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High-temperature series expansions of the partition functions for the Ising and Heisenberg models are
analyzed for various values of the spin s. The fcc lattice is used for which successive coefFicients are suffi-
ciently regular for estimates of critical behavior tobe made with conMence. It is suggested that the magnetic
susceptibility above the Curie temperature is of the form A (1 T,/T) —4~' for the Heisenberg model for all s,
instead of 2 (1 T,/T)—@4 for the Ising model. Critical estimates of energy and entropy show that the
magnitude of the "tail" of the speci6c heat anomaly is insensitive to the value of s, and is about 2.5 times
larger for the Heisenberg than for the Ising model. The sharpness of the anomaly at the Curie point increases
as s increases, and on passing from the Heisenberg to the Ising model. A brief reference is made to experi-
mental results.

i. INTRODUCTION

A I.THOUGH no exact solutions are available in
three dimensions for the Ising model of spin —,',

many terms of series expansions for the initial suscepti-
bility above the Curie point have been derived, a,nd
the critical behavior is now quite well established as
Xs A(1—T,/T) ".' ' The coefficients in such series
expansions increase in smoothness as the coordination
number of the lattice increases; for the fcc lattice they
are particularly smooth, and relatively few terms are
needed to provide reliable information regarding the
critical properties of the model.

It is of interest to examine how the critical suscepti-
bility of the Ising model varies with change of spin.
Although fewer terms of the expansion are available,
the regularity of behavior still enables one to draw
conclusions with confidence. When we pass to the
Heisenberg model the coe%cients in the series expansion
are less regular for spin —.,', but we have found that they
become smoother as s increases, and for s= ~ it again
seems possible to make reliable estimates near the criti-
ca1 point. From such susceptibility expansions, it is
possible to estimate the position of the Curie point with
considerable accuracy, and this is important for the
assessment of the behavior of other thermodynamic
quantities for which the series expansions are not so
smooth.

The critical values of energy and entropy supply us
with very useful information on the nature of the specific
heat anomaly, and the relative proportions which lie
above and below the critical point. Finally, the specific
heat expansion at high temperatures tells us of the shape
of this part of speci6c heat curve. Even if we are una, ble
to deduce the precise form of singularity we can still
determine how its shape is affected by change of spin
or model, e.g. , whether its steepness is increased or
decreased by an increase in spin.

For the Ising model of spin ~~ it has been generally

' C. Domb, Advances in Physics, edited by N. F. Mott (Taylor
and Francis, Ltd. , London, 1960), Vol 9, pp. 149, 245.' C. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (196$).

" (i, A, Ilal&erPhys. ,Rev. 124, 'f68 (1961).

established that dimensionality is the primary factor in
determining critical behavior, and lattice structure is of
secondary importance. ' All singularities seem to have
the same character for lattices of the same dimension.
Ke might reasonably expect a similar property to hold
generally for diferent spins and for the Heisenberg
model, and hence any results which we can establish
for a particular lattice (the fcc for convenience) are
likely to be characteristic of all three-dimensional
lattices.

2. HIGH-TEMPERATURE EXPANSIONS

For the Ising model of spin s the Hamiltonian may be
put in the form

K'= ——g s„s„—
S' ', j

mI~
ski

Here s„, the z components of spin, can take integral
values —s, —(s—1), (s—1), s and &J are the
maximum and minimum energies of a pair of interacting
spins; the maximum magnetic moment of a spin is m;
the sum i, j is taken over all nearest neighbor pairs in
the lattice, and the sum i is taken over all spins in the
lattice. The atoms in the lattice are connected cyclically
in the usual manner to avoid boundary effects. This
choice of interaction parameters ensures that for given
J and m the maximum internal energy and saturation
magnetization remain constant as s varies, and, hence,
a direct comparison is possible of the properties of the
model for diferent values of s. For the Heisenberg model
s„s,, must be replaced by s,s, (=s„s„+s„;s»+s.,s„),
where s denotes the vector spin operator.

The partition function is given by

ZQT (P,H) = (exp (PÃ)) = 1+P(X)
+p'«')/2~+ p"«")/', (2)

where ( ) denotes traces, p=1/kT, and the rth term
in the expansion will be a polynomial of order r in cV

This is the analog of a moment expansion in statistics.
We should expect; on physica1 grounds that for su%-
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ciently large E,
z~(p, e)-[z(p,e))& (3)

of the expansion are taken into account, the Curie
temperature is given by

where Z(p, H) does not depend on E. If formally we take
the logarithm of (3) we obtain the a,nalog of a cumulant
expansion

lr (exp(pX)) =p(K&+ (p'/2!) LpC'& —(X)']
+ (P'/3') D~'& —3«'&«&+2«&'j+ "

and each term is now of order 3t. Thus, by comparison
with (3), we are furnished with an expansion in powers of
P of lnZ (P,H); an alternative formal method of obtaining
the rth term in (4) is to pick out the coefficient of E in
the corresponding term in (2).

The contributions to «"& can be divided into various
groups corresponding to different types of linear graph.
Two basic calculations are then required: (a) The
number of independent graphs of a particular type which
can exist on a given lattice, and (b) the mean value of
the spin operators in (1) for the particular graph.

These calculations are the limiting factor in the
evaluation of higher-order terms in the expansions (2)
and (4) and precise details have been described else-
where. For the Ising model, (b) is a straightforward
calculation for any graph, and (a) limits the extent of
the expansions. When s = i, the product (s,is,2) can take
only two values, and by a suitable transformation all
graphs with multiple bonds can be eliminated. For this
reason, several more terms can be calculated than for
general spin, s. For the Heisenberg model, (b) involves
the calculation of averages of noncommuting operators
and is probably a greater limitation than (a).

2. MAGNETIC SUSCEPTIBILITY ABOVE
THE CURIE POINT

For the Ising model of spin —'„nine terms are available
of the reduced susceptibility expansion for the fcc
lattice, and their detailed analysis has been undertaken
elsewhere. ' For general spin s, six terms have been
calculated, 4 but since they have not been available in a
particularly convenient form, we have retabulated co-
efficients h„(s) (r=1 to 6) in Appendix I, where

3skTX.o =P h„(s)E"/s-'",
X(s+1)m' .=0

where E=J/kT and Xo——magnetic susceptibility. It
will be noted that with the form of normalization
adopted in (1) the coefficient of E"remains finite'
as s~ao.

Having established with some confidence the behavior
of the terms of the expansion for s= —'„ it seemed con-
venient to compare the behavior of the coeKcients for
general s with those for s=-'„and, hence, determine the
form of the susceptibility for general s. If only two terms

4 C. Bomb and M. I'. Sykes, Proc. Roy. Soc. {London) A240,
214 {1957).

kT, = qg(s+1)/3s, (6)

for a given s, and finding its limiting value for large is.
In a previous paper' we analyzed the behavior of

~ (~)=u (~)/u (-')

and showed that for s= 4 and s= ~ successive incre-
ments are approximately in geometric progression, tend-
ing rapidly to limiting values 1.0424 and 1.0709, re-
spectively. We may thus write, for example,

R (1) 1.0424+8", (8 1)

and since we have established the behavior,

u„(,')-u-. (1+-,' )u,

we readily find that

(9)

(10)

u„(l) 1 0424u.,(1+4n) (11)

Hence, we may deduce that change in s does not affect
the critical behavior of the high-temperature suscepti-
bility, which remains of the form A (1—T,/T) "'. The
actual change in the susceptibility curve arising from
change of s is quite small and is comparable with the
change due to difference in crystal structure (in three
dimensions).

For the Heisenberg model of spin —,'the terms are less
regular, and our previous analysis' was less conclusive.
Calculations were subsequently made by Rushbrooke
and Wood' for general s; these can again be cast into
the form (5), and the coefficients h, (s) (r= 1 to 6) are
tabulated in Appendix II for the fcc lattice. We have
recently examined the behavior of the coefficients of E"
as s increases, and we find that they increase steadily in
smoothness. When s —+ ~ we feel that these coe%cients
are sufficiently regular for a refined analysis to be under-
taken, with which we now proceed.

In the limit s ~ ~ Eq. (5) becomes

3kTxo/lVm'= 1+4E+14.666667E'
+51.733333E'+178.459259E'

+606.745397E'+ 20 942.10041E'+ . (10')

Following the method used previously, ' we attempt to
fit the mth coefFicient, a„, in the series (10') to an asymp-
totic formula

a„Ae'E, ", (11')
for which the formula

~-= ~-/~ i=(1/«) (1+g/u) (»)
5 G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 {1958).

where q= coordination number of lattice. This naturally
suggests examining the quantity,

3s h (s) 3h
u„(s)= =, X=-s(s+1), (7)

g+1 s'h„ i (s) Xh„ i
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TanLE II. Approximation to 1/E. by p .

3.1429
3.1745
3.1842
3.1874
3.1885

O.O

I'IG. 1. Heisenberg model s= 00, susceptibility expansion for
the fcc lattice. 6 the ratio of successive coefficients, a„/a„ I,
becomes linear as a function of 1/I with slope 1/3. p =nS /
(a+1/3l approaches the axis horizontally.

is valid. In Fig. 1 we have plotted 8„against 1/n; it will

be seen that the relationship is very nearly linear, show-

ing that (12) rapidly becomes a reasonable approxima-
tion. Each pair of successive values of 8„yields estimates
of 1/K, and g, and these are reproduced in Table I.
Successive estimates of both quantities are monotonic,
and those of g seem to be approaching a value approxi-
mately equal to 3.

Again following our previous procedure, we tenta-
tively assume the limit —'„and calculate

P„=nS./(n+ g). (13)

If g is equal to -'„P„as a function of 1/n will approach
the limit 1/K, horizontally. The P„are given in Table II,
and plotted against 1/n in. Fig. 1. We feel that the con-

jecture g= —', is reasonably substantiated, so that the
critical behavior of the susceptibility for this model is,
therefore,

(14)

between the critical behavior of the high-temperature
susceptibility for the Ising and Heisenberg models.

Our estimates of the limiting value of T (s) as n —+ ~
are 1.175 for s= 2, and 1.068 for s=1. Hence, our final
estimates of Curie temperatures for Ising and Heisen-
berg models are given as follows

(/s T,/qJ) 3s/(s+ 1)
= 0.816, 0.851, 0.874, (Ising);
=0.679, 0.747, 0.798, (Heisenberg); (16)

for s=~~, 1, ~, respectively, in each case. The Heisen-
berg estimate for s= ~ is a few percent lower than the
value given by us previously, 4 and our present estimates
are consistently lower than those of Rushbrooke and
Wood'; but we think that the present derivation is more
reliable than those undertaken previously and is sufIi-

ciently accurate to permit a detailed analysis and extra-
polation of the series for energy and free energy.

4. ENERGY AND ENTROPY

The zero-field partition function for both Ising and
Heisenberg models can conveniently be written in the
form

SVq ~
inZ~=A ln(2s+1)+ g c,(s)K'/s"r!. (17)

2 ~2

SqJ ~
g c,(s)K '/s'"(r —1)!.

2 ~2
(18)

For the Ising model c„(s)have been calculated for values

up to r=8, and are tabulated for the fcc lattice in
Appendix I (these have not been published previously).
For the Heisenberg model the calculations of Rush-
brooke and Wood enable c„(s) to be determined for
values up to r= 7, and these are tabulated in Appendix
II.From LnZN and EN the entropy can readily be found.

The energy and entropy represent integrals of c„, the
specific heat, and c„/T, respectively. Hence, they pro-
vide information about the area under the specific heat
curve, and, in particular, by studying their critical
values, we can learn of the magnitude of the "tail" of the
specific heat anomaly above the Curie temperature.
For more detailed knowledge of the shape of the speci6c
heat curve near the Curie point we must study the
mathematical behavior of the speci6c heat itself.

we find a somewhat larger deviation from unity as s
varies from ~ to ~~; but again successive increments
seem to be approximately in geometrical progression,
so that the asymptotic behavior (14) should be valid
for general spin s. There is thus only a small difference

TAnr. z I. Approximations to 1/E, and g.
'

Estimates of
1/E.Values of n

3.2485
3.2166
3.2012
3.1944

0.2575
0.2898
0.3104
0.3216

23
3, 4

5, 6

Our estimate for the critical value, 1/K„ is 3.1902, and
we feel, on referring to Tables I and II, that the error The internal energy is then given by
should not exceed a few units in the final place.

We now investigate the Heisenberg model for general
s by a method similar to the Ising model, but using +N
s= ~ as our reference standard. Defining, by analogy
with (8),
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In order to compare the specific heat curves for the
various models, it is convenient to take 1, as unit of
temperature, and consider c„as a function of t (= T/T, ).
Then

1 cy
~c= —dt)

p

(19)

5„—5,=

so that the values of 5, and 5 —5, enable us to compare
the magnitude of the specific heat curves below and
above the Curie temperature. The sum of the two terms,
5„,is known for any model and tells us the total magni-
tude of the specific heat a,nomaly. Critical values of the
entropy are particularly useful for comparison with
experiment since they are independent of the inter-
action energy.

Similarly, for the internal energy it is useful to study

1

(E, Eo)/k T,—= C„dt-
k. p

(20)
00

(E„E,)/kT, =— C.dt-
k

These values represent directly the area, s under the
specific heat curve below and above the Curie tempera-
ture, and are also independent of the interaction energy.

The total entropy change from T= 0 to T= ~ for a,

model of given. s is 1n(2s+1). Hence, the area under the
curve c„(t)/t increases steadily but slowly as s increases;
as s~~ this area becomes logarithmically infinite.
The corresponding area under the c.(t) curve is given
by Eo/kT„and from —(16) this increases approximaely
as 3s/(s+1), i.e., by a factor of 3 as s goes from —,

' to ~.
We may thus expect that for large s the major change
in c, occurs near t=0.

To compare the critical values of E,/kT, for different
s for the Ising model, we evaluate the coefficients c„from
Appendix I, and use the kT. estimates of (16) to derive
the following series for the high-temperature expansion
of —E/kT. :

—E/kT, =0.06257t'(1+0.4085t'+0. 2260t"

+0.1420t"+0.09639t"+0.06985t"

+0 05324t"+0 042.07t"+ ),. s= —,';
=0.05756t'(1+0.3919t'+0.2627t"

+0.1763t"+0.1254t'4+0.09375& (21)
+0.07272t"+ ), s = 1;

=0.05456t'(1+0.381St'+0.2805t"

+0.1915t"+0.1411t"+0.1081t"

+0.08550t"+ ), s= ~, t'= 1/t= T,/T.

The term outside the bracket, which dominates at high
temperatures, decreases slowly as s increases; however,
when t' approaches unity, the series within the brackets
increases as s increases, the net result being a slight
increase in E,/—kT, as s increases from —', to ~. The
series can readily be extrapola, ted at t'= 1 by methods
described previously, ' and similar treatment can be
given to the corresponding series for lnZ~.

Final estimates for critical values are as follows:

(E„E,)/kT—,=0.150, 0.160, 0.175;

(S„—5,)/k =0.102, 0.116, 0.131; (22)

for s=-,', 1, ~, respectively, in each case. Although
these are not as accurate as the estimates of the Curie
temperature, the errors should not exceed a few percent.
Hence, we see that the "tail" of the specific heat curve
remains small for all s; as s increases only a small frac-
tion of the increa, se in area under the specific heat curve
occurs in the region above the Curie temperature, and
most of it must be in the region below the Curie
temperature.

We can proceed in an exactly analogous manner with
the Heisenberg model, the series corresponding to (21)
being now

—E/kT, =0.2712t'(1+0.3682t'

+0 02511t." 0 021—57t."+0 01702t.'4

+0.03131t'"+. ), (s= -,')
= 0.2240t'(1+0.4044t'

+0.17118+0.09041t"+0.0S619'4

+0 03875t"+ ) (s= 1)
= 0.1964t'(1+0.4178t'

+0.2335t'2+0.1459t"+0.09733t"

+0.06883t'"'+ ), (s= ~).

(23)

6 C. Domb and M. F. . Sykes, Proc. Roy. Soc. {I,ondon) A235,
247 {1956).

The terms are irregular for s= —,
' and have not settled

down to steady behavior. However the regularity im-
proves rapidly with increasing s, and it seems that the
one negative term in the s= —,

' series may represent an
isolated small number effect. It will be seen by compari-
son with (21) that the term outside the bracket. is three
or four times as large for the Heisenberg model. Esti-
mates of critical values based on (23) a,re not quite as
accurate as those for the Ising model, but should still
be adequate to delineate the major difference in critical
behavior between the two models. We find that

(E„—E,)/k T,=0.439, 0.449, 0.474;

(5„—S.)/k =0.265, 0.289, 0.322;

for s=-,', 1, ~, respectively, in each case. Hence, for
the Heisenberg model the "tail" of the specific heat
curve is appreciably larger.
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S. SPECIFIC HEAT

If we wish to analyze the detailed behavior of the
high-temperature speci6c heat curve and its variation
with change of lattice structure, spin, or model, it is
useful to examine and compare reduced high tempera-
ture expansions for this quantity. We have already
investigated the effect of change of dimension on the
Ising model of spin —,

' by comparing the triangular and
fcc lattices. ' We found that the "tail" was much smaller
but steeper for the three dimensional lattice, and there
were indications that the asymptotic behavior was
approximately represented by

c„/k-2 (1—T./T) (25)

To demonstrate the effect of change of spin, we now
compare corresponding series expansions for the fcc
lattice as follows:

c„/k= 0.06257t"(1+0.8170t'+0.6779t"

+0.5680t'3+0.4819t"+0.4191t"
+0.3727t"+0.3365t"+ ), (s=-,')

= 0.05756t"(1+0.7838t'+0.7882t''-

+0.7052t"+0.6268t'4+0. 5625t" (26)
+0.5091t"+ ), (s= 1)

=0 054562 (1+0 7629t'+0.8414t"

+0 7660t"+0. 7055t'4+0. 6487t".
+0.5985t"+ ), (s= ~).

It will be seen that there is an appreciable increase in

sharpness as s increases from ~ to ~ which will increase
the index in (25) perhaps to 4 for s= 1 and 3 for s= ~.

The corresponding series expansions for the Heisen-

berg model are

—c./k= 0.2712t"(1+0.7364t'+0.075338—0.08629t'3

+0.08511t"+0.18792t""+ ), (s= —,')
=0.2240t" (1+0.8088t'+0.51336+0.3616t'3

+0.2810t"+0.2325t"+ ), (s= 1)
= 0.1964t"(1+0.8357t'+0.7006t"+0.5836t"

+0.4866t'4+0.4130t"+ - ), (s= ~).

The tail is much larger than for the Ising model, but the
sharpness is decreased. The series in parenthesis for
s= ~ is comparable with the corresponding Ising series,

(26), for s=-', . For the Heisenberg model of spin —', the
terms are not yet smooth enough for analysis, but from
the general trend established, the specific heat will be
less steep than (25) and may be logarithmically infinite.

6. CONCLUSIONS

We have thus suggested that the magnetic suscepti-
bility above the Curie temperature is only slightly de-

pendent on the magnitude of the spin or on the type
of model. The entropy change above the Curie tem-

perature is little dependent on spin magnitude, but
' C. Domb and M. P. Sykes, Phys. Rev. 108, 1415 {1957).

signi6cantly dependent on the model, a variation of a,

factor of about 2.5 occurring in the change from Ising
to Heisenberg interaction. The detailed shape of the
specific heat curve is more sensitive to the magnitude
of spin. We consider that the errors in our estimates of
critical values of energy and entropy may be a few
percent, but they should not seriously affect our
conclusions.

Previous theoretical work4' has shown that dimen-
sionality rather than lattice structure is the major
factor in the determination of cooperative behavior.
Thus, although our calculations have been made only
for the fcc lattice, we think that the conclusions apply
to all three dimensional structures.

The entropy at the critical point is a particularly
useful quantity for comparison with experiment, since
it does not depend on the magnitude of the interac-
tion. In experiments on the antiferromagnetic salts
NiC12 6H20 and CoC12 6H~O, Robinson and Friedberg'
found that the values of (5„—5,)/k were about 0.44
and 0.36, respectively, the former corresponding to s= 1
and the latter to s=2. These figures are comparable
with the two-dimensional Ising model and Robinson
and Friedberg, following a previous analysis by one of
us, ' suggested that the effective coordination number
might be rather small for these salts. This would cer-
tainly give a contribution in the right direction, but
we feel on the basis of our present work that the
change from Ising to Heisenberg model is of greater
significance. Our results in (24) are still low compared
with those observed experimentally, but they apply only
to a ferromagnet, since the Heisenberg model is not
symmetric in the sign of the interaction for any lattice.
A calculation for the Heisenberg model of an antiferro-
magnet might well yield results in better agreement with
experiment.

The experimental measurements by Stout and Cata-
lano" of the specific heats of MnFg, FeF2, NiF2, and
CoF2 are also of considerable significance for a com-
parison between theory and experiment. In analyzing
their results these authors were particularly careful to
devise a suitable method of subtracting off contributions
to the specific heat arising from lattice vibrations. The
resulting estimates of the electronic entropy (Tables IV
and V of reference 10) can. thus be compared directly
with theory, and are as follows:

Substance

Spin value
(5„—S.l/k

MnFg

5/2
0.262

FeI' 2

2
0.208

iVIF2

1
0.321

COF2

1/2
0.14

It will be seen. by comparison with (22) and (24) that
the experimental values are intermediate between those
predicted for the Ising and Heisenberg models (with the

8K. K. Robinson and S. A. Friedberg, Phys. Rev. 117, 402
{1960).

9 C. Domb, Chungemeets de Phases {Paris, 1952), p. 192.I J. ~. Stout and Edward Catalano, J. Chem. Phys. 23, 2013
{1955).
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exception of NiF2). FeF2 and CoF2 are closer to the
Ising value, and MnF2 is closer to the Heisenberg value;
NiF2 is somewhat larger than the Heisenberg value for
a ferromagnet, and calculations for an antiferromagnet
would again be useful for comparison. The ordering is
antiferromagnetic for all of these compounds; it seems
that a model using a suitable coupling intermediate
between Ising and Heisenberg should be able to predict
the detailed character of the specific heat anomaly.

More experimental data of this kind wouM seem to
be very desirable, to provide a searching test of the
calculations and the assumptions underlying them.
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APPENDIX I

Zero-Field Energy and Susceptibility Coef5cients
for the Ising Model (fcc Lattice)

c2(s) =X'/9,

c3(s)=SX'/27,

c4 (s) = (X'/225) (514X'—116X+1),
cq (s) = (2X'/405) (184Y-'—56X+1),
cg (s) = (X'/297 675) (83 599 648X4—36 144 288X'

+4 664 376X'—118584X+675),

c7 (s) = (SX"/14 175)(7 996 592X4—4 275 072X'
+817 524X' —35 076X+435),

c8 (s) = (X'/212 625) (18 568 249 616X'
—11 735 319488X'+3 100 557 664X'
—343 347 552X'+14 868 306X'

—246 780X+945).

hp(s) =1,
h, (s) =4X,
h, 2(s) = (2X/5) (38X—1),

h3 (s) = (2X/'75) (2124X'—136X+1),

h4(s) = (X/3150) (656 648X'—70 772X'+2331X-15),
hs (s) = (X/33o "/50)+ (251 682 608X'—39 096 208X'

+2 440 236X'—49 104X+225),

hs (s) = (X/1 984 500) (5 480 403 392X'—1 125 263 472X'
+105 206 144X'—4 607 196X'+79 290X—315)

!nZ(P,O) =!n(2s+1)+6 Q c„(s)K"/s2"r!,

&(P,O) = —6J Q c„(s)K" '/s"—
(r 1)!,—(K= J/hT),

t,v—=6 Q c„(s)K'/s" (r—2)!.
r=2

APPENDIX II

Zero-Field Energy and Susceptibility Coefficients
for the Heisenberg Model (fcc Lattice)

c2(s) =X'/3,

ca (s)= (X'/18) (16X—3),
c4(s) = (2X'/45) (107X'—78X+3),
cs(s) = (X'/54) (2048X'—2220X'+420X —9),
c6(s) = (X2/5670) (2 288 704X'—3 209 664X'

+1 383 465X'—111420X+ 1728),

c;(s)= (X'/1620) (8 854 016X'—14 814 272X4

+9 484 000X'—1 886 331X'+98 928X—1242).

ho(s) = 1,

hg(s) = 4X,

h2 (s) = (X/3) (44X—3),

ha(s) = (X/45) (2328X'—382X+12),
h4 (s) = (X/540) (96 368X'—26 432X'+ 2352X—45),

hs(s) = (X/14 175)(8 600 616X4—3 377 996X'

+526 440X'—30 060X+432),

h6 (s)= (X/340 200) (694 722 560X'—358 715 504X'
+81 267 018X'—8 691 207X'+367 290X—434/).

(Thermodynamic formulas as for Ising model. )


