisotropy is small and $ is very nearly unity. If

~ $—1
~
&&1, the angle between t and s is given by

g (t,s) =2($—1) tang/(1+tang)+, (85)

which is maximum for /=45'. In KDP, ' the matching
condition is /=50', and $—1=0.0316, so that (85)
gives g(t, s)=0.0312 rad=1. 79'. If a=0.5 crn and
incidence is normal (83) gives l, = 16 cm. This is to be
compared with the coherence length for the laser beam
.l„z' 0.1 cm and the crystal thickness 0.2 cm. We
may conclude that the aperture eGect may someday
limit SHG if laser beams can be produced which are
narrower in angular spread than present beams by
two orders of magnitude and correspondingly narrow in
frequency.

VI. NEARLY ISOTROPIC MEDIA

In this section we shall consider the simplifications
in the theory which come from neglecting all the
unimportant effects of the anisotropy. An approxi-
mation of this kind has already been introduced in
connection with the Poynting vector (54). The justifi-
cation for this approach is the small anisotropy found
in most crystals. Typically the anisotropies of crystals
are of the order of a few percent, as we noted for KDP
in the preceding section. This does not mean that the
anisotropy is entirely unimportant. It seems probable
that SHG experiments giving large outputs will make
essential use of anisotropy for index matching. This is
because matching in an isotropic medium is only
possible if there is anomalous dispersion somewhere in
the range ce/2 to i0. The anomalous dispersion would

e= m'I

Q, = —fPss~

where e' is a constant. The eigenvalues of 0., are

(86)

), 0) —y {2)—0 ), {3)—

and the eigenvectors are described by

s U, ("=s U, ('&=0, U, &'& = s. (89)

The index surface consists of a single sheet, a sphere of
radius m; nevertheless, there are two free waves belong-
ing to any direction s, since both U, o& and U, &'& are now
allowed directions for E. Similarly, the eigenvalues of
oA, are

XJ,{"=) k,
{')=Q"—e' Ag{') = —S' (90)

and the eigenvectors satisfy (89) with s replaced by s&,.
The plane forced wave (16) is

R'= 4m p,/(e" —rp) —4m pi/e', (91)

where P, and Pi are the transverse and longitudinal
parts of P, respectively. For most purposes it is more
useful to have the forced wave in the form (44) with the
singularity at m'=e removed. It has been shown in
Sec. IV that this is equivalent to combining 8' with
the rejected wave from the surface of the medium.

We now suppose the medium has a small anisotropy

e= n'I+8&, (92)

where 5e is a small dyadic with zero diagonal sum. For
any 8 there are now two free waves corresponding to
the two sheets of the index surface. These waves may be
designated n, s, U„&'& (s) and et&, s, U»o& (s), and the
transverse parts of U o&, U»o& may be written U i"&,

Up~"&. Then it follows from (7), and the fact that e is
symmetric, that U, &'& and U»io& are orthogonal if
Srr Q 0P)

(n '—e»')U. ,o& U», o& =0. (93)

imply the presence of a significant absorption at a&/2,

or co, or both. An absorption at ~/2 would limit the laser
power that could safely be used without burning the
crystal, while absorption at ~ would prevent obser-
vation of SHG. Therefore, we shall regard matching as
primarily an anisotropic effect. Likewise the direction
of polarization of the second harmonic waves will be
determined by the anisotropy, even though it may be
extremely small. These are the essential effects of
anisotropy which must be retained in the theory, while
at the same time treating the problem in all other
respects as if the medium were isotropic. This nearly
isotropic approximation should be valid for most
crystals, including, of course, the isotropic crystals for
which it becomes exact. Recently SHG has been
observed in the isotropic crystals NaC103 (symmetry
T) and ZnS (Td).

First consider an isotropic medium for which
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From (7) and (92) it may readily be shown that the
longitudinal components of U "' and U&)(" are given, to
first order in be by expressions of the form

U &'&= —e 's bc U "& (94)

X ('}=X~('}=—rP —s 8e s

to order 8e. To the same order

(95)

Similarly, it may be shown that the transverse com-
ponents of U "', Us") are small quantities of order bE,

and the corresponding eigenvalues are given by E& 2~i (I——/cn) (N. s&,)-'(P Uq&')),

E2 ——2~i(co/cn)(N sA.) '(P U/, (')),

Eg ———(47r/e') (P U/, (') ),
(104)

Once p~ and q2 have been obtained, it is unnecessary
to distinguish between s~, s2, and sl, . The appropriate
forced wave is

E,(r) = LE&(N r)g(2itt, )U, (')

+E2(N. r)g(2j&p2)U/(2)+. E3U/(3))c'(~/c)n's/: r (103)

where

Z (»= —Z (»=n2 —n~ (96) &P, = (co/2c) (N s/, )-'(n' —e,)N. r,
&p~= (~/2c) (N. s/, )-'(n' —n;)N r.

(105)

n s/t;
—eys& = (pyN,

I

le s„—e2s2= q2N.

For the nearly matching case,

(100)

It is apparent that it is unnecessary to deal with two
sets of eigenvalues and eigenvectors if components of
order 8e may be neglected. We introduce a single set of
unit eigenvectors U, (/) def&ned by

U &'&=U.,&" (s), U (') =Up, (')(s), U, &'&=s, (97)

where it is understood that U g(&) (s) and U/&~") (s) are to
be raised slightly to unit length. These vectors satisfy
the conditions (89) for an isotropic medium. Light may
propagate with its electric vector along U, &'& or U, &'&

with refractive index m&=m or e2 ——ep, respectively.
Similarly the eigenvalues of n& for the nearly isotropic
medium are

l(/, ")——(n" n&') —
X&,

")——(e" n2') —l(/, ")—— n' (98)—
and the eigenvectors are

U/ &" = U.(")(s/) U/(') =Up)('& (s/, ) U/ ('& = s/, . (99)

We now consider the nearly matching case defined in
Sec. III, where it is shown that the singularity at
) I,

"'——0 can be removed by adding a suitable free wave.
It is evident from (98) that both l(/, &') =0 and X/, (') may
be very small, and, therefore, it would be desirable to
go one step further than was done in (30) and eliminate
the term in (1/l(&, ")).This leads to considerable compli-
cations in the general case, but can be done very simply
in the nearly isotropic approximation. This is because
E2 given in (25) does not depend on E~ if the longi-
tudinal components of U&(r") and U»r(2) are neglected.
The relation between s& and s is determined by the
index surface and the surface normal vector N. Since
we are taking into account both free waves instead of
only one as in Sec. III, there will be two relations of the
form (28)

Coherence lengths can be defined for the Ej and E'2

waves according to (46):

l,.h
&') = (27rc/(o)/ & e' n& I, —

4.,(') = (2~c/~)/
~

e' —n, ~.
(106)

The energy Qow in the E& and E2 waves may be written
according to (55)

5& ——(7r/2cn) (P U/, &&))'cu'P(sin'P~)/PP(N s/)'

S2——(s./2cn} (P.U/, (")'aPP (s&n'Q2)/&p2'(N s/, )',
(107)

For the isotropic medium, (103) and (104) may be
combined to yield

E/, (r) = L2&ri(~/cn) (N s/) '(N r)g(2g)P, —4~P(/e'j
Xci (~/c) n'sk r (1(l8)

and (107) becomes

5= (~/2cn) P~'aPl'(sin'f)/)P'(N s&,)'. (109)

For the consideration of surface waves discussed in
Sec. IV, it is sufhcient to neglect the anisotropy com-
pletely. This is because matching has no eAect on
surface waves, and F of (66) may be taken as E' of (91).
It is convenient to choose for U "', U/&&')

U &')=U„Up(&)=U„, U, XU„=s, (110)

where U), and U&& are perpendicular and parallel,
respectively, to the plane of incidence, the plane of
N, s, s/, . The perpendicular and parallel components of
the electric field of the surface wave s will be denoted
EI and Elf. Similarly we express K, in terms of perpen-
dicular and parallel components 8,&, E,fl, where E„li is
measured along the direction s,XU, . Finally F is
written in terms of its components Ii&, Fl 1, F~, where F11

is measured along s&, XU, and F( is the longitudinal
component. Let 8„8/„8.be the angles measured from N
of s, sf„s„, respectively. Then for an isotropic medium,
(74) becomes

tn' —ef&&1,

it follows from (100) that

qg ——(n' —eg)(N s/, )
—',

q2=(n' —e2)(N sg)
—'.

(101} p, =p).=F) (e' cos8/, ncos8, ), —
P//=P&& =F

&& (e cos8~ —n' cos8,)—F(n sin8&,

7=1
Q =Qii ——U)XN(cos8„cos8, —n) —N sin8„cos8„
Q&&

=Q&, =U&, (cos8,—n cos8,).
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Other useful relations are

Ui& NXUi=cosH„

s„Q&XQii= (cosH„—I cosH, ) (e cosH„—cosH, ),

and from (10) and (27) Snell's law

e' sin0A, ——e sin0, = sin0, .

(112)

(113)

which represents an ellipsoid of revolution. For KDP
n„=1.534, e,=1.487, and the matching angle for which
a= no is 0~=49.9'. The angle p between the normals of
the index surface and the effective-index surface is
p=1.8'. From (51) and (59) with N N, =so'Ny=1 we
obtain P =4.2 X10' cm '. The laser beam typically has a
width 6=~"=4.4X10 ' rad. Thus the coherence length
for the laser pencil in this experiment was

The usual form of Fresnel's equations" is obtained from
(114)and (115)by setting F&

——0, e' = 1, and interpreting
—F as the incident wave according to (80).

A more convenient form for (114) is obtained by
taking the limit I' ~ I, since ~N' —.I

~
will ordinarily

be small; from (91) and (114) the vacuum wave then
becomes

E„g=—2m'PgL(R cosHp —cosH„)N cosHy j
E„i& —2mP&&L(Ã——cosHg COSH. )s cosHy] cos28q

+4nP~ sinH~[(n cos8„—cosHq)m) '. (116)

Since E„ is insensitive to the matching condition as
pointed out in Sec. IV, and in practice ~e' —I

~
should

be only a few percent, it is expected that (116) should
be adequate for most situations. At normal incidence,
cos0~ ———'cos0, =1, it reduces to

E„= 2+P(/(m—'+ n), , (117)

which shows that the vacuum wave is of the same order
of magnitude as the longitudinal wave in (91) or a
badly mismatched wave in a highly anisotropic crystal.

VII. APPLICATIONS TO KDP AND QUARTZ

Consider first the experiment of Giordmaine' on
potassium dihydrogen phosphate (KDP). The laser
beam passed through the crystal as an ordinary ray.
The effective-index surface is then a sphere of radius"
1.506, so the matching index is eo = 1.506. If the ordinary
and extraordinary refractive indices at the second
harmonic frequency are denoted by e, e„and if 0 is the
angle between s and the optic axis, the equation for the
index surface is

e '=N~ ' cos'8+v ' srn'8 (118)
"All the refractive index data for KDP quoted here was

obtained by Giordmaine from extrapolations of published data
in the visible region of the spectrum.

The vacuum wave (75) becomes

E„,=F,(N' cos81, N—cosH, )/(cosH„—I cosH, ),
E„&~

——F„(ecosH I,
—m' cosH, )/(e cosH„—cosH, )

—Fqe sinHI /(e cosH„—cosH, ), (114)

and the free wave in the medium (72) becomes

Eg=Fg(B cosHy —cosHy)/(cosHg —'I cosH, ),
E~i=F~~(cosHA, —n' cosH„)/(e cosH„—cosH, )

F~ sinH~—/(m cosH„—cosH, ). (115)

t...'-0.11 cm, («9)
which may be compared with the crystal thickness
t=0.22 cm. This corresponds roughly to the thick
crystal case (65), but it is a little more accurate to use
(58) and (62); from (62) F(Plh)=F(4.0)=0.42. The
second harmonic polarization may be written

P,=2d36E,E„, P,=P„=O. (120)

The notation here is similar to the usual piezoelectric
notation'. EE in (1) is regarded as a column vector with
components E,', E„', E,', 2E„E„2E,E„2E+„,and d
is a 3X6 matrix, which for KDP has only the com-
ponents d~4, d25 ——d~4, and d36. Since only the second
harmonic extraordinary wave is matched, we regard Ej
in (104) as the extraordinary wave and ignore E2 and
E3. Thus

P.Ug&'& =P, sinH~,

and we assume N s~= l. From (58) and (107)

(121)

S=E 'E '(2~oPP/ceo)d ' sin26rF(Plh) (122).

In the optimum orientation E,=E„, so that 4E 'E„'
=(8 /7'c)'oS ',Iwhere Sr, is the laser intensity inside
the crystal. Thus (122) becomes

S=Sr,'(32~'aPl'/c no )d ' sin'8 jrF(IHlA). (123)

d36 6X10 "esu (KDP). (124)

As a second example consider quartz, the crystal in
which SHG was first discovered. ' We suppose that the
crystal is a s-cut plate (plane of plate normal to the
optic axis); then the transverse component of polari-

"J. A. Giordmaine (private communication).

The intensities actually measured are outside the
crystal. It would be possible to rewrite (123) to include
a transmission factor so that S and Sl, could be inter-
preted as outside intensities. For a crystal in air with
smooth Qat surfaces the appropriate factor would be
64n'/(v+1)6. For v=1.5 this factor has the value
0.885, which is so close to unity, in view of the un-
certainties in experiments of this kind, that S and S~
in (123) may be interpreted as measured intensities
with negligible error. Giordmaine'0 has observed a
second harmonic power of —,

' mW with a laser power of
3 kW and a beam area of 0.2 cm'; thus, S 2.5&104 esu
and Sz, 1.5X10" esu. With the numbers given it is
possible to solve (123) for de~,
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.zation is given by

Pt d»——E'= d»(8~/cn )Sr„ (125)

where Sl, is the laser intensity in the crystal, and d» is a
second order polarization coeKcient in the conventional
notation. For the orientation assumed, the relevant
optical constants" are those of the ordinary wave at the
laser and second harmonic frequencies; thus e'=1.541

.and n=1.566. Quartz is a good example of a nearly
isotropic medium; in fact, the anisotropy is considerably
less than the dispersion,

so that matching is impossible in this region of the
spectrum (to/27rc=28, 800 cm ') for any orientation of
the crystal. Therefore the medium may be considered
isotropic for our present purposes, and 5 is given by
(109) with Pt given by (125) and f given by

P = (co/2c) (n' n)l— (126)

From (109), (125), and (126)

S=Sr2(128srs/(n' —n)2cn) drr2 sin2$. (127)

The periodic dependence of S on /, predicted by (127),
has been seen experimentally by Maker et al. ,

' who
found that the maxima in S are separated by 63=14p.
This distance is to be identified with the coherence
length for the wave l„h, from (106), with nr ——n~ ——n,

f=1/ct, (130)

where n is the full apex angle of the focal cone which is
assumed small in the theory. If the focus is formed by a
lens in air of focal length /', and if the beam diameter is a,
the effective f/number is

quartz, on the other hand, it was unnecessary to
consider the spread of the beam, since, in the experi-
ment' referred to, interference effects are clearly
resolved.

VIII. FOCUSED BEAMS

When the laser beam is focused within the crystal
a very intense polarization P(r, t) is produced in the
region of the focus. In this section we shall consider SHG
by focused laser beams in an isotropic medium of
refractive index e" at the laser frequency and e at the
second harmonic frequency. If desired the main effects
of a small anisotropy can be taken into account in the
final formulas by allowing e to be a function of the
direction of the second harmonic radiation. The theory
is beset by one major difhculty, which is to account in a
reasonable way for the effects of partial coherence in
the beam and aberrations in the lens. When both these
effects are absent the focus is determined entirely by
diffraction, and may be called an ideal focus.

The theory of the ideal focus has been given in great
detail. "The nature of the focus is determined by the
f/number of the system.

l,.„=1.5X10—' cm= 15p, , (quartz) (128) f =n "i/a (131)

in good agreement with the experimental value. With
sin'/=1 and Sr, 1.5X10" esu it was observed' that
one blue photon was produced for 5)&10"red photons;
thus S/Sr. ——4X 10 ".It is now possible to solve (127)
for dye,

d» 1X10 ' esu (quartz). (129)

We shall not enter into a discussion here of the values
obtained for the second-order polarization coefficients,
except to point out that they are several orders of
magnitude smaller than predicted by Franken et al.2

According to these authors d should be of the order of
an inverse atomic electric field, an example of which
would be the energy gap of an insulator divided by
the interatomic spacing; therefore one would expect
d 10 ' esu. To explain the discrepancy between this
estimate and the measured values (124) and (129), it
would be necessary to consider the mechanism of the
second-order polarization at optical frequencies. In
this section we have analyzed two types of SHG
experiments. In the case of KDP where the beam
passed through the crystal in a matching direction, it
was necessary to use (58) which takes into account the
angular spread of the beam; this leads to (122) contain-
ing the function F(s) de6ned in (60). In the case of

"American Institute of Physics Handbook (McGraw-Hill Book
Company, Inc., New York, 1957), Vol. 6, p. 23.

The intensity at the focus is

(132)

(/I y /If
s br/ 2yllf (133)

Near the edges of this cylinder the intensity is quite
small, and varies smoothly to 5, at the center. Since
the SHG varies as the square of the fundamental
intensity, the effective rttdiating volume is roughly a
cylinder with dimensions half those of (133),

(=8Xf', 8 =2h.f, V= ~esrg', (134)

where X is the second harmonic wavelength X=—,'X".
Within this volume the focused beam is essentially a
plane wave in the direction of the axis of the system and
having a compressed wavelength X', where

X'=X"L1—(4f) '$. (135)

The effective refractive index e' describing the plane

"Reference 10, Sec. 8.8.

where Sl, is the laser intensity in the medium, and X"
is the wavelength in the medium at the laser frequency.
The region of high intensity is conveniently regarded as
a cylinder of length $" and diameter 8", where
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wave in the cylinder (, O is, therefore,

ri'=e" [1+(4f) 'j, (136)

E(r) = L( '/c')P(r')C (r r')—

assuming 16f'))1.
We shall assume that the conditions in an actual

focus are somewhat as follows: The volume of the focus
is larger than that given by (133) and the intensity is
much less than 5, . On the other hand the volume
which can radiate coherently is still given by (134). We
picture the actual focus as a bundle of cylinders (134)
side by side radiating incoherently with each other. The
total SHG will be proportional to the number of these
cylinders and to the square of the volume of the
cylinder.

As an example consider a quartz medium with
m"=1.57, a laser beam of diameter a=0.5 cm. , and a
lens of focal length t=1 in. =2.54 cm. From (131)
f=g, from (135) li'/X"=0. 999, and from (134) (=120',
8=5.6p, (1@=10 4 cm). It will be observed that $ is an
order of magnitude larger than the coherence length in
quartz' t„h 14p, . We should therefore expect matching
considerations to be important just as in the case of
parallel beams. The wavelength compression effect
(135) is very small in this example, but could be
significant in a highly converging system f 1 Since.
$ is so large, it is probably insensitive to small amounts
of incoherence in the focus.

The volume (134) contains what we shall consider a
plane polarization wave of the type (11) with constant
amplitude inside the cylinder and zero amplitude
outside. The wave vector is of the form (2) with si
along the axis of the cylinder and e' given by (136).The
cylinder therefore acts as an antenna which radiates an
electromagnetic 6eld" at the second harmonic
frequency,

where P,= (I—ss) P is the transverse part of P, 8 is the
angle between r and the axis, and

sin[((ri'/e) —cose) n.$/lip
(141)X(p,e) =

[((e'/n) —cose)~g/li j
2Ji[(~O/li) sinej

D(o,e) =
[( O/X) sinS)

In the limit of a small source $ ~0, 8 —+0 we have
X=D= 1, and (140) gives the familiar formula" for the
radiation field of an electric dipole Vp. The function
D(O, O) gives the diffraction pattern of the cylinder of
diameter 8. This function has a maximum value of
unity when its argument (are/li) sine=0, and vanishes
when the argument is 3.8. If we neglect the small
amount of radiation outside the central peak, the full
apex angle of the second harmonic radiation is es-
sentially n, the angle of the focused laser beam. In the
function X($,8) we see a coherence behavior dependent
on e', m very similar to that which occurs for parallel
beams. In the spirit of (46) the coherence length may
be defined as the smallest value of $ which causes
Xg,e) to vanish,

l,.h ——li/[(n. '/e) —cosej. (143)

For 8=0, this agrees with (3) and (46), but the addi-
tional possibility now exists of choosing 8 to satisfy
the matching condition 8=0~, where

c so Oii=rB /I, (144)

providing e'(e. This will not lead to large SHG unless
28~ lies within the apex angle o. of the central peak of
D(O, O), the focal cone. Nevertheless, D(O, O) does not
vanish outside this cone, so that a weak but sharply
defined ring may aPPear at angle emir. If emir((1, (144)
becomes

—n—'(v P(r'))p'4 (r—r'))dr', (137) e~——(2[1—(I'/I) ])'". (145)

C (r r&)
~

r r&
~

ici(~ic)n'(r —r'( (138)

where v' operates on the coordinate r', and C is the
Green's function

Normal dispersion alone would be expected to give
eir 10', neglecting the compression effect (136) and
assuming an isotropic medium. I"or angles 0 close to
eir, (141) may be written

The second term under the integral in (137) has the
effect of subtracting off the longitudinal part of P(r).
By means of an integration by parts, (137) can be
written

sin[(8 —8~) (O~m. /ii)
x(p, e) =

[(8—8~)g~/xj
(146)

E (r) = ((u'/c') (I—ss) .P (r') e (r—r') dr', (139)
The angular width of the matching ring is, therefore,
(the width between zeros)

where s is a unit vector in the direction r—r . The
integration may readily be carried out for the radiation
field at a great distance r))r'. The result is

E( ) = V( '/ ')P,x(& 8)D(O 8) 'i"""", (140)

"Reference 14, Chap. VIII.

68= 2'A/)OM = 1/4f eir, (147)

providing 0~/0.
I'or quartz, and the other conditions of the example-

previously given in this section, (147) gives 88=0.04
rad 2'. At 8~=0.18=10.5', for this example,
D(O, ejr) =0.054, while at 8=0, X($,0) =0.071. There-
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fore we should expect the spot in the forward direction
due to D and the ring of angle 10.5' due to X to have
roughly comparable intensity. Actually, (140) cannot
be expected to give the radiation pattern in detail,
since the assumption of a cylindrical focus containing
a plane wave is only a convenient approximation.

No convenient formula for the total radiated power
can be given which is valid for all cases. The usual case
is that 0~ exists and lies well outside the focal cone.
For this case, or for the case when 0~ does not exist, a
simple approximate formula can be given for the total
power in the focal cone:

8 2 C3

Power= —P„~,
rP (e' —~)' (u'

(148)

which assumes an ideal focus. Since P& is proportional
to 5, , which according to (132) varies as f ', the
power should vary as f '. It is dificult to estimate d
from focused beam experiments using this formula
because of uncertainties about the nature of the actual
focus. In any case (148) should be an upper bound on
the power unless 8„~~ falls within the focal cone. For the
matching case e'=e, 0~=0 the power is

2~4 2

Power = c PEP.
Ss

(149)

This result may be compared with (109) with /=0
for a parallel beam in an isotropic medium in the
matching case. To obtain (109), with /=0, it is only
necessary to divide (149) by the area (~/4)5' of the focal
cylinder, and interpret $ as the path length x.

The formulas of this section remain valid for slightly
anisotropic crystals, providing e is considered a function
of the direction of x. This takes the anisotropy into
account as far as the radiation from the focal cylinder is
concerned. There may, however, be an additional effect
~ue to the distortion of the focus. Ke shall not attempt
to treat the distortion problem, since it is only part of
the much larger problem of characterizing ao actual
focus. Furthermore, there are two important cases in
which the distortion would vanish: (a) the crystal is
uniaxial with the axis along the beam axis, and (b) the
crystal is uniaxial with the axis perpendicular to the
beam axis and to the electric vector of the beam. In
general, a focused beam experiment will produce in an
anisotropic crystal both waves belonging to a direction
s. In a uniaxial crystal both the ordinary and extra-
ordinary waves will be produced. For certain orien-
tations, however, crystal symmetry may require one
or the other to vanish. For isotropic crystals (species T
or Tq) P& vanishes if the beam is directed along one of
the crystal axes in the usual notation. v For uniaxial
crystals in arrangement (a) defined above, I', vanishes
except for types C3, C3„, D3, and D3~. In arrangement

(b) only the ordinary wave is obtained from types C&&,

D3, and D», while only the extraordinary wave is
obtained from types C4, 84, C4„D~g, C6, and C6,. The
output of D2~, D4, and D6 vanishes when the beam is

along any crystal axis. Thus it is a relatively simple
matter to arrange an experiment which produces only
one wave.

In this paper we have considered the electromagnetic
field arising from a dielectric polarization of the kind
that might be produced at the second harmonic
frequency by a laser beam. The general formulation
of Sec. II begins by postulating the existence of a plane
polarization wave which acts as a source term in the
inhomogeneous vector wave equation for the electric
field. The plane wave solutions are determined by an
extension of the methods familiar in the theory of
crystal optics. A distinction is made between forced
waves, which are particular solutions of the inhomoge-
neous equation, which vanish when the polarization
vanishes, and free waves, which can propagate in the
absence of sources. It is shown that the plane forced
wave has a singularity in the matching case when the
velocity of the polarization wave equals that of a free
wave in the same direction. A separate treatment of the
matching case is given which leads to a forced wave
of linearly growing amplitude. Absorption and optical
activity are neglected, but anisotropy is treated
rigorously.

In Sec. III a forced wave is constructed suitable for
the nearly matching case which remains finite and goes
over into the correct solution in the matching limit. It is

shown that the linearly growing wave in the matching
case arises from interference between the plane forced
wave and the matching free wave. In the nearly
matching case the forced wave is periodic with a period
which increases as the matching condition is approached.
This behavior is described in terms of a coherence
length defined as the distance between zeros of the
amplitude of the forced wave. Then a beam is considered
consisting of a narrow pencil of plane waves. slightly
differing in direction and centered on a matching
direction. A general expression is given for the output
intensity which is characterized in terms of two special
cases, the thick crystal and the thin crystal. A coherence
length for the beam is defined which depends on the
beam spread. For crystals thinner than this beam
coherence length the intensity varies as the square of
the thickness, and for thicker crystals it varies linearly
with the thickness.

In Sec. IU the complete solution is obtained for the
electromagnetic field for the case of a semi-infinite
medium having a single plane surface. This involves

finding the appropriate combination of forced and free
waves so as to satisfy boundary conditions on the
surface. It is shown that the problem is analogous to the
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Fresnel problem of 6nding the reQected and transmitted
wave when a plane wave is incident on a plane surface.
It is also shown that the forced wave constructed in
Sec. III, from arguments based on the general proper-
ties that it should possess, can be derived directly from
a detailed consideration of the surface. It is shown that
the rejected wave in vacuum is insensitive to matching
conditions in the crystal, which may provide a very
good way of measuring the second-order polarization
coeScients.

In Sec. V the effects of the 6nite size of the beam are
discussed. The effect due to the anisotropy of the
medium combined with the finite aperture is called the
aperture effect. This e8ect can limit the effective
coherence length in very thick crystals. Due to the small
anisotropy of actual crystals the effect will not ordinarily
be important. As an example, KDP is considered, and
it is shown that the maximum coherence length is about
16 cm for a beam aperture of 0.5 cm.

In Sec. VI the general theory for anisotropic media
is applied to the case of the nearly isotropic medium in
such a way as to retain all the essential e6ects of the
anisotropy and neglect all minor effects. It is pointed
out that most anisotropic crystals may be considered
nearly isotropic. The general theory of surface waves of
Sec. IV is applied to an isotropic medium. It is shown
that the familiar Fresnel formulas may be derived in
this way.

In Sec. VII experimental results on KDP and quartz
are analyzed according to the theory of Sec. VI. Values
are obtained for the second-order polarization coeK-
cients in these materials.

In Sec. VIII the theory is given for second harmonic
generation by focused laser beams in an isotropic
medium. The intense region of the focus is somewhat
idealized as a cylinder containing a plane polarization
wave. The cylinder then radiates like an antenna
giving rise to the second harmonic output. The result
contains two factors representing coherence effects,
one of which is the diGraction pattern characteristic
of the circular end of the cylinder, and the other
depends upon the matching conditions very much like
the forced wave for parallel beams. It is shown that the
second harmonic radiation comes out in a cone of the
same angle as the focussed laser beam. In addition,
there may be a larger thin ring of radiation due to the
matching condition. Expressions are given for the total
radiated power in the main cone for the matching and
nonmatching cases. The theory is based on an ideal
focus determined entirely by diffraction. The effects
of aberrations and partial coherence are described
qualitatively but not treated in detail. The treatment
can be extended to slightly anisotropic crystals if the
dependence of refractive index on direction is taken
into account.
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