
PHYSICAL REVIEW VOLUME 128, NUMBER 4 NOVEMBER 15, 19'62

Energetic Stability of Persistent Currents in a Long Hollow Cylinder*

F. BLocH
Stanford Unioersity, Stanford, California

H. E. RORSCHACHt

Rice Urliversity, Houston, Texas

(Received June 21, 1962)

This paper represents an extension of the work of Schafroth in
which the carriers of electricity in a superconductor are assumed
to constitute an ideal Bose gas. The long-range electromagnetic
interactions are fully taken into account by the method of the
self-consistent field. The corresponding general equations are ob-
tained from a variational principle applied to the total energy of
the system, and the change of the total energy due to individual
particle transitions is considered. Axially symmetric solutions are
found for the geometry of a long hollow cylinder and for the case
in which all particles are in the same lowest single-particle level
compatible with the angular momentum /'0 around the cylinder
axis. This case represents a state of the system in which /' Qux

quanta are trapped in the cylinder. Assuming the lattice to be at
T=0, such a state will be stable against single-particIe transitions
if the corresponding energy change of the system is positive. This
state need not be the state of lowest energy, but it would have a
practically infinite lifetime if the stability criterion against single-

particle transitions is satisfied. Indeed, its energy could only be-

lowered by a simultaneous transition of a number of particles com-
parable to their total number, which would be an extremely rare
event. It is shown that stability depends on the fields H1 and H2
in the cylinder hole and outside the cylinder, respectively. For-

H& ——H2, stability requires that these fields be less than H*= 471-npo, .

where e is the density of the bosons and p,o is the Bohr magneton.
For Hs =0, it requires that H«(H, )r where (H, ) r depends upon
the hole radius r~ and the wall thickness d. For d))r1, one finds.

(H,)r=He, while for d«rr, one has (H,)r= (d/r~)H* The diffe. r-
ence between (H,)r and He for d«r& is further investigated, and
it is shown that the case for which H*)H&) (H,)r may neverthe-
less experimentally appear to be stable since the stability condi-
tions are strongly modified considering that the transfer of very
small but finite amounts of energy to the lattice may not occur
during the time of a measurement.

I. INTRODUCTION

'HE recent discovery'' of magnetic flux quanta
hc/2e has furnished an important clue toward

the basic understanding of superconductivity. The idea
of quantized trapped Qux in a multiply connected
superconductor was first suggested by London'; his

arguments were based upon the behavior of the wave

function in the field-free region inside a superconductor
and indicated that the trapped Qux should appear in

integer units of I'tc/e. These arguments seemed mis-

leadingly to apply to the Qux surrounded by any ring-

shaped quantum mechanical system, but Byers and
Yang4 have clarified the particular properties of the
superconductor which are essential for Qux quanti-
zation. Their work shows that the free energy of the
conduction electrons, although generally a periodic
function of the trapped flux with period hc/e, exhibits

negligible variations in the case of a normal conductor.
In contrast, the existence of pronounced periodic
minima of this function and, hence, the appearance of
Qux quantization must be considered to be peculiar to
the superconductive state. Furthermore, the observed

magnitude of the Qux quantum indicates the occurrence
of such minima not only at integer but also at integer
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plus one-half multiples of hc/e and suggests as a simple
interpretation that the carriers of electricity in a
superconductor consist of electron pairs with an
effective elementary charge twice as large as that of a
single electron.

The relation of this feature to the pair correlation in
the theory of Bardeen, Cooper, and Schrieffer, ' has
been pointed out by Byers and Yang, 4 Brenig, ' and by
Onsager~ who, in the same connection, has also empha-
sized the usefulness of Schafroth's' model of the
superconductor as a condensed Einstein-Bose gas of
electron pairs. The same model was used by Blatt to
show that it leads automatically to Qux quantization
and to a reduced magnitude of the Qux quantum in
very small superconductive rings. '

The present paper deals in some further detail with
the properties of a charged boson gas, chosen as a
model for the superconductive state of a metal. This
choice was primarily motivated by a desire for mathe-
matical simplicity, and additional simplifying assump-
tions will be introduced below to the extent to which

they can be made while still retaining the essential
features of the phenomena under consideration. The
model does not account for some of the important
properties of real superconductors, notably the observed
existence of a gap in the energy spectrum, but we
believe that it bears on reality in the description of

5 J. Bardeen, L. N. Cooper, and T. R. Schrieffer, Phys. Rev.
108, 1175 (1957).' W. Brenig, Phys. Rev. Letters 7, 337 (1961).

7 L. Onsager, Phys. Rev. Letters 7, 50 (1961).
M. R. Schafroth, Phys. Rev. 100, 463 (1955).' J. M. Blatt, Phys. Rev. Letters 7, 82 (1961).
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electromagnetic effects and that the methods and
results presented here are of sufficiently basic character
to find their qualitative counterpart in a totally
adequate theory.

The treatment is largely an extension of the earlier
work of Schafroth. ' It is thus assumed that one deals
with an ideal gas of bosons in the sense that their
short-range interactions are negligible, that only their
long-range electromagnetic interactions need to be
considered, and that these can be treated by the method
of the self-consistent 6eld. The underlying idea that
the bosons originate from a formation of spinless
"di-electronic molecules" is used by considering their
charge "e" to be twice that of the electron.

The principal goal of this paper is to investigate the
stability of the currents which are responsible for the
Meissner effect and for the persistent Aux trapped in
the interior of a superconductive ring. It was shown by
Schafroth that the Bose model leads to a Meissner
effect if the gas is below the temperature at which
Einstein-Bose condensation occurs, and if the magnetic
Geld is less than a critical value. For simplicity, it will

be assumed here that the gas is in thermal contact with
a lattice which is at the temperature T=O. Transitions
of the gas which lead to an increase of its energy are,
in this case, excluded and the problem of stability
reduces to the question whether or not there occur
transitions accompanied by a decrease of its energy.
It will be shown that for a long hollow cylinder of given
inside and outside radius, the answer to this question
depends upon the magnetic field both in the interior
and the exterior region. For sufficiently weak fields,
only the highly improbable simultaneous transition of
a number of bosons comparable or equal to their total
number can lead to a decrease of energy so that one
deals with a metastability of the trapped interior Aux

which amounts to a practically indefinite persistency.
Beyond certain critical fields, however, single boson
transitions will be seen to become energetically possible,
and their occurrence will presumably lead to a rapid
collapse of the superconductive currents.

Starting with the expression for the total energy of
a system described by this model, the second section
of this paper deals with the equations for the self-
consistent field and develops the formulas necessary
to calculate changes of the energy. The particularly
simple geometry of a long hollow cylinder is introduced
in the third section, and axially symmetrical solutions
of the equations are discussed. In the fourth section,
the results are applied to investigate stability and Aux

quantization for cylinders of different wall thickness.

II. TOTAL ENERGY AND THE EQUATIONS FOR
THE SELF-CONSISTENT FIELD

The equations for the self-consistent 6eld can be
conveniently derived from an extremum principle
applied to an appropriate form of the total energy of

the system. We consider in this model a system of cV

spinless bosons with mass m and charge e" under the
inhuence of an electromagnetic field which is partly of
external origin and partly due to the average field
produced by all particles. It shall be described by a
vector potential A and a scalar potential U/e, so that
U represents the potential energy of a particle. As
pointed out by Schafroth, ' it is essential to include in
U the neutralizing effect of the lattice ions, and it is
permissible for this purpose to attribute to them a
uniformly distributed charge equal and opposite to
the total charge of the bosons. It is further important
to consider the effect of an external magnetic field,
and the corresponding contribution to the vector
potential A must be distinguished from that due to the
currents in the superconductor itself; this latter
"internal" contribution to the vector potential will be
denoted by A;.

A stationary state of the system is to be characterized
by the occupation numbers E, of individual particle
states s, described by a complete set of orthogonal and
normalized wave functions P, . The corresponding total
energy of the system can then be written in the form

Z=P 1V, Q,*Kg,d~ mUd~+—— LcurlA, ]'d7.
8 8~

)grad Ug'dr. (1)
8xe'

The first term in this expression represents the me-
chanical energy of the system, and the Hamiltonian
operator for the individual particle is given by

The second term accounts for the potential energy of
the neutralizing ions, described by a uniform charge
density —ee inside the metal of volume V where
e= )V/ V is the mean value of the number of bosons per
unit volume. The third term is the energy stored in the
magnetic field I;=curlA; which is produced by the
motion of the charged bosons, and it accounts for the
work done against their forces of mutual induction
while the system was brought into the state under
consideration. The last term represents the negative of
the energy stored in the electric field E= —(1/e) gradU.
This term has to be added since twice the positive
amount of this energy is already contained in the
potential part of the mechanical energy of the bosons
together with the potential energy of the neutralizing
ions. Equation (1), thus, correctly represents the total
energy as the sum of the kinetic energy of the particles

'0 In accordance with the underlying idea of electron pairs,
mentioned in the introduction, the charge and mass of these
particles should be understood to be twice those of the electron.
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and the electromagnetic energy of their accompanying
fields, and it can assume only non-negative values.

The self-consistent field equations are obtained by
demanding that the expression of Eq. (1) for the energy
E has an extremum against independent variations of
the functions it„U, and A;. Indeed, the equation
bE/8$, *=0, obtained upon variation of the conjugate
complex of one of the wave functions P„ is equivalent
to the time-independent Schrodinger equation,

SCAN, =E,Q, , (3)

8 8
=—Re g X.if,* —grad —-A P, . (7)

ns C

To each given set of occupation numbers E, there
belongs a definite value of the total energy. To obtain
this value, one has to solve the Eqs. (3), (4), and (5)
with the appropriate boundary conditions and with the
chosen numbers X, appearing in the Eqs. (6) and (7)
for the charge and current densities; inserting the
solution for the wave functions and potentials, the
energy of this particular state of the system is then
found by evaluating the expression for E given in Eq.
(1). It is evident that this procedure may become
prohibitively involved for an arbitrary geometry and
arbitrary occupation numbers; however, it will be
carried out in Sec. III for the simple geometry of the
long hollow cylinder and for the case of greatest interest
in this paper where all particles are in the same state.

1' The fact that the variation of the wave functions is con-
strained by the normalization J'lp, lsdr= 1 is taken into account
in the usual way by considering the eigenvalues E, as Lagrange
multipliers, i.e., by subtracting from E the sum Z, ftf, li,j'

l f, ~

dr
The variation of P, leads to the conjugate complex of Eq. (3).
While the index s does not originally refer to any specific ordering
this may be achieved, for example, by labeling the states s in the
order of increasing eigenvalues E, of R.

"The symbol "Re" in Eq. (7) signifies the real part of the
subsequent expression; in obtaining the variation of K upon that
of A;, it has to be noticed here that the total vector potential A
appearing in Eq. (2) differs from the internal contribution A; by
the part A, =A —A;, which is due to a given external magnetic
field and, therefore, is not to be varied with A;.

for the individual particle states. "One obtains further
from oE/SU=0 the Poisson equation

V'U= —4n-ep,

and from oL'/oA;=0 the Maxwell equation

curlH, = curl curlA;=4m-i/c,

where, in view of the Hamiltonian 3C of Eq. (2), the
charge and current density, respectively, are given by"

To investigate stability, it is further of importance
to calculate the change of energy of the system upon
a certain change of the occupation numbers. Under
otherwise general conditions, we shall erst investigate
the case where one particle is transferred from its
initial state s' to a 6nal state s" while all other particles
remain in their original states. Partly, one has to
consider here the explicit change DX, = —1 and
AX, = 1 of the occupation numbers E, and X, ,
respectively, in the first part of the energy of Eq. (1).
The corresponding change of E is given by

AE= f; *Kg."dr P:"B—CQ;dr

or, because of Eq. (3) and of the normalization of the
wave functions, by

AE=Q, AX,E„ (9)

where the eigenvalues E, are still those of the Hamil-

AE=E,"—E, ,

where the individual particle energies E, and E., are
eigenvalues of the Hamiltonian K of Eq. (2) with A
and U corresponding to the original occupation
numbers. It is necessary, in addition, to consider the
changes hA and AU of these functions and, conse-
quently, also the change Alt, of the wave functions
which result from the transfer of the particle from state
s' to s" since they may likewise affect the total energy
of the system. The causes of these changes, however,
are the changes of the charge and current densities
which can be seen, from Eqs. (6) and (7), to be only
of relative order of magnitude 1/X, since all but one
of the E particles remain in their original states. The
relative change of f„A, and U is, therefore, likewise of
this order of magnitude, but this fact alone is not
sufficient to justify their neglect, even for a very large
total number X of particles, since the change 5E of
Eq. (8) is itself of order 1/E in comparison to the total
energy E. The true justification arises from the circum-
stance that the original value of E was obtained from
an extremum principle so that the contribution to its
change which is linear in that of the functions to be
varied has to vanish. The additional quadratic and
higher terms are indeed of higher order in 1/1V, and
their effect upon the energy change for a very large
number E of particles is thus completely negligible in
comparison to the value AE of Eq. (8).

While the preceding considerations refer to the
transition of a single particle, they can be extended to
an arbitrary change AX, of the occupation numbers as
long as this change does not materially affect the charge
and current densities, i.e., as long as one deals with
transitions in which the overwhelming majority of the
particles is not involved. In this case, the change of
energy is more generally given by
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tonian with A and U determined by the 6elds corre-
sponding to the original set of occupation numbers. A
more rigorous derivation of Eq. (9) is presented in
Appendix I. Including the next higher term of order
1/E, it is shown there that

"Aux quantum""

y*=2m 5%
and to thus de6ne the dimensionless quantities

(13)

AE= Q, DÃ, (E,+2~DE,), (10) ~'(r) =0'(r)A', a(r) =&(r)A*.

where DE, is the first-order change of the eigenvalue
E, of the Hamiltonian K, caused by the modification
of A and U, upon the change 61V, of the occupation
numbers.

It is true that Eq. (9) as well as Eq. (10) lose their
validity if the number of particles participating in a
single transition is comparable to the total number E
since not only the second term in Eq. (10) but also all
higher neglected terms are then appreciable. It will be
seen in Sec. III that such transitions cannot, in the case
of trapped Aux, be excluded for energetic reasons, but it
can be safely expected that their corresponding matrix
elements are so exceedingly small as to amply account
for the observed extreme stability of persistent currents.

III. AXIALLY SYMMETRICAL SOLUTIONS FOR A
LONG HOLLOW CYLINDER

The geometry of a long hollow cylinder has not only
the advantage of mathematical simplicity but it also
describes adequately the actual conditions of the recent
experiments' ' on Qux quantization. We shall investigate
axially symmetrical solutions of the Eqs. (3), (4), and
(5) for a circular cylinder of length L, very large com-
pared to both its inner and its outer radius r~ and r2,
respectively. The wall thickness of the cylinder will be
denoted by

d=r2 —r~,

ei(kz+l8) f (r)
(La)'~'

The function f,~ has to satisfy the conditions

f,((r&) = f„(r,)=0 (16)

at the radial boundaries of the metal" and the condition
of normalization

r2

2~ f,P(r)rdr=a

The expression for the total energy of Fq. (1) has
then the form

For the same reasons of symmetry, the scalar potential
and, hence, the potential energy U of a particle depends
only on r.

The state s of an individual particle can then be
characterized by two quantum numbers k and l which,
multiplied by 0, represent the components parallel to
the s axis of the linear and angular momentum, respec-
tively, and by an additional radial quantum number q.
With the index s replaced by the symbol k/q, the
corresponding wave function can thus be written in
the form

and its cross sectional area by

a=or(r2' —rp).

2'
QXA,)q-

a ~«

r2 Q2 — df 2

P2 2

Cylindrical coordinates r, ter, and s shall be used where r
measures the distance from the cylinder axis, tI the
angle around it, and s the distance parallel to the axis.

Because of the assumed axial symmetry both the
internal Geld H;=curlA, , produced by the motion of
the particles, and the total Geld 8= curlA are parallel
to the axis and depend only on r. Their magnitudes can
therefore be written in the form

1 de;(r)a()=; &()=2' dr 2ms dr

1 dy(r)
(12)

where p; and p represent the corresponding amounts of
Aux contained within the radius ~, and are related to
the tangential components A;(r) and A (r) of the vector
potential through the equations

$;(r) =2mrA;(r); $(r)=2~rA(r).

It is further convenient to measure Aux in units of the

(~—~)'
+ f,P +Uf, P rdr —2~eL

r'

r2

L (fic ' " 1 dn )' L " tl'dU)'
+—I—

4~e r dr) 4e' (dry

and the variation of the three functions f,t, U, and n
of r results in the equations equivalent to Eqs. (3), (4),

"Kith the understanding that the symbol e represents twice
the charge of the electron, one has in the conventional notation
y*=hc/2e.

'4 Strictly, the boundary conditions at the ends of the cylinder
demand that the wave function vanish likewise for the corre-
sponding values of s, so that it should be described by standing
rather than by running waves in the s direction. It would be
misleading, however, to achieve this by a s dependence in the
form of the factor sin(ks). As pointed out by Schafroth and
further discussed below, the Coulomb forces demand that the
square of the wave function be practically constant, so that the
form chosen in Eq. (15) provides a far better and, in fact, per-
fectly adequate description of the actual conditions.
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and (5):

1 d dfo( 1———r +&'f,(+ (&
—n)—'f, i +Uf, &

2ns r dr dr r'

=&oi,f,~(r),

1d dU 1
——r = —4x-e' —Q 1Vo(,fpP r4 ~—,
r dr dr U &to

(20)

d 1 dn; 4m-e' 1
r—— = — —Q 1Vo(, (l n) f—,ts,
dr r dr mc' V 1«~

(21)

where V =I.a is the volume of the metal. The right side
of Eq. (20) and (21) has to vanish outside the metal.
This condition is satis6ed if e is understood to have the
constant value 1V/V for rt(r(rs and to be zero other-
wise, since f,~ automatically vanishes outside the metal.

To each solution of these equations, obtained for a
given set of occupation numbers X,~, and satisfying
the appropriate boundary conditions, there belongs,
according to Eq. (18), a deGnite value of the total
energy E. In line with the preceding introduction, it is
our goal to search among the manifold of solutions for
those which describe the occurrence of energetically
stable superconductive currents. With the lattice
assumed to be at the absolute zero, one may be guided
in this search by observing that the energy would reach
its absolute minimum if one postulated the existence
of an individual particle state k=O, l=l', q=O such
that fpt ——1 and where l' is a given integer. Indeed,
with all particles in this state and postulating further
that n; is constant, U=O, and that n has the constant
value n=l' inside the metal, one would satisfy the Eqs.
(19), (20), and (21), and E would according to Eq. (18)
attain its lowest value E=0. However, these postulates
do not represent the proper solution of the problem,
since the boundary conditions expressed by Eq. (16)
do not permit the radial function f to have a constant
value throughout the metal. Besides, a constant value
of n, means according to Eqs. (12) and (14) that the
magnetic Geld H, , produced by the currents in the
metal, is everywhere zero and that the above postulates
could, therefore, only refer to the trivial case of vanish-
ing superconductive currents. Nevertheless, these postu-
lates can be expected to agree with the actual properties
of the looked-for solutions in several respects.

In the Grst place, it remains true that the choice
k=0 is energetically most favorable, since any other
choice would merely increase the individual particle
energy Rsvp of E'q. (19) by the amount i''k'/24rs.

Secondly, one may expect that there exists a de6nite
value l' of the quantum number / which, for a given
function n(r), will minimize the contribution of the
term proportional to (l—n)s on the right side of Eq.

(18).'s Finally, the solution fp~(r) of Eq. (19) which,
for given 0 and t, leads to the lowest value of Ei,~,
shares with the constant at least the feature that it
has no nodes in the interval r~(r&r~. This individual
particle state will again be denoted by q=O, and one
may thus expect that energetic stability can be attained
if all particles are in the state k=O, l=l', q=O, i.e., if
the occupation numbers are chosen to be

+0 l g +~k0~ l l'~ qo. (22)

L~pt p= 5 ei/2ss,

U= 5'u/2m,
4mne'/mc'= 1/Z'

16xmesr4/A'= 1/p4,

the corresponding equations for fo, u, and n are

ol 1
r ~= —(l —4r) +u —et fo,

rdr dri r'

1 d dQ 1
(fo' —1),

r dr dr 2@4

d 1 d4r) 1
r——

I

=—(n —4') fop,
dr r dr J X'

(24)

(25)

(26)

(27)

(28)

(29)

'~ This argument is essentially equivalent to the explanation
of Qux quantization given by Byers and Yang (reference 4), and
the postulate n=l' in the interior of the metal means, in fact,
that the cylinder contains the integer number l' of Aux quanta &~i.

It may also be observed that the expression for the energy of Eq.
(18) satiates their general theorem of periodicity with the flux
in the sense that it remains unchanged if o; (and hence n) is
increased by an integer and the summation index l relabeled by
subtraction of this integer.

The actual proof of these conjectures will be presented
in the following section by investigating the conditions
of stability and by showing that these conditions can
indeed be fulfilled in the state of the system considered
here, insofar as transitions leading to other states are
accompanied with an increase of energy.

The particular choice of the occupation numbers
given by Eq. (22) is uniquely characterized by the
single quantum number 1'. With the notation fp~ = fp,
one obtains from Eq. (18) for the corresponding value
of the total energy of the system,

fi' df ' 1
F.(l') = 2s 44L + (~' —~)'f—'o

25$ dt'

L Ac)' " 1 d4r, )'
+U(fo' —1) rdr+ ——

~

—
~

dr
4 e1 o r dr/

L "fdU '
rdr, (23)

4e' p 5 dr

by using the relation X=nt/'=el. u between the total
number X of particles and their mean number e per
unit volume. Using further in Eqs. (19), (20), and (21),
the notations
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where, according to Eqs. (11), (16), and (17), fs has to
satisfy the conditions

Writing further
cr =l'+P, (35)

r2

2s- (fss 1)—rdr= 0.

The somewhat inconvenient appearance of both n and
n; in Eq. (29) can be avoided by observing that the
right side of this equation is proportional to the current
density in the metal, responsible for the internal field

IJ, of Eq. (12). The replacement of n; by n on the left
side merely adds a term corresponding to external
currents which vanish in the region of space considered
here. One is, therefore, allowed to rewrite Eq. (29) in
the form of the differential equation

(30)

By a suitable choice of the arbitrary constant in the

potential energy U of a particle and, hence, in n it
follows then from Eq. (27) that

u = —(1/r') (l'—n)',

e) =0

and from Eq. (30)

d 1da) 1
r ——

i

=—(n —I').
dr r dr)

(32)

(33)

(34)

' A similar behavior of the wave function P occurs at the ends
of the cylinder. It is for this reason that the exponential s de-
pendence has been chosen in Eq. (15); except for a distance of
order p from the ends, it represents the correct behavior of ~P ~'.
Further, if one assumes that only a fraction of the conduction
electrons form Bose pairs, i.e. , if one inserts for e a smaller number
than the one used above, one finds that p is even smaller in com-
parison to X since one has from Eq. (25) and (26) p/X~n'i4.

for n alone.
Besides the radii v~ and r~, there enter into the

problem the two characteristic lengths ) and p, dined
by Eqs. (25) and (26), respectively. The first is the
well-known penetration depth of London; assuming

the number and mass of the bosons to be comparable
to those of the conduction electrons in the metal, i.e.,
with m—10 " g, m—10"/cm', it is X—5&(10 ' cm.
With the same assumptions, the second characteristic
length is found to be of the order of magnitude of the
Bohr radius, i.e., p—10 ' cm. The fact that this length,
which appears in Eq. (28), is small compared to 'A has

the important consequence, pointed out by Schafroth, '
that the radial function fs changes within a distance
of order of magnitude ii from the value fs ——0 at the
radii rt and rs to the practically constant value fp=1
in the interior of the metal. " For p«X, one Ands,

therefore, in the interior of the metal (r—rr))p, and

rs —r))ii)
(31)

the corresponding equation for P can be readily solved
if one further assumes both r~))X and ~2))X. One has
then

p=cte tr rrii~Pcse' ~s'i"

where the constants c~ and c~ are determined by the
values of the field inside and outside of the cylinder.
A more detailed discussion of the functions fo, u, and

P near the boundary is presented in Appendix II.
The results obtained for fs, u, and n=l'+P can be

used to find the total energy E(l') from Eq. (23). For
later purposes, we are particularly interested in this
value for the case of a vanishing external 6eld, i.e.,
for o, =n;. The dominant part is the energy of the
magnetic 6eld H~ inside the cylinder given by the
second integral on the right side of Eq. (23).'r

Since n; depends quadratically upon r between
0&r& r & and reaches for r = r& very nearly its maximum
value n, =n=l, ', one may write n;=1'(r/rt)s and hence,

E (l') = l"(Ac/e)'(I. /2rr') . (37)

IV. STABILITY

The results of the preceding sections shall now be-

used to investigate the energetic stability of the
particular configuration where all particles are assumed
to be in the same individual state 4=0, l=l', q=0.
Following the general discussion of this problem in
Sec. II, we shall first ask for the change AE of the total
energy of the system upon transition of a single particle
to a different individual particle state k", l", q". Since
the energy of the initial state has been chosen according
to Eq. (33) to be zero, AE is given by Eq. (8) to~&be

simply the individual particle energy EI, ~", of its
new state, determined by finding the corresponding
eigenvalue of Eq. (19) with the same functions U and
n used in the initial state. The necessary and sufficient
condition for energetic stability against this transition.
demands that the lowest of these eigenvalues be still

positive.
It is, therefore, evident from Eq. (19) that one has

to choose k"=0 since any other choice would lead to a

"This can be seen by noting erst that the third integral of Eq.
(23) can, by means of the Poisson equation, be combined with.
the part in the erst integral proportional to U, thereby reducing
the contribution of the former by the factor —,; this contribution
is negligibly small, since f02—1 divers from zero only in the
immediate vicinity of order p, of the boundaries. The part in the-
Grst integral proportional to (dfs/dr)' is negligible for the same
reason. One should further notice that in the absence of an
external Geld one has n;=ce, and in view of equations (35) and
(36) a l'= —Ada/dr near the —boundary of r =r&, because of Eq.
(25), the part proportional to (P —n)s can then be seen to be of the
same order of magnitude as the contribution to the second integral
arising from the interior of the metal, i.e., within a distance of
order A, from the boundary at r =r&. Keeping only the part of the-
second integral within the limits of integration r=o and r=r1,
one commits thus a negligible relative error of order of magnitude
X/rr in the determination of Z(P)
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It is further convenient to use the notation introduced
in Eq. (35) and (38), so that l" n=P ——P, and to
introduce the additional notation

u+ (1/r') (l' n)'= u+ p'/r'—=w (40)

One has then, from Eq. (39),

1 d df~y 1
(P' —2—PP)f.—wf. =~—nf'

r dr dr i r'

(41)

(42)

The transition considered so far is distinguished by
the property that it leads to the least increase of energy
among all those single-particle transitions in which the
azimuthal quantum number changes by the amount p.
The increase of energy of the system due to any one of
these transitions satisfies, therefore, the inequality

hE) (5'/2m) ep ———(5'/2nz)g~, (43)

and none of them is energetically possible unless g„)0.
Conversely there exist single-particle transitions leading
to a decrease of energy as long as one finds among all
possible values of p one or more such that rl„)0. The
original state of the system with k=0, 1=1', and q=0
for all particles is, therefore, energetically stable against
any single-particle transition, if the determining func-
tions w and P of Eq. (42) have the property that none
of the resulting values q„ is positive. A special case of
this equation is for p=O, i.e., where =ll"', so that one
has from Eqs. (33) and (41) F0=0. Since all single-
particle transitions with p=O lead necessarily to an
increase of energy, the condition for stability hinges
solely upon those values of q„ for which pWO. Denoting
the highest of these values by q,„, this condition can
be formulated by demanding

&max &0y

and the "critical" functions w and p at which the
transition between stability and instability occurs are
those for which

&max= 0

higher eigenvalue. For the same reason, the radial
function f~ p must be that which has no node in the
interval r&&r(r2. The corresponding quantum number

q shall again be denoted by q"=0 so that it is only the
azimuthal quantum number 1 which undergoes a change,
given by

(38)

With the notations used in Eq. (27), and with the
likewise corresponding notation foi = f~, one obtains
thus from Eq. (19)

id /df„-1
——

l
r ——(l"—n)'+u f„= e,„f—„(39.)

r dr& dr r~

1 d df„ 1
(p' 2pp)—f»—=~.f-'

r Gf lr r
(46)

Starting at the boundary, the effect of the function
w(r) consists for the case p=0 in rapidly changing fo(r)
from a function with finite slope and vanishing value
to a function with vanishing slope. On the other hand,
the appearance of the additional terms (1/r') (p' —2pp)
and q~ for p&0 has only a negligible effect upon the
change of the slope of f„(r) over a distance of the order

p so that, in very good approximation, this function
likewise attains the slope zero in the immediate vicinity
of the boundary. It is therefore permissible for the
determination of g~ to replace the differential Eq. (42)
with the boundary condition f~(r,) = f„(r2)=0 by the
differential Eq. (46) assumed to be valid throughout
the metal with the boundary condition

fn'(ri) = f~'(r~) =0. (47)

A more rigorous argument for this replacement is
presented in Appendix III. Based upon the simplihed
problem of Eq. (46) and (47), the following subsections
deal with the more detailed investigation of stability
for several special cases.

A. Trapped Flux for very Thin Walls. (d((X)

We shall here assume that the wall thickness d = r2 —r~

of the cylinder is small compared to the penetration

While this criterion for energetic stability has been
derived for single particle transitions, it retains its
validity according to Eq. (9) for all transitions which
do not involve a number of particles comparable to
the total number Ã. Classifying these transitions
according to the total number of particles,

AN~=+i, ANyil~„

which change their azimuthal quantum number from
the original value l' to the final value l"=P+p, the
result of Eq. (43) for the increase of energy of the
system can be generalized within the realm of validity
of Eq. (9) by the inequality

b,E)—(5'/2m) g~ DN„rI„,

with arbitrary positive integers hS„. Since go=0, one
still has hE) 0 if and only if the condition for g, of
Eq. (44) is fulfilled, so that it represents indeed the
general criterion for stability, while Eq. (45) represents
equally generally the critical condition.

The determination of q„demands, rigorously, the
solution of Eq. (42) for f~(r) with the boundary con-
dition f~(ri)= f„(r2)=0. This problem can be con-
siderably simpli6ed by considering the properties of
the function fo(r) for the special case p=0 discussed
in the preceding section. Except for very small distances
of the order of magnitude p, from the boundaries, one
has from Eq. (31) fo 1and from——Eq. (32) and (40)
w=0 so that Eq. (42) has in this region the form
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depth X. With x=r —r, and expanding the more general With st=4K'crt/rip, one therefore has from Eq. (52) for
expressionforpof Eq. (36) inpowersofx/Xoneobtains @=0:p= —rllti/2d= —ni(2X'/rid) and the continuity
up to quadratic terms of n=P+P at this point demands

P =A (1+x'/2X')+Br/X, (48)

where the two constants A and 8 are related to the
constants cl and cs of Eq. (36) and are likewise deter-
mined by the values of the magnetic field II for rgr~
and for r)r2. These two values will from now on be
denoted by H& and H2, respectively. It is convenient
to measure all magnetic Qelds in units of the charac-
teristic field H*=bc/47''e or, from Eq. (25),

where"
II = 471 sp, p

p, p ——eh/2mc.

With

2X' dP
s= H/H'=

r dr
(49)

It was shown by Schafroth' that the above value H""

corresponds to that of the critical field in the sense that
in a uniform field H) H*, his model exhibits field pene-
tration rather than a Meissner effect. It will be seen
later that it is also connected, in a somewhat different
sense, with the field determined from the criterion of
energetic stability.

With this notation one finds from Eqs. (12), (13),
(14), and (35) that

or
rr l ——l' —rr l (2X'/r ld)

n, =I'/ (1+2K'/rid).

Except for terms of order d/rl which have been neg-
lected, the total Aux contained in the cylinder, i.e., its
value at r=r2, is the same as that at r=r~, measured
in units hc/e, this value is thus likewise given by Eq.
(53). As might have been expected, this expression
vanishes for d=0; for very small values of r~d it
exhibits the fact, noted also by Blatt' and Bardeen, I9

that the effective magnitude of the Aux quantum is
less than its full value hc/e.

The expression for P of Eq. (52) will next be used to
find the values of rt„according to Eq. (46). For the
thin ring considered here, one has r—rj=x((ri so that
this equation can be approximated by

d'f./d~' (1lr ')—(p' 2')f—.=n.f' (54)

Except for very large values of ~~, the x dependence
of P in Eq. (52) may be treated as a small perturba, tion.
The unperturbed equation has then the solution f„=1,
and one has in first approximation

n. = —(1/ri') (p' —2pj3),

one obtains then from Eq. (48)

(50) where P represents the average value of P in the interval
0 &' x & d. Omitting a negligible contribution of
relative order of magnitude d'/X', one has p= —riKl/2d,
and hence

2X' dP) 2X—~=—B
r, drip r,

(51)

We shall consider here only the case of trapped fiux
in the absence of an external Geld H~, i.e., we shall let
its ——0 so that A= BX/d. One find—s then from Eq.
(48) and (51)

(52)

This equation will first be used to determine the
quantity nz ——n(r&) which represents the flux in units
of hc/e at r=ri. Since for r(rl, the fiux and, hence,
o, must be quadratic in r, and since its derivative must
be continuous at r=rl so that (dn/dr)„, = (dp/dx)p, lt
follows from Eq. (51) that for r ( rl,

rr = sir'/4X'.

'8 W'ith the value g—10'2 cm 3 used to estimate X, we obtain
H*=103 G.

(1/")Lp'+p—(r ld) j. (55)

Compared to the first term in the bracket of Eq. (55)
this contribution is thus negligible unless Kl X'/d'))1.
We shall here not be concerned with such large values
of I(:~, and it is thus permissible to base the further
discussion of this case upon Eq. (55).

It is evident that with ~~)0, positive values of g„
and, hence, energetic instability of the system, can
only occur if p(0. With —p=1, 2, 3, , instability
requires sl) P(d/rl); —since the smallest value is
reached for —p=1, the criterion for stability can thus
be stated as sled/ri, where the sign of equality refers
to the 'critical' condition. With Eq. (50), the critical

"J.Bardeen, Phys. Rev. Letters 7, 162 (1961).

The higher solutions of Eq. (54) correspond to
values of g separated from this expression by amounts
of the order of magnitude 1/d'. In second a,pproxi-
mation one obtains therefore an additional contri-
bution of the order of magnitude

( p rllrid P ps (acids)
s

&r,' ~s r, «~s)
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value of the field Hl in the interior of the cylinder is
thus given by

H r
H*——(d/rr). (56)

Although this result has been derived only for a
thickness d((A, it will be seen later that it also holds
for thicker rings, provided that d((r1. It indicates that
the critical field for Qux trapping in thin rings can,
according to this model, be very much smaller than the
value H* obtained by Schafroth from different argu-
ments, and the significance of this conclusion will be
further discussed below.

condition for stability is given by t)~(ar, ss) =0, and for
given ~s and p&0, any further increase of s& will raise
p„and thus lead to instability.

In order to discuss Eq. (58), it is convenient to
consider first the form of f~ in the interior of the metal
(r rr an—d rp —r))X) where P=O. It satisfies here the
equation

with the general solution

B. Stability for Wall Thickness d)& fnp=~n~n(&a~'"r)+C P'n(t'n-n'"r), (59)

f']K] 12K'
p= — e (~ ~r)l)+ —e(~ n)l)—

2X 2X
(57)

The quantization of the Qux trapped inside the cylinder
is directly evident from the fact that this expression
is appreciable only within distances of the order ) from
the boundaries of the metal and approaches rapidly
the value P=O in its interior. In view of Eq. (35), the
flux in units of hc/e trapped within the interior of the
metal is thus given by

We consider here the opposite limiting case from the
one discussed in A, and far more common in practice,
where the wall thickness is large compared to the
yenetration depth. We will also assume throughout
that rl))X. The discussion has to be based upon the
form of P given by Eq. (36), and we shall begin by
expressing the constants cl and c2 in terms of the Hl
and H~ inside and outside the cylinder, respectively.
Neglecting terms proportional to e @", one has here
from Eqs. (49) and (50) ~r ———(2X/rr)cr, as ——(2X/rp)cs.
Inserting the corresponding values of the constants
into Eq. (36), it is, therefore,

where J„and S„are Bessel functions of the first and
second kind.

In the vicinity of the boundary at r=rl, the term
with Ks in Eq. (58) is proportional to e +" and thus
negligible, so that one has here

1 d de 1 pfrKr
y ps+ e

—(r ri)/x +r) f
r dr dr r' X

with the problem to find a solution which has a van-
ishing derivative at r =rl, and which approaches
asymptotically the function f„p of Eq. (59) for r —r&))X.
If we write

u0 ul)

this means that the fun. ction f„t must appreciably
di6er from zero only for values of x=r—rl which are
comparable to or small compared with X, and that it
must satisfy the boundary condition

pl ~1 0 ~1 ~

The differential equation for f„r(x) can then be written
in the form

P' ) P&r
fnt"= +~& lfnt+ e *'"—(fnp+f»),

rp i ry.
(60)

i.e., the Qux is indeed the integer l' times the Qux

quantum hc/e. "
The principal use of Eq. (57) is, however, that of

investigating the stability criterion by means of the
values of r)~ obtained from Eq. (46).

We thus have to consider the equation

with the boundary condition for x= 0

f. (0t) = -fop'(rr). (61)

1 d ( df„i 1 p——
I

r
I

—p + (r „e--i"--)~)'
rdr& dr) r'

r lr pet" """) f =—r) f

If the conditions
~
p)(((rr/X) and (r)„~&&(1/X') are

satisfied, then we may consistently assume that
) f„r)&()fop) and

) (p'/rp+r)n)fnt [&((fur" [. It is also
permissible to replace f~p in Eq. (60) by its value

f&p(rr) at r=rr since f„p is slowly varying within the
(58) distance X from the boundary. One has then the

simplified equation

For each value of p, it can be solved with the boundary
conditions of Eq. (47) to give t)„(lrr,~s). The critical

'0hlthough it appears in different form, this proof of Qux
quantization is in accordance with the more general energetic
arguments of Byers and Yang' since, in last analysis, it has been
obtained from the minimum principle for the total energy, given
in Eq. (23).

f.r"= (pst/rr) )f.p(rr)e *'",

with the solution

(62)

f„t(x)= (p~tX/rr) f„p(rr)e
—*'" (63)

chosen in order to satisfy the requirement to vanish
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hence t „=—1, that either ~~=1 or ~2= —1. In order
to have stability in both these limits, one is, therefore,
confined within the square with corners at x~= ~1 and
K2 =~1." Within this square, the region of stability
for each pair of values p and —p consists of the slice
limited by two symmetrical hyperbolic arcs with end
corners at the points I(,~=~~——1 and ~~=~2———1. This
slice is the narrower, the smaller ~p~. Demanding
stability for all values of

~ p ~
limits, therefore, the region

of absolute stability to the slice corresponding to the
smallest possible value

~ p~ =1.
These results are graphically represented in Fig. 1

with the shaded area representing the region of absolute
stability. To discuss them, we consider first the case
where the fields inside and outside the cylinder are
equal, i.e., where ~j——rc2=I(:. It is seen that the straight
line representing this equality lies inside the stability
region as long as ~z~ & 1. This case corresponds to the
Meissner effect in the sense that it refers to the expulsion
of the homogeneous Geld from the interior of the metal.
Our Gndings thus indicate that this effect is properly
described by the state of the system discussed in the
preceding section, but that this state becomes unstable
when the absolute value of the Geld H=~H* reaches
the critical value for the Meissner effect

one has to consider the total shaded area of Fig. 1,
determined by the choice

~ p~ =1 and, hence, limited
according to Eq. (67) and (68) by the two hyperbolic
arcs representing the equation

f (Klxs 1)=+ (Kl—K2) q

where
f= (rss rts)/—(rss+rrs) = tanhDn(rs/rr)], (71)

and where the + or —sign in Eq. (70) corresponds to
p= 1. or p= —1, respectively. rt is true that for very
thick cylinders, i.e., for r2))r~ and, hence, t=1, the
stability region fills the whole square, so that one deals

with a stable persistent current as long as neither of
the two values ~i or ~2 exceeds unity, i.e., as long as

The limits of stability are, however, narrower for
cylinders of finite thickness and impose an upper limit,
less than its absolute maximum 2H", upon ~Ht —Hs t.
This difference from the Meissner effect is best seen

by considering the case z2=0, i.e., the case of trapped
Aux in the absence of an external Geld. It follows here
from Fig. 1 and Eq. (70) that stability is limited by the
critical condition

(H,)sr H*. —— (69)

For higher values of the. Geld, the system will tend
towards a new stable state by giving energy to the
lattice. Our discussion does not describe the detailed
manner in which this transition takes place nor the
final state which will be ultimately reached. However,
it is important to note that coming from the other
direction, Schafroth has demonstrated the possibility
of another stable situation. Assuming a homogeneous
Geld inside the metal, he showed that it can have a
nonzero value as long as H)H*, i.e., that there exists
in this case another stable state, corresponding to Geld
penetration into the metal. It seems reasonable to
consider the stable state found here for H&H* and
Schafroth's state for H&H* as alternatives, the former
representing Meissner effect, the latter Geld penetration.
In fact, one is forced to this conclusion if one assumes
that for any common value H of the Geld inside and
outside the cylinder there exists one and only one
energetically stable state of the system.

A totally different behavior of the metal is found if
the fieMs Hi and H2 inside and outside the cylinder are
no longer considered to be equal, thus demanding a
persistent current to Row in the metal. In this case,

2~ This degeneracy corresponds physically to the fact that there
exist for large values of ~p ~

separate solutions of f„w ichhdecrease
rapidly towards the interior, corning either from one or the other
boundary. This fact is reflected in the function f„o of Eq. (59)
by the alternate choice C„=O or C „=0.Dependent upon the sign
of p, Eqs. (64) and (65) lead then to the same conclusion as those
presented above. The fact that the interior of the square corre-
sponds to stability follows from the fact that it contains the point
K], =K2=0 which was shown before to represent a stable situation.

and thus ceases to exist when the absolute value of the
field H~= ~~H* reaches the critical value for flux

trapping,
(H,)r tH*. —— (72)

Since for cylinders with finite wall thickness t(1, one
has (H,)r& (H,)sr, i.e., the critical magnitude of the
field inside the cylinder is more restrictive for flux

trapping than for the Meissner effect. This restriction
is particularly pronounced in the case d((r&, i.e., for
thin cylinders with a wall thickness small compared to
the inner radius" With rs rt+d, one has h——ere in good
approximation t=d/rt from Eq. (71) and thus from

Eq. (72)
(73)

Although it was derived under different assumptions,
this result agrees with that of Eq. (56), obtained for
"very" thin cylinders where only the case of trapped
flux with H2=0 was considered. Thus, the ciritical
field for lux trapping for a given inner radius r~ is the
smaller the thinner the cylinder wall. Nevertheless,
this does not prevent the possibility of trapping a very
large number /' of flux quanta if one deals with macro-
scopic dimensions. Indeed, the trapping of a single

quantum corresponds to a field in the interior given by
H =4K'H%r' with X—5&&10 ' cm and even for
rr—10 ' cm and d/rt=10 ', this value is still about

While Sec. A dealt with "very thin" cylinders, i.e., with the
case d«X, the case of "thin" cylinders discussed here refers to the
condition X«d«r&, which is evidently easy to fulfill for cylinders
where both wall thickness and inner radius are of macroscopic
dimensions.
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one hundred times smaller than (H,)r, i.e., about one
hundred Aux quanta can be stably trapped even under
these very unfavorable assumptions.

Until now, the discussion of the consequences of the
stability criterion as formulated in Eq. (45) has been
based upon purely energetic arguments. For the case
of fiux trapping, we have shown that the state in which
all particles have the same set of quantum numbers is
stable against single-particle transitions if (H,)r) Hi.
Actually, even in this case we deal with a metastable
state of very long life. The metastability of the per-
sistent currents in the general case has been emphasized
by London" and can be understood by a consideration
of Eq. (37) for the total energy of the system. It follows
from this expression that the state of the system corre-
sponding to the trapping of a finite and, possibly, even
large number l' of Aux quanta is not the state of lowest
energy of the system, since this would correspond to
l'=0, i.e., to the absence of any persistent current. A
transition of the system in which all particles would
simultaneously decrease their azimuthal quantum
number by the same amount and lead to a lower
common value of /' would thus be accompanied by a
decrease of E(l'), i.e., such a transition would be
energetically possible. However, this process is ex-
tremely improbable and does not endanger the practi-
cally unlimited stability of the persistent current, even
for a value of /' which is so large that the corresponding
field II~ inside the cylinder surpasses the critical value
(H,)r for flux trapping. Considering such a state to be
realized at an initial time, " it would, however, be
unstable with a far reduced lifetime due to the fact
that transitions which involve only a single particle
would be energetically possible. In the absence of any
strict selection rules prohibiting such transitions, it
must be assumed that they will occur and lead eventu-
ally to a new stable state of the system. One cannot
a priori exclude the possibility that such a stable state
can be reached when only a small fraction of all particles
have made transitions from their originally common
individual particle state. However, it is shown in
Appendix IV, that at least up to quadratic terms in
the fractional change of the occupation numbers, one
cannot reach a new state of the system which would be
stable against further small changes. It is therefore
reasonable to assume that single-particle transitions
will continue to occur until all particles are finally
again in a common individual state with the azimuthal
quantum number 3' sufficiently lowered from its initial
value to reach stability, i.e., until the field H~ inside
the cylinder has reached the critical value (H,)r of
Eq. (72).

"F.London, Szzpergzzids (Dover Publishing Company, Inc. ,
New York, 1960), Vol. 1, p. 51.

'8 Provided that Hi ((H,)~=H*, this situation could be
achieved by a preceding Meissner effect, i.e., by first providing a
field H2=H& outside the cylinder and then suddenly turning off
this field.

It is to be stressed that this behavior contradicts the
usual expectation that the Aux inside the hole of a metal
cannot change as long as the metal remains in the super-
conductive state. The fact that the Schafroth model
does not exclude such changes is directly connected
with the fact that, according to Eq. (69) and (72), it
leads to a difference between the critical fields for the
Meissner effect and for Aux trapping. Starting, e.g. ,

with equal fields inside and outside the cylinder, both
slightly below (H,)sz, then letting the outside field go
to zero would result in a reduction of the inside Aux

by a factor 1/l.
The existence of this difference between the critical

fields (H,)sr and (H,)r raises questions in regard to the
lifetime of the state with (H,)r (Hi ( (H, )sr and
H2=0. One deals here with transient effects which will

be discussed in the following subsection. Since the
difference between the two critical fields is most pro-
nounced for small values of d/ri, the discussion will be
restricted to this case.

C. Transient Effects in Thin-Walled Cylinders:
(X«d«r, )

In the previous subsection we were concerned with
the stable state which the system will tend to approach
if initially Hi) (H.)r. We concluded that the transition
of a single particle with a change p of its azimuthal
quantum number will eventually occur if it thereby
supplies any amount of positive energy (5'/2zrs)si„ to
the lattice, assumed to be at the absolute zero," and
that this process will continue until Hi= (H,)r. Never-
theless, the fulfillment of the condition Hi)(H, )r
need not necessarily lead to a lifetime so short as to be
easily observed. The dynamics may make it impossible
for the lattice to absorb the energy given up by the
particle, or the absorption process may have a very
small probability. Although its occurrence cannot be
ruled out on grounds of general selection rules, it appears
plausible to think that the absorption of very small
amounts of energy is highly improbable for a lattice
at low temperatures. On the other hand, the result of
Eq. (73) for thin rings was based upon the occurrence
of processes with vanishing energy transfer, and it will

be shown below to be essentially modified, even if the
accompanying energy transfer (0'/2zrz)z)„ is only very
small, instead of vanishing.

For this purpose, we rewrite Eq. (58) replacing the
variable r by x=rj —r, in the form, valid for d(&r&, of
the differential equation

f„" —+zl„+ (zzre *—'" zz,e'* "i'")—f„=—O.
re Xri

"Because of Eqs. (24) and (41), (zz'/2zzz)zz„represents the loss
of energy of the particle rvhich is, theref ore, supplied to the
lattice.
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and

with

and

fv (Ki K2 —1)=Ki —K2

t„'=a tanh (P'd/r 1)

p( (ps+~ r 2)1/2

K1,2 K1,2P/P ~

(74)

(75)

(76)

(77)

With the approximation 1n(rs/ri)=d/ri, valid for
thin rings, Eqs. (74) and (75) are identical with Eqs.
(67) and (68), respectively, if 2/v=0 with the corre-
sponding result of Eq. (73) that the critical iield for
Aux trapping is the smaller, the smaller the wall
thickness d. Any dependence upon d disappears, how-
ever, as soon as one demands energetic stability only
against those transitions in which the energy absorbed
by the lattice is merely large compared to the amount

Corresponding to Eq. (59), the general solution in
the interior of the metal is given here by

p2 z/o-

f,s(x) =C„exp —+2/„2:
— rl'

(p2 )1/2
+C „exp —

]
—+g„[ x .

&r,2 ")

The considerations which led to Eqs. (64) and (65)
remain valid and result here in the equations

Ki = (&1/p) [fvo'(0)/fvo(0))

K2= (ri/p)Ef. o'(d)/fvo(d)3.

By elimination of C„/C „from these two equations, one
obtains finally in analogy to Eqs. (67) and (68)

wouM thus show the "expected" behavior of a single
critical field value,

H, =H*,

both for Meissner effect and for Aux trapping, provided
that the observations are not extended over a time
interval which is so long that the lattice can effectively
absorb even energies comparable to or small compared
with the amount (AE);„of Eq. (78). lt is impossible
to predict the magnitude of these time intervals without
detailed reference to the specific mechanism of the
absorption processes. " Unless they are either pro-
hibitively short or prohibitively long, a marked time-
dependence of critical 6eld values for Aux trapping
would be predicted by Schafroth's model.

V. CONCLUSIONS

While the model discussed here might be considered
quite unrealistic, it is nevertheless remarkable that it
exhibits features which strikingly resemble those of
real superconductors. Some of the results, and par-
ticularly their more quantitative aspects, may of course
be merely consequences of a too far-going idealization
and may be neither con6rmed by experiment nor by a
truly realistic theory; however, we believe that quali-
tatively they will turn out to agree with reality. We
further believe that the manner in which the problem
of stability has been approached and the decisive
importance attributed to electromagnetic effects are
not restricted to this special model but that they are
essential for the general understanding of supercon-
ductive phenomena.

1.e.
y

lf
(AE);.= P/2/22/td2,

2/v))1/d'.

(78)

(79)

APPENDIX I

Change of the Total Energy

Even for d—10 ' cm, this energy is exceedingly small
and corresponds to transition frequencies of the lattice
of no more than about one megacycle per second. While
absorption processes involving such low frequencies in
the lattice spectrum are not impossible, they may well
be sufficiently improbable to require macroscopic times
in order to become effective.

With the condition of Eq. (79) satisfied, one obtains
from Eq. (75) for any value of p, tv'= +1, and thus
from Eq. (74) independently from each other either
the values ~~'= —1, ~2'= 1 or ~~'= 1, ~2'= —1. Replacing
~~,2 by ~~,2', this corresponds to the square of Fig. 1,
i.e., to the case p=&~. On the other hand, one has
here K1,2 K1,2 (p'+2/„ri')''/p, i.e,

., the smallest magni-
tudes of Ki 2 are obtained for

~ P ~

~ ~ so that in this
limit ~~,2=~j,2. The corresponding shaded area in Fig.
1 would thus fill the whole square, just as it would for
2/„=0 in the case where d/rt))1. "Even a thin cylinder

30 It may be noted that even the case d/r1= 00 can be realized
for a solid cylinder, since one has here r1——0. Of course, one deals

We shall compare the total energy E and E~ of two
states a and b of the system, characterized by the sets
of occupation numbers S, and S,~, respectively. The
corresponding solutions of the Eqs. (3), (4), and (5)
shall have been found for both sets with the result that
the functions i/t„U, A, , and A are given by lf, ', U~ ',

here only with the possibility of a Meissner e6ect and thus only
with a single critical 6eld H, =H*.

"As an example of such a mechanism, one may consider the
single-phonon processes which explain the conductivity of normal
metals. Since a change p of the azimuthal quantum number is
associated with a wavelength 2vri/~p~ of a sound wave around
the cylinder, the corresponding energy of the phonon is given by
Av

~ p ~
/ri, where v is the sound velocity; being the energy absorbed

by the lattice, this amount must be equated to /t'»/(2m), thus
giving v„=2mv~ p~/(Ari). To fulfill the condition of Eq. (79) even
for the smallest possible value

~ p~ = l, it is thus sufficient to
demand d/ri»(A/(2meri)g'/'. Since A/(2mv) —10 ' cm, and if one
assumes, e.g., r1=10 ' cm, this means d//r1))10~, i.e., merely
d))10 3 cm. As long as only single-phonon processes are con-
sidered, even quite thin rings can therefore behave as if they were
infinitely thick. Only multiple-phonon processes can here be
responsible for a deviation from this behavior, and one can well
understand that at low temperatures such processes may require
a considerable time to become effective.
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While the individual terms in the second integral of
(A8) are themselves of order id 2 (i.e., quadratic in the
numbers AN, ), it has to be noticed that all the square
brackets represent differences between corresponding
a and b terms so that they are one order higher in 6
than the individual terms. This whole integral is thus
of order lV and therefore negligible to the order A2. To
this order, and with the Schrodinger Eq. (3) for a and
b, one may thus write Eq. (A8) in the form

Writing

and
fo= 1+ (/2

P =Po+Pi,

we shall carry out a perturbation calculation to the
first order in (/t, Pi, and w, valid for x))/4 and correct
to the lowest power in /4/X«1. To this order one has
then

(A15)

Writing
BE=Eh E= '—QhN—,(E;+E 4).

E.'=E, +DE„
w"

,
—(P—")"= v/—p',

r1'
(A16)

e A e
b, A —grad —-A

C Z C2ns

())) e
+~ —grad —-A

~

AA +AU lp, dT (A9)
c )

AE=Q, hN, (E,+226E,),
in agreement with Eq. (10) of the text.

(A10)

APPENDIX II

The Functions f(), u, and g near the Boundary

With 4, =0, P=n /,
' and-

w =24+P2/«2,

it is sufficient to calculate AE, in erst-order perturbation
theory and to keep only terms of order 6 in the per-
turbation energy. Omitting from now on the index a,
referring to the "original" state of the system, one has
therefore from Eqs. (A2) and (A3)

Pi"—Pi/) '= 2Po(/y/x', (A17)

+IV+ +/p4 — @pe
—2a/)t+C 2e2(o:—td)/)t) (A18)

2/2

where Eq. (A14) has been used to express (PO2)" as a
function of x. Of the four solutions of the homogeneous
equation proportional to expL(1&2)x/v2/dj and
expL( —1&i)x/K2/4], only the last two fulfill the
requirement to vanish for x&)p, while the 6rst two have
to be excluded. The appropriate solution of Eq. (A18)
is then

f x
a=die 'o" coal +t))

kVZp

4@4

+ (c 2e—2s:/)t+c 2e2(g-tO/)t) (A19)re'

where Po is given by Eq. (A14) and is a solution of the
"zero-order" equation P()"——Po/)2. From Eqs. (A15)
and (A16) follows the differential equation

Eqs. (27), (28), and (30) can be written in the form

1 d /' df())——r =no, (A
«dr& dri

Instead of the factor p4 in the last term, there appears
actually a factor pd/L1+ (2p/X)4) which, however,

11) would affect the result only to higher orders in /4/X.

By inserting this expression into Eq. (A15), one finds
further1

——r (w P'/r') —= —— (fo' —1)
r dr dr 2p

(A12) 8 ( x ) 16p,'
w= e*/+i' sin~ +—f ~+ (c 'e */"+c2'e2( ")/i)

&V2& i «ped (1dP~ P
2

dr( r d«J
(A13)

and from Eq. (A17)

4p' /'ci' xe-
)h2«p k 8 2X )

We shall restrict ourselves to the vicinity of the 2

boundary at r=r, . With a=r rt and s«rtthe dii- /tt=2ct, e '" —— die 'ro sin~ +t/)
ferential operators can then be replaced by d'/dx' and X2 ~'t/2/4

r can be replaced by r&. For su%ciently large values of
x and small values of p we expect, according to Eqs. (31)
and (32), the solutions fo 1, w=0, and P=P(—)—, where

P —c e s,/)t+c e(a—to/)t— (A14)

agrees with the form of P of Eq. (36) with d=r2 ri-
As one approaches the boundary from the interior of
the metal, there will appear increasingly large deviations
from these values.

X
+2c e' '&'" —dte 'o sin +d)

V2p,

4p' ( x c2'
+ (

—c ' e*/"+ e* d)/h
)

—
s (A20)—

X2«P( 2X 8 )
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where, in the 6rst term of the square brackets, higher-
order terms in p/X have been again neglected. The
corresponding results are obtained in the vicinity of
the boundary at r2, if one replaces on the right side of
these equations x by d —x, the index 1 by 2 and vice
versa.

The first term on the right side of Eq. (A19) shows
the expected behavior to rapidly disappear for x))p, .
For x comparable to p it loses its validity and would
have to be replaced by an expression to be obtained
by "backward" integration of the nonlinear Eqs. (A11),
(A12), and (A13) down to x=O; the result depends
upon the constants 8 and iP which would then have to
be determined from the normalization of fp and from
the boundary condition that for x=0, one has fp ——0
and hence q = —1. Nevertheless, our approximation
remains qualitatively correct for x—p, it therefore
permits the conclusion that

~

8
~

must be of order unity
and that the correction to fp 1, aris——ing from this term,
is indeed vanishingly small at any appreciable distance
from the boundary.

The second term in Eq. (A19) does not show this
rapid decrease with increasing distance from the
boundary. While it is proportional to the fourth power
of the small quantity LM, its relative importance is also
determined by the magnitude of the constants c& and
c2 and hence by that of the magnetic field inside and
outside the cylinder. As long as these fields do not
greatly exceed their critical values, c~ and c2 are shown
in Sec. IV not to exceed the order of magnitude ri/X
so that the second term contributes no more than
approximately (p/X)4 to the value fo 1 in the int——erior
of the metal. For n—10"/cm", this amounts only to
about 10 ' and to even less for smaller values of n.

While a behavior similar to that of y appears also
in w and Pi, it is seen from Eq. (A20) that P=Pp
represents a good approximation not only for x))p,
but that even for x=p, the relative contribution of Pi
does not exceed the order of magnitude (p/X)', i.e. ,

that it never causes a correction of more than about
one part in 104. We are thus led to the conclusion that
equations (31) and (32) represent excellent approxi-
mations for x)&p and that Eq. (36) well approximates
the true behavior of P=n —l' throughout the metal,
including the boundaries.

1d(df„
——

I
r

"
wf„=K,f„—

r dr( dr
(A22)

APPENDIX III

Replaced Differential Equation and Boundary
Condition for f„(r)

To discuss the differential equation (42) for f„(r),
the temporary abbreviation

K (r) =~ + (1/r') (P' 2') (A21)—

will be used so that

For the special case p=0, one has g~=O. Therefore,
also Eo ——0, and hence

1 d dfp)——r
~

—ufo ——0.
rdr dr/

(A23)

dgp
rfo Kufo g p

r dr dr
(A24)

for g„, and by integration

dg&
rfp

dr
K&fppg&r dr . (A25)

The absence of an additional constant of integration
on the right side of Eq. (A25) is necessitated by the
fact that with finite values of g„and dg~/dr and with

fp
——0 at the boundary, both sides of this equation vanish

for r=r~. Therefore, we obtain

dgp
g.'(r) = KJp'g„r'dr'.

As r approaches the value rq, the integral vanishes more

rapidly than fo, i.e., the derivative of g„vanishes for
r = r~. Similar considerations hold for the boundary at
r2, and the boundary conditions for g„are therefore

g.'(ri) =g.'(rp) =0. (A26)

On the other hand, it was shown in Appendix II that
to a very good approximation one has fp 1 in the-—
interior region of the metal exclusive of distances
comparable to p, from the boundaries. In this region
one has, from Eq. (A24) and with K„ from Eq. (A21),

1 d t' dg„1
(p' 2pP)g. =n—.g'-

r dr( dr r'
(A27)

Except for the fact that they refer to the radial function

g„ instead of f„, Eqs. (A27) and (A26) are seen to be
identical with Eqs. (46) and (47) in the text, respec-
tively. It is true that at distances comparable to p, ,
Eq. (A27) is to be replaced by Eq. (A24) with fo/1,
so that, rigorously, there appears on the left side of
Eq. (A27) the additional term

1 d dg~P= —r(foo —1) —(-fop 1)K„g„. —
r dr dr

Instead of f„(r), a new function g„(r) will now be
introduced such that

fr= fog&

Since fo(r) satisfies the proper boundary condition to
vanish for r=r, and r=rp, f„(r) will satisfy the same

boundary condition provided that g„remains finite at
the boundaries. Substitution of this expression for f„
into Eq. (A22) leads by means of Eq. (A23) to the
diff erential equation
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Having found a solution of Eq. (A27), the effect of this equation for AP is then given by
perturbation upon g„ is in first order

d f1 de) 1
~

=—(&P—Z. v.Pf'),
drkr dr IPg„rdr g„~rdr

(A31)

This correction to the eigenvalues g„as well as that to
the eigenfunctions g„ is negligibly small since I' assumes
appreciable values only for distances from the boundary
comparable to or small compared with p, .

APPENDIX IV

Quadratic Corrections to the Total Energy Due
to Changes in the Occupation Numbers

We shall consider the more accurate expression for
the energy change AZ of the system given in Eq. (10)
of the text and in Eq. (A10) of Appendix I. Originally
all particles shall be in the individual state characterized
by the quantum numbers k= q=O, l=l', and it will be
assumed that after a transition there will be

since go=0. As discussed in the text and in Appendix
II, it is possible because of the strong Coulomb effects
to use Eqs. (31) and (32), i.e., to let in this equation

fp= 1 and w= u+P'/r'= u+ (1/rz) (l' —u)'=0. With
Aw= Au+ (2PDP//r'), one obtains thus

2PDP 1 d dhfp
+——r —Agp

r dr dr
(A32)

and it is permissible, in this order, to neglect the
change df„of fv in Eqs. (A30) and (A31). On the
other hand, it is possible and advisable to express DN

in terms of the change Afp of fp Kee. ping again only'

linear terms, one has from Eq. (42) for p=0

1 d dhfp)
r

~

—'wdfp= (6w+6'gp) fp,
r dr dr I

particles in the individual state which differs from the
original one merely by the change p of the azimuthal
quantum number and is thus characterized by the
radial function f„(r) The numb. ers v„, representing the
fractional changes of occupation numbers, obey the
relation

and shall further satisfy the condition v„((1.With the
notations of Eqs. (24) and (41) and denoting by

ARv = —(h'/2zzz) Agv

Just as in the original state, the Coulomb forces have
also in the new state the principle effect that the charge
density of the particles must neutralize that of the ions.
In terms of the numbers v„, this means that

with the above result fp 1 for the——special case where
v„=O. It is again permissible in this order to neglect
the change hfv of the function f„ in the sum, since it
contains already the small numbers v„, but it is neces-
sary to write for the first term in this equation

fp' 1+28fp wi—th the result that

~fp= —
z 2, vvfv .

2zr "' 2PDP 1 1 d df '
+—Q vv ——r f„'rdr

8 r, f 2 & Id'' df
Qvvv(qv+ phrlv) (A29)

+hgp, (A33)

the change of the individual particle energy Therefore. from Eqs. (A30) and (A32)

Ev = —(PP/2zrz)qv, one has then from Eq. (A10)

From Eq. (A9), we obtain where in the last term the normalization

2~ " 2(p —p)~p
+du f„'rdr, (A30)

8 r2

with the notations used in Secs. III and IV, and with

hP and Au as the changes of P and u, corresponding to
AA and AU in Eq. (A9). The differential equation for
2 A is obtained from that for A by replacing on the
right side of Eq. (5) the current density i by its change
due to the increase of 1V, by 81V„and by replacing A

by hA on the right side of Eq. (7). Keeping only linear
terms in these changes, the corresponding differential

(2zr/a) f„'rdr = 1

has been used.
Except for terms of the order X/rz, the functions f„

can be considered to vary only relatively little over
distances of order of magnitude X, so that for X/r~&&1,

Eq. (A31) is solved by

~P=Z. vvtfv'.

Inserting this expression into the expression for Ag„of
Eq. (A33) and the latter into Eq. (A29), one 6nally
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obtains

A2 2' r2

Z. v.V.+— —,(Z. "pf')'

—
~ g„v,f, ~

rdr, (A34)
dr

since the additive constant hrio in Eq. (A33), upon
summation over p, gives a vanishing contribution in
virtue of Eq. (A28). Among the numbers v„, it is only
vo which is negative since particles have only been
removed from the state p=0; on the other hand, the
value p=0 gives a vanishing contribution to the sums
in Eq. (A34) since zo

——0 and (dfo/dr)=0 so that all
the numbers v„ in this equation are either positive or
zero.

It will now be assumed that H2 ——0 and (H,)ir)Hi
& (H,)r, i.e., ~2 ——0 and 1)~i&t. The system has been
found, in this case, to be energetically unstable against
some of the single-particle transitions, which means
that for some (negative) values of p, one has g„&0;
the occurrence of such transitions is indicated by a
finite (positive) value of the corresponding numbers
v„while all the other numbers v„vanish. The first term
in the square bracket of Eq. (A34) is then positive,
corresponding to a decrease of the total energy of the
system, and the question to be answered is whether the
additional quadratic terms in the numbers v„can cause
hE to have a minimum. Any further change of these
numbers would then lead to an increase of the total
energy, i.e., one would deal with a new stable state of
the system, reached after a small fraction of all particles
had left their original individual state.

Clearly such a situation cannot arise if the total
contribution of the quadratic terms in Eq. (A34) is
positive, i.e., if it has the same sign as the linear term.

While the first term in the curly bracket under the
integral is indeed positive, the second is negative and
might prevail.

In order to see that this is not the case, one has to
consider the variation of the derivative (df„/dr) in
the interval r~&r&r2. Starting from the value zero
for r= rj, it reaches its maximum at a distance of order
of magnitude ) from this boundary; in view of the
considerations of Sec. IV which lead to Eq. (64) of the
text, it satisfies at that point the condition

dfv/dr = (zip/r) f,
At this point of the interval of integration the negative
term in Eq. (A34) thus differs from the positive term

by the factor z&'&1, so that the former prevails. For
larger values of r, this is even more the case, since
(dfv/dr) will decrease until it reaches again the value
zero at r =r2. We are thus led to the conclusion that the
total contribution of the integral and, hence, of the
quadratic terms in v„of Eq. (A34) is necessarily
positive, so that these terms lead to an even larger
decrease of the energy than that caused by the linear
term. The possibility of a new stable state, reached by
a small fractional change of the total number X of
particles which originally occupy the same individual
state, is thereby excluded.

It is not o priori certain that the inclusion of higher
order terms which would become important for values
of v„comparable to unity could not invalidate this
conclusion. It seems reasonable, however, to interpret
our result for v„((1 to generally indicate that the system
will continue to make transitions until the field H~ in
the interior has decreased to the value Hi= (H,)r, and
that at this stage stability is regained by all particles
being again in a common individual state with a smaller
value of the azimuthal quantum number than the one
characteristic of the original state.


