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The dependence of the lattice vibration Hamiltonian upon the excitation state of an electron or nucleus
is examined as a possible source of thermal broadening of narrow-line electronic spectra or Mossbauer
spectra in solids. A simple model is proposed to illustrate this mechanism and calculational techniques
described to determine the line width appropriate to that model. Application to the Méssbauer problem
shows the absence of any observable thermal broadening except in the case of localized modes. The mecha-
nism is consistent with the observed thermal broadening of the narrow lines of ruby, but that specific prob-
lem appears to be too complex to permit a detailed test of the theory.

INTRODUCTION

HE recent extensive studies of the narrow-line
spectra of solids, both for their own interest and
for laser applications, and the discovery of the Moss-
bauer effect have stimulated an interest in mechanisms
for line broadening of such spectra. Markham! has re-
viewed many of the theoretical ideas about thermal
broadening, but that review, and the work which it
considers, are primarily concerned with lines which are
broad compared with the typical lattice vibrational
frequencies. An understanding of the breadth of narrow
lines requires a somewhat different point of view and is
the subject of this discussion.

The thermal broadening in both instances may be
considered as resulting from transfer of energy to the
lattice vibrations, or phonon field, simultaneous with
the electron transition (or nuclear transition in the case
of the Mossbauer line), and the fact that there is an
uncertainty in the amount of this energy transfer. The
qualitative difference is that in the case of broad lines
the transfer typically involves the excitation of several
or many phonons while in the narrow-line problem the
total number of phonons remains unchanged.

The discussion will be in terms of a greatly over-
simplified model of an electron with two allowed energy
states. In the ground state the energy of the electron is
assumed independent of phonon coordinates and in the
excited states the energy varies as the square of the
local strain. The theory and arguments of Van Vleck,?
familiar in the discussion of linewidths in magnetic
resonance, predict many of the features, including the
linewidth, of the absorption line associated with this
simple model. The phonon field is treated in the Ein-
stein, the Debye, and an optical branch model with the
surprising result that the predictions concerning the
linewidth, even in the high-temperature limit, are quali-
tatively different for the Einstein and the other two
models. Finally the narrow red lines of the ruby spec-
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trum and the Mossbauer effect are discussed in terms
of this model.

MODEL

The formal discussion in the following sections will
be in terms of a simple system which will illustrate the
important features of the broadening mechanism tobe
described. No serious attempt will be made to justify
the applicability of the model to real systems though
the arguments which lead to its construction are essenti-
ally those of the Born-Oppenheimer approximation.!

In that approximation one treats the combined elec-
tronic-nuclear problem in two steps. The first is to solve
the electron problem for fixed nuclear coordinates. The
second is to use the electronic energy eigenvalue, which
depends on the assumed nuclear coordinates, as a poten-
tial for the nuclear problem. The problem of concern
here is a system with two allowed electronic energies
and the calculation of the line shape of the transition
between these two levels. The Born-Oppenheimer pro-
cedure must now be used to describe both the ground
and excited states.

Throughout the paper, in most of the numbered equa-
tions, all energies will be expressed in units of angular
frequency (equivalent to setting #=1) and both w and »
will be used to denote angular frequency. wp will denote
either the Einstein frequency or the Debye frequency
according to the model in use. Temperatures will be
expressed in units of the characteristic temperature,
fiwp/k, for the model in question.

The simplest model which shows the qualitative
features suggested by the Born-Oppenheimer approach
is described by the Hamiltonian

H=H+H,+Hse,1). (1)

H, describes the energy of the electron for the equi-
librium positions of the nuclei which are assumed to be
the same in the ground and excited electronic states.
(Ey—Eq,) will denote the difference in energy of the
excited (e=1) and ground (e=0) electronic states for
these nuclear positions.

The phonon Hamiltonian and its dependence on the
electronic eigenstate are expressed by the remaining
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two terms. In the ground electronic state (e=0) the
phonon Hamiltonian is simply

H,=%; wi(aia+3), (2)

where the a," and @, are the creation and annihilation
operators for the 7th normal mode of the system. In the
excited electronic state (e=1), the phonon Hamiltonian
contains the additional term, H..

A simple assumption for H,, with the condition that
the equilibrium nuclear positions are the same for both
electronic states, is the quadratic form

H,=(1/N) (2. ais)’. )

N is the number of normal modes contributing to the
broadening, #; the coordinate of the ith mode, and «;
a measure of the coupling of the 7th mode to the electron.

Markham,! and references quoted there, discuss the
various degrees of sophistication with which the Born-
Oppenheimer approach may be applied. The present
example is the simplest and may result in the neglect of
important contributions to the linewidth. The object
of this paper is to understand one mechanism in detail,
not to establish that this mechanism dominates. The
many approximations implied by Eq. (1) will not be
discussed, except for one assumption.

The apparently most severe assumption in Eq. (3)
is the neglect of linear terms in the &;, or the assumption
of zero nuclear displacement upon excitation of the elec-
tron. In first-order perturbation such terms do not give
a lifetime breadth since in typical problems the elec-
tronic energy (E;— Ey) is greater than any of the phonon
energies. In higher order they can contribute to radi-
ationless decay of the excited state and hence to lifetime
broadening. This case can be easily identified experi-
mentally if fluorescence measurements can determine
the excited state liftime. Finally such linear terms can
contribute in various orders to a continuous background
similar to the An=2 transitions discussed later in this
this paper. Although the existence of these terms may
influence the intensity of the observed narrow lines,
they do not contribute to the observable breadth. Hence,
the linear coupling terms in H. are neglected not be-
cause they may be shown to be small, but because they
are of no interest for the present problem.

In the electron problem the term H, arises because of
the dependence of the force constants of the normal
modes on the electronic state or, alternatively, H,
represents the dependence of the electronic energy on
the normal coordinate amplitudes, presumably through
the local strain at the electron associated with the mode
excitations. For the ith mode, the associated strain is
proportional to the gradient of the displacement field
or to the wave vector of the 7th mode. In the Debye
approximation, since the wave vector of a mode is pro-
portional to the frequency of the mode, the coeffi-
cients,a;, will be proportional to the mode frequencies, w;.
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In the Mdssbauer problem Josephson?® has shown that
the second-order Doppler shift can be treated by using
for H, the difference in kinetic energies of the ground
and excited nuclear states which results from the excess
mass, M = (E,/c?), of the excited nucleus. The term,
a;t,, in H, is, therefore, proportional to (8M)'2w,£; and
again a; is proportional to w;.

Noting that for either problem «; is proportional to
w;, and using the transformation to the second quantiza-
tion representation,

¢i= 1/ 2mw;) 2 (as+ait), 4)
one has
He=(a/N)[Z:wi"(@+al) P, ®)
where
a= (a2/w?) (#/2m). (6)

The magnitude of the coupling coefficient, «, is con-
veniently expressed as the ratio of the zero-point shift of
the line [see Eq. (15a) below ] to the characteristic fre-
quency of the phonon spectrum. For the case of ruby,
Kiel* calculates an @ of about 0.5, and for the Fe®
Mossbauer line a typical a=2E,/Mc is 2)X10~7. The
following calculations are based on the small value of
the parameter o since it is the inequality a<<1 which
characterizes the qualitatively different behavior of the
narrow- and broad-line spectra.

METHOD OF MOMENTS

The problem now is to calculate the line shape as-
sociated with the transition between the ground and ex-
cited electronic states of the system described by the
Hamiltonian (1). In the absence of the interaction
term, H,, the line would not be broadened since (a) the
energy of the excited electron would not depend on the
phonon occupation number and (b) the selection rule
An,=0 for each mode would assure that no energy could
be transferred to the lattice vibrations by phonon excita-
tions. If the interaction term, H., is included, however,
neither of the above conditions is satisfied. (a) Because
of the dependence of the excited state energy on the
normal coordinate, there will be a temperature-de-
pendent energy shift which is proportional to the mean
square excitation of the various modes and a line breadth
resulting from the statistical fluctuations of the excita-
tion of these modes. (b) The term H, implies that the
set of coordinates, £, which diagonalize the lattice
Hamiltonian in the ground electronic state, do not form
a set of normal coordinates when the electron is excited.
If the labels, 7, for the ground-state normal modes are
used also for the normal modes of the excited states,
then one may say that H,. relaxes the selection rule
An;=0 and the consequent excitation or de-excitation
of the normal modes gives an additional contribution
to the line breadth.

3B. D. Josephson, Phys. Rev. Letters 4, 341 (1960).
4 A. Kiel, Phys. Rev. 126, 1292 (1962).
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Although it may be very difficult to calculate the
detailed shape of the absorption implied by this model,
the calculation of the first few moments may be carried
through by standard techniques,?% and a knowledge of
these moments may give some meaningful indications
concerning the observed line broadening. The eigen-
states of the system will be indexed by an electronic
quantum number ¢=0 or 1 and by a set of /V phonon
occupation number, #;, which will be indicated sche-
matically by a simple index / for the ground electronic
state and I for the excited electronic state. Remember
that because of the term H, the sets of phonon occupa-
tion numbers, !/, refer to different normal modes than
the sets I. The phonon states I’ are eigenstates of H,+H.
while the states ! are eigenstates of H, alone. The
normalized #th moment of the line may be written as

("y=A4 T 1exp(—E/kT) v | (01| P|11) |
X (Ex+Ev—E«—Ey)r, (7)

(1/4)=2 1 exp(—Ey/kT) Xv| (01| P[10)[*. )

P is the operator coupling the electron or nucleus to the
electromagnetic field which gives rise to the observed
optical or y-ray transition.

In the Condon approximation! (already implied by
the form of the Hamiltonian) the matrix element
(01] P|1’) may be written as the product of an electronic
or nuclear matrix element, (0| P|1), with the projection,
(2|7, of the initial phonon state upon the final one.
It is convenient to suppress the electronic contribution
to the energy, (E1—E,), by computing the moments
of the lines with respect to (E1—E,) as origin, and in
all subsequent relations the origin of frequency is taken
as (E;—E,). Factoring the matrix element (0|P[1),
and noting that in Eq. (8) Xu|(|V)|?=1, Eq. (7)
becomes

m)y= v 1) [P (Er—Ev)")r, ©)

where
JO)yr=021 f() exp(—E/kT) ]/ 20
Xexp(—E/kT). (10)

The great difficulty in predicting the line shape is the
complexity of finding the eigenstates of the Hamiltonian

Intensity ——
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F16. 1. The spectrum at moderate temperatures for the
Einstein phonon dispersion.

5 M. Lax, J. Chem. Phys. 20, 1752 (1952).
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H,+H. and their projections, (/|!’), onto the unper-
turbed phonon states. The power of the method of mo-
ments is that this step is not necessary. Note that expres-
sions such as (!|7) (Ey— E;)" may equally well be written
as (| (Ev—E)*|V). If (Ev—E)* is expanded with
terms in Ep on the right and terms in E; on the left,
then E; may be replaced by H, and Ey by H,+H,
since
(| Hy=(| Ey, (11a)
and
(H,+H) [1)=Ev |1). (11b)

Note that one can #ot simply replace (Ey—E;) by H..
When (Ey—E;) has been replaced by an operator
equivalent, the sum over !’ simply represents a matrix
product and the first four moments simplify® to

@)=(CH:|D)r, (12a)
= (UH|D)r, (12b)
y=(UHM-1/2[[Ho,H, ], H ]| D), (12¢)
)= HA[HS, [HoHp]1—[HeH P D)r. (12d)

The moments (12) will not give useful predictions
concerning the shape of the observed spectral line. Con-
sider a typical term in the Hamiltonian, H., which will
be of the form (a.'a;"+aa;+asa,f+afa;) and assume
for the moment that all of the normal modes have a
single frequency, wp. It is easy to show by perturbation
arguments that the spectrum will be as shown in Fig. 1.
The term (a.'a;'+a.a;) relaxes the selection rules to
allow the creation or annihilation of phonon pairs (or
quartets in higher order) simultaneous with the elec-
tron transition. These transitions appear as the lines
near y==2wp, f=4wp, --+ in Fig. 1 and correspond
classically to frequency modulation of the electronic
transition by the lattice vibrations. The term
(a.a;'+a.ta;) gives the dependence of the excited state
energy on the total number of phonons, Y, #., and pro-
duces the fine-scale asymmetric broadening of each of
the components.

In calculating the moments (12) the satellite lines
contribute significantly to the second moment and com-
pletely dominate the higher moments. Since only the
central component is seen experimentally, these mo-
ments give no useful information about the observed
line. This same problem of domination of the higher
moments by satellite lines is encountered in magnetic
resonance problems? and may be eliminated by suitable
truncation of the Hamiltonian. If the offensive terms,
(aita;t+aia;), are simply omitted and the moments
(12) calculated using

H'=(a/N) 3. 0wt (a0 +a.la)) (13)
in place of H,, these moments will correspond to the de-
6 These results are obtained most easily by putting #/2 powers

of (Ev—E;) into the element (/|#’) and the remainder into the
element (V'|1).
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sired experimental line shape. (In the Einstein model the
truncation removes some intensity, of order a4, from the
central component, which is unimportant for small a.
For the other phonon models, used later, the correspond-
ing terms in a* give no contribution to the narrow line.
Hence, for most cases of interest, this error introduced
by truncation is negligible.) In the following sections
the moments of the line will be calculated for several
phonon models using (12) with H, replaced by H'.
This truncation procedure may be contrasted with
the problem of broad-line spectra where the vibrational
sidebands are not resolvable. Here, the full Hamiltonian
would be used to calculate the moments.

EINSTEIN MODEL

The simplest model for the lattice vibration spectrum
of a solid is the Einstein model in which the normal
mode frequencies are degenerate. The normal mode co-
ordinates in thismodel are typically chosen to correspond
to independent oscillations of individual atoms. On
the basis of this choice, Snyder and Wick” predict a
line shift and linewidth for the Mdssbauer line which is
essentially the same as that given by Egs. (15a) and
(15b) below.

One is led to an apparent contradiction, however, in
using another of the conclusions of Snyder and Wick,
namely, that if V nonlocalized modes are important in
describing the motion of the nucleus, then the width is
of order (1/N)/2 smaller than that given by the single-
mode model. The contradiction arises because in the
Einstein model the assumed degeneracy of the normal
frequencies implies that any orthonormal set of linear
combinations of atom displacements can serve as a set
of normal coordinates. Hence, one should obtain physi-
cally equivalent results starting either from localized
modes or extended modes, yet apparently the two ap-
proaches give different conclusions.

The moment calculation of Snyder and Wick assumes
the selection rule, An,=0, that none of the oscillators
should change its occupation number. This corresponds,
in the present formalism, to a further truncation of H.,
namely to

H"=(a/N) 3; wi(a:a+alar).

If one includes only the less restrictive selection rule,
> i An;=0, that the total number of phonons be con-
served, and computes the moments from (12) using Eq.
(13) for H’, then the results are entirely equivalent to
the single-mode calculation of Snyder and Wick and
give

(14)

(»y=0wp(2i+1), (15a)
(?) =aPwp? (8M2+87i+1), (15b)
() =adwp® (487 + 7212+ 267+1), (15¢)
() =atop* (384744 1687+ 46472+ 80+1),  (15d)

7H. S. Snyder and G. C. Wick, Phys. Rev. 120, 128 (1960).
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with
A= {nyp=[exp (hw/kT)—1]. (16)

Thus, there is no contradiction when the extended-
mode model is correctly treated, the important point
being the necessity of including the interference terms
between different modes. These terms, included in H',
Eq. (13), but not in H”, Eq. (14), give rise to “Raman
transitions” in which some modes gain energy, while
other modes lose energy during the electronic transition.
This description is somewhat awkward in the case of
the Einstein model, where the localized mode picture
is much simpler, but is necessary in understanding the
behavior of real crystals where the dispersion of the
phonon spectrum cannot be neglected.

The results of this section, atlhough useful in intro-
ducing the method of calculation, are applicable to real
systems only in the case of broadening by very narrow
phonon bands or by localized modes. The first case will
be considered in more detail in a later section. For the
second, it is straightforward to calculate exactly the
spectrum, which will have resolved components of
spacing awp (similar to Fig. 1), and it is pointless to use
the present methods.

One comment of interest is that in the limit of zero
temperature all of the moments about the mean,
(v)=awp, become zero, showing that there is no zero-
point breadth to the line, in contrast with broad-line
spectra. The reason, of course, is that the zero-point
breadth of the broad lines arises from the same terms
which give the satellite lines in this calculation. These
satellites remain at absolute zero but do not contribute
to the width of the central component.

MOMENTS IN THE DEBYE MODEL

Unfortunately, the Einstein model does not give even
an approximately realistic picture of the broadening
by the lattice vibrations, even in the high-temperature
limit where the Debye and Einstein models typically
give similar predictions. This is because of the strong
qualitative dependence of the commutator [H',H ] on
the nature of the phonon dispersion. Evaluation of the
commutator gives

[H',Hp]= (a/Z\T) Zzﬂc 031,1 /zwj1/2wk
X[ (a.aff—aitay), arart] (17)
= (2a/N) X 0wt (wi—wj)a:a;,

which is zero if all of the w;’s are the same.

For any model with appreciable phonon dispersion,
and in the limit of small e, the terms containing [H’, H , ]
in the third and fourth moments completely dominate
these moments. Hence, the effect of the phonon dispersion
is to increase the third and fourth moments of the line
without altering significantly the first and second mo-
ments. This is reminiscent of the effect of exchange or
motional contributions to the Hamiltonian in magnetic
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resonance problems?:® which likewise contribute to higher
moments but not the second. As in the magnetic reso-
nance problem, the increase in fourth moment without
alteration of the second moment may be achieved by
extending the wings of the line and narrowing the center
of the line. The extension of the wings of the line is easy
to see physically. It was shown in the previous section
that transitions described by An,=-1 and An;=—1
must be included to get physically reasonable results.
With phonon dispersion, such transitions will involve
an energy transfer (w,—w;) to the phonon field and one
expects contributions to the line from the wings as far
out as wp, which is much greater than the root second
moment of the line if & is small.

Thinking classically, one may interpret these transi-
tions as the result of frequency modulation of the elec-
tron transition by the combined action of modes ¢ and
7, giving sidebands at |w,—w,| from the central line.
If the modulation index, or ratio of frequency deviation
to modulation frequency, is large or of the order of
one the sideband will be strong, but if the modulation
index is small the line will be very weak. The problem is
to find, in a system of many modes, for what range of
frequency differences, |w;—w;|, the modulation index is
large, since this range will roughly be the linewidth.

The program is to calculate the moments of the line
and then to fit these moments to a plausible line shape
which will be called the “model line.” The width of the
model line should correspond to the spectral width ob-
served experimentally. The weak point of the argument
is, of course, the choice of the “plausible line shape.”
In the analogous magnetic resonance problem the choice
of a Lorentzian line shape with a cutoff in the extreme
wings has received theoretical justification.® The same
model line will be used here, though without justification
beyond its consistency with the computed moments.

The calculation of the moments is straightforward
and gives, neglecting terms of order 1/N,

(n)=(/N) i wi(241),
GN=(a/N)? 3 s; wa,[ 87.7;+ 81,417,
()= (a/N)* Lk wwjwr
X [4877A,7+ 7277+ 267+ 1]
+4(/N)? 2205 wiw;(wi—w;)j,

<V4>: (a/1\7)4 Zu‘kl w,ijkwl[384ﬁiﬁjﬁkﬁ;

~+ 7681717+ 4647 7+ 801, +17]

+8(a/ N)? 2o i wiwjwr

X (w;—wi) (e—7:) (27,41)

F4(a/N)? 245 wiwj(wi—w;)* @A 1)R;.  (18d)
Note that the first and second moments and the leading
terms in the third and fourth moments are simply

generalizations of the moments obtained in the Einstein
model. The largest terms in the third and fourth mo-

(18a)
(18b)

(18¢)

8 P. W. Anderson, J. Phys. Soc. Japan 9, 316 (1954).
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ments are those of order o? which arise because of the
commutator [H",H,] in Egs. (12). In the remaining
arguments o will be assumed small and only the terms
of order o? in the third and fourth moments will be
retained.

These moments may be rewritten by replacing the
sum over normal modes by an integration over a
Debye spectrum. Making the replacement

(1/N) s flw) — / 3@ordde,  (19)
and defining

wD
Au=epr / 3(@Hwpt)do=3wp/ (1+3), (20)
0

and

“D 3wt ndw
B.=wp" / X (21)
o wp*texp(hw/kT)—1]

the moments become
(v)=a(2B1+4,), (22a)
(")=0?(8B+8B14:+41%), (22b)
(v')~402(4:B1— Byd) (22¢)
(V4>%4a2[2 (B3B1—Bg*)+A43B1— 2A232+A1Bs:]. (224d)

It is important for later arguments to note that in the
expressions for the second through fourth moments the
terms of the form 4B involve interference between the
zero-point motion of one mode and the thermally
excited motion of another mode while the terms of the
form B2 give the contribution to the moments from inter-
ference between thermal motion of two modes. Simi-
larly the terms involving only 4 give pure zero-point
effects. There is a zero-point shift, but again no zero-
point width since the dispersion is zero at absolute zero.

LINE SHAPES IN THE DEBYE MODEL

The moments (22) give the formal conclusions of the
Debye theory in the approximation a<<1. It remains to
interpret these moments in terms of actual line shapes.
Because of the complexity of the expressions for the
moments this will be attempted only for the limits of
high and low temperature.

The low-temperature case is the more difficult and
will be considered first. In this limit the integrals B,
are given by

Ba=wp" T3 (n+2) 1t (n+3), (23)

where T is the temperature in units of the Debye tem-
perature and ¢ is the Riemann zeta function. Converting
the moments (22) to moments about the mean, the
terms of lowest order in T are

(=) ~ePwp’[ 545 (4T +HO0(TH)+ - ], (24a)
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{(r=(»))*) =a®wp’[ (216/5)§ (4)T*+O(T®)+- - - ], (24b)
{(r— (M) ~a2wp[36¢ (&) T*HO(T5)+ - - - 1. (24¢)

These expressions derive from terms in the moments
of the form 4B which correspond to the following proc-
ess: Simultaneously with the electron transition, a ther-
mally excited phonon is destroyed and a second mode is
excited from its zero-point level to a one phonon state.
Since only low-frequency modes will be thermally
excited, the phonon which is destroyed will be of low
frequency while the one excited may be of any frequency.
Hence, these terms give a broad spectrum, see Fig. 2,
which extends from within 27 of »=0 to the Debye
frequency. These terms do not contribute to any peaking
near »=0 and should not be included when determining
the shape of the central peak. This will be true of all of
the terms of the form 4B and can be verified even more
directly for the case where only the leading term (e 7%)
contributes to each moment. Perturbation theory argu-
ments, appropriate for discussing the wings of the line
but not the center, indicate that the intensity con-
tributed by the 4B terms will be

I48(v)=Kp, (25)

for y>wpT. The contribution of this part of the line to
the moments will be

((r—=())*)as=EKwp*/4, (26a)

(=) )ap=Kwp?/5, (26b)

((r—=(N)*)as=Kwp%/6. (26¢)
Note that if K is chosen to be

K=216(c?/wp®)(4)T*, 27

the perturbation theory line shape (25) predicts cor-
rectly the moments (24). Hence it is concluded that the
AB terms contribute only to the broad background, not
experimentally observable, and that the breadth of
the central spike is associated with the B? type terms.

The shape of the central line is described by the terms
in (22) of the form B? which result from Raman processes
in which both of the modes are thermally excited. Since
only modes with frequency up to several 27 are ap-
preciably excited the tail of the line associated with the
B? terms can only extend several 27" from »=0. A
Lorentzian model line will be used with half-width
A and a cutoff in the wings at §. The argument above
suggests that 6 should be several times £7', or, in the ap-
propriate units, several times wp7. The dispersion and
fourth moments of the model line, in the limit A<S,
are’

(r—w))?) =240/, (28a)
{(r—{p))Hy=2A8%/3r. (28b)
These are to be compared with the contributions of

9 C. Kittel and E. Abrahams, Phys. Rev. 90, 238 (1953).
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F16. 2. The spectrum at very low temperature for the
Debye phonon dispersion.

the B? terms to the moments which are, in lowest order
in T,
{((r—{)Ner=1.5X10%2wp?T®, (29a)

(=) =1.3X10%2wp*T™. (29b)

Equating the actual moments to the model line
moments gives for the model line half-width,

A=480(awpT*)?/wpT,
and for the cutoff,

(30)

6=5wpT. (31)

This cutoff is in gratifying agreement with that esti-
mated on physical grounds and gives confidence in the
consistency of the model line shape.

The result for the linewidth, Eq. (30), has been ex-
pressed in a form similar to that encountered in magnetic
resonance problems.?81 awpT* is the linewidth that
one would expect from the B? terms of Eq. (22) if all
of the contributing normal mode frequencies were the
same. The actual linewidth is reduced by the ratio of
that width to the ‘“motional frequency” which in this
case is the dispersion in frequency of the contributing
modes, wpT, or (kT/k) in conventional units.

Note that the temperature dependence of the line-
width is much greater than that of the line shift (which
varies as T*), and also that the predicted width is much
less than the shift, by roughly the ratio of the shift to £7".

The same procedure is followed in the high-tempera-
ture limit where the coefficients B, are,

Bn=wp"[3/ (n+2)]T+0(19). (32)

Keeping only terms of highest order in 7, the moments
are

wy=~awp2T, (33a)
{((r—())¥)=a?wp™aT?, (33b)
(r—()*)=a’wp?(3/20)T, (33¢)
{(r— () =awp*(3/10) T2 (33d)

The asymmetry of the line, indicated by ((v—(»))?),
results from the same type of transitions which gave the

10D, Pines and C. P. Slichter, Phys. Rev. 100, 1014 (1955).



1732 R. H.
background (I4p=Kp) in the low-temperature limit
and represents interference terms between the thermal
and zero-point motion. This third moment is only linear
in 7" and in the high-temperature region the line becomes
symmetric.

Assuming the same model line, the cutoff is expected
to be the order of the Debye frequency since that is the
maximum energy transfer possible in a process
An,=-+1, An;=—1. Comparison of Egs. (28) with
Egs. (33) gives a cutoff

6=0.48wp, (34)
and a half-width of the model line
A=13 (awDT)Z/wD. (35)

Again the cutoff is consistent with physical arguments
about the line shape. The linewidth again shows mo-
tional narrowing—it is the width that would be calcu-
lated on the Einstein model but reduced by the ratio
of that width to the Debye frequency.

LINE SHAPES FOR AN OPTICAL PHONON BAND

The expressions (18) for the moments of the line
are appropriate for any choice of the phonon dispersion.
A particularly simple choice, and one which is useful in
estimating the contribution of optical phonon branches
to the linewidth, is a model with a constant density of
modes in a bandwidth W about a mean frequency wp
The sums of Egs. (18) are replaced by integrals:

wpt+W/2

fwi)dews,

wD—W [2

A/N) 2 f@) — (/W) (36)

which are easily evaluated in the limit W<wp and
W2Kwp?T. [If the inequalities are both satisfied then
all terms of the integrals may be considered constant
except the differences, (w,—w;).] To lowest order in this
approximation the moments become

() ~awp (21+1), (37a)
((r=()?) =de?wp*(*+n), (37b)
(= (»))*)=0, (37¢)
((r= ()" = (2/3)aPwp*W(72+-1). (37d)

In this example the cutoff of the model line is expected
to be about W, and comparison of (28) with (37) gives

=1 N2)W, (38)

which is consistent with the prediction. The half-width
of the model line becomes, for any temperature,

A=NWZr[ewp? (@+7)/ W], (39)

again showing the characteristic form of a motionally
narrowed line.

An interesting feature of most of the linewidth results
is that the temperature variation of the linewidth is

SILSBEE

roughly as the square of that of the line shift. This rela--
tion is obeyed at high temperature for both Debye and'
optical branch models and in the Debye model at low
temperature. The exception is the optical branch model
at low temperature, 7%, where the linewidth is pro-
portional to the shift, but reduced by the narrowing
ratio, (awp/W).

The other important feature is that the effectiveness -
of an optical branch in broadening such a spectral line
is inversely proportional to the width of the branch.
Of course, if the width W of the phonon band is small
enough to be comparable with the square root of the-
second moment, Eq. (37b), then the narrowing does not
occur and the results reduce essentially to those of the:
Einstein model.

APPLICATIONS

The calculations above show the existence of a thermal
broadening of the Mdssbauer line via the second-order
Doppler shift even when a large number of modes con-
tribute to the shift. It is convenient to express the width
for the Debye model at high temperature, Eq. (33),.
in terms of the second-order shift, (33a), as

20=06.5(v)*/wp.

Because of the ‘“motional narrowing,” the width is
smaller than the shift by the ratio of the shift to the
Debye frequency or about 10~7 for Fe®, corresponding
to a width of only about 107 of the lifetime broadening.
Hence, though the width implied by the value of the
second moment would be comparable with the shift, the
narrowed width is far less than one would expect to
observe.

If there is significant interaction with an extremely
narrow optical branch of the lattice vibration spectrum
this width will be enhanced but probably not enough to
be observable. If, however, localized modes exist at
the nucleus then the arguments of Snyder and Wick
are applicable and the broadening may be appreciable.
Note that if the broadening is associated with a single
localized mode it should appear in the form of structure
as indicated in Fig. 1, not as a simple smearing of the
line. This assumes, of course, that other sources of
broadening allow resolution of the structure.

Schawlow’s experimental results, Fig. 2 of reference 4,
on the thermal broadening of the R lines of ruby stimu-
lated the development of the results given above. Al-
though the ideas developed in this analysis may be
pertinent to a qualitative understanding of Schawlow’s
results, a detailed picture must undoubtedly be quite
complex. This results from two observations. First, a
may ot be assumed small since the coupling estimated
by Kiel corresponds to an a of one half. As noted below,
this may not be a serious problem for low temperatures.
Second, the very complex phonon spectrum of Al,O;
precludes the use of a simple Debye model. The results
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.of Raman spectroscopy™ and the presence of vibrational
sidebands in the ruby infrared spectrum show the pres-
ence of optical modes in the frequency range 140 cm™
to 900 cm™. For the experimental range of tem-
peratures, these modes should certainly contribute to
the linewidth comparably with the acoustic modes with
a Debye temperature, based on calculations from the
elastic constants, of 600°K. Despite this complexity, a
few remarks may be useful.

It seems unlikely that the width is due to acoustic
modes alone. The fact that the observed width is much
less than 27 over the whole range of interest, or that
ALK, allows the use of Egs. (29, 30) even though a~1.
But these equations imply a 77 dependence of A which
is in marked disagreement with experiment.

It is proposed that the breadth is, in fact, dominated
by optical rather than acoustical modes, since there ap-
pear to be modes available which would achieve ap-
preciable thermal excitation at these temperatures. By a
suitable choice of the coupling to the various modes and
of the breadth of the branches it should be possible to
fit almost any experimental curve. Hence attempts to
fit the experimental curve in detail seem rather point-
less. It would certainly be fruitful to study the width of
narrow line electronic spectra in hosts with a simple
phonon spectrum.

U R. S. Krishnan, Proc. Indian Acad. Sci. 26, 450 (1947).
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CONCLUSIONS

A greatly simplified Hamiltonian is proposed and
studied in an attempt to understand the linewidth of
certain narrow optical and v-ray transitions in solids.
The analysis illustrates how to obtain meaningful
results for the observable linewidths in terms of the
calculable moments of the line. Several models for the
phonon spectrum are treated and shown to have mark-
edly different qualitative behavior as regards their in-
fluence on the observed line width. The study shows that
in principle the Mossbauer line has a finite breadth as a
result of the coupling to the phonon field via the second-
order Doppler shift, though, except in the case of local-
ized modes, the breadth is probably not observable. In
the case of the ruby narrow line spectrum, though the
mechanism of line broadening proposed by Kiel* is
probably qualitatively correct, the complexity of the
phonon spectrum for Al,O; prevents detailed compari-
son of theory with experiment.
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Anomalous Quadrupole Coupling in Europium Ethylsulfate*
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Hyperfine structure, apparently of pure quadrupolar form, has been observed in the Eu3" ion in a neo-
dymium ethylsulfate lattice. It has twice the predicted magnitude and opposite sign to that calculated on
the basis of a pure ground electronic configuration of the type 4. Arguments are presented for ascribing
the anomaly to the admixing, through the crystal-field potential, of the state 5p%6p 1D, into the closed-shell
state 599 1S0. For Eu®2, we find Psa= — (6.720.5) X 10~* cm™ and for Eu'®, Pise= — (8.32=0.7) X 10~4 cm™,
The spin and parity assignments of 2— for the 1531-keV state in Sm!® and the 1400- and 1723-keV states
in Gd'®, as well as the electric-dipole multipolarities of the radiations depopulating these states, are con-
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firmed. The quadrupole moment of Eu'® is found to be 3.29+0.37 b.

I. INTRODUCTION

NE of the significant trends in chemical and atomic
physics in the past few years has been the in-
creasing awareness, both experimental and theoretical,
of small hyperfine structure effects which cannot be
explained by the very simplest models, involving only

* Work done under the auspices of the U. S. Atomic Energy
Commission.

t Present address: Laboratories de Bellevue, Bellevue (Seine et
Qise), France.

valence electrons in pure, noninteracting hydrogen-like
orbitals. These effects are observed, for example, in
some internal magnetic fields, in antishielding, and in
the influence on hyperfine structure of higher-order
crystal-field interactions and deviations from Russell-
Saunders coupling.

We report herein a case in which such subtle effects
are clearly present, namely, the existence of hyperfine
structure in the ground state of Eu®t. This ion has
(in the usual approximation) the electronic configura-



