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The thermodynamic properties of cubic or uniaxial antiferromagnets are examined using spin wave theory.
The specific heat, magnetization, and parallel susceptibility are shown to be exponentially increasing func-
tions of applied field for values of H, less than the critical spin-flopping field. Since this field dependence
suggests that an antiferromagnet can be cooled by the adiabatic application of a magnetic field, the theory
of adiabatic magnetization is investigated. Field-dependent nuclear spin effects are evaluated on an effective
field model by perturbation theory and are included in the analysis. It is found that when spin wave effects
are dominant, cooling should be observed; at lower temperatures, when nuclear effects are non-negligible,
either cooling or heating may be observed, depending on the initial temperature and final value of the
magnetic field. The dependence of the cooling on the physical parameters of the antiferromagnet is discussed

and detailed calculations are made for MnF,.

I. INTRODUCTION

HE low-temperature thermodynamic properties of
antiferromagnets were first examined in detail
by Kubo,! using the method of spin waves. This analysis
was for zero external field and primarily in the limit of
negligible anisotropy, except where the latter was
necessary to avoid singularities. The spin wave specific
heat was found to be proportional to 7% and the sub-
lattice magnetization to 72

The presence of anisotropy, however, is greatly en-
hanced by interplay with the exchange energy and in-
troduces a gap of a few degrees’ magnitude into the spin
wave spectrum. For finite anisotropy and low tempera-
ture, Kubo expressed the free energy and thermo-
dynamic quantities derivable therefrom in terms of
Schlémilch series.? He noted that for very low tempera-
ture there is an exponential decrease with temperature
for these quantities.

Eisele and Keffer® elaborated on the finite anisotropy
effects in the thermodynamic theory of antiferromag-
nets. It was pointed out that when the absolute tem-
perature is below the gap temperature, the specific
heat and magnetization are much smaller than their
zero-anisotropy values since the number of spin waves
excited falls off exponentially with decreasing tempera-
ture. Well above the gap temperature, however, the
values of the thermodynamic properties approach the
zero-anisotropy values first given by Kubo.

One of the effects of an applied field can be described
in the following way. The degeneracy of the spin wave
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modes of an antiferromagnet is removed by the applica-
tion of a magnetic field. The modes will therefore
contribute differently to the specific heat. For an in-
creasing applied field, the increasing specific heat of
the lower energy mode more than compensates for the
decreasing specific heat of the higher energy mode. In
other words, dC/dH>0 for antiferromagnetic spin
waves; the same quantity is negative for ferro- and
ferrimagnetic spin waves (and for antiferromagnetic
spin waves when the magnetic field is perpendicular to
the spin axis). This difference was pointed out by
Kouvel and Brooks! who calculated the spin wave
specific heat of a simple cubic antiferromagnet by
graphical integration.

Since the specific heat depends strongly (exponen-
tially) on the applied field, particularly when gusHo/k 5
approaches the gap temperature, it may be possible to
cool an antiferromagnet by applying a magnetic field
under adiabatic conditions as was suggested by Akhiezer,
Bar’yakhtar, and Kaganov.® These authors describe
the thermodynamic properties with sets of equations,
each of which is valid for a particular range of values of
temperature and magnetic field relative to the Néel
and gap temperatures and critical field characterizing
the antiferromagnet. Earlier, Turov® suggested that it
might be possible to effect a measurable change in the
temperature of an antiferromagnet by the adiabatic
rotation of a crystal in a magnetic field, since the field
dependence of the specific heat is anisotropic.

In the present paper the magnetic field dependence
of the measurable, macroscopic properties of cubic or
uniaxial antiferromagnets is examined theoretically and
the results are presented in an analytical form (Sec. IT).
These properties include the total and sublattice
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magnetizations, the parallel susceptibility, and the
magnetic specific heat. In Sec. III the anisotropy-
exchange temperature is considered further and the
general expressions of Sec. II are simplified by making
some approximations with a fairly wide range of
validity. Since the temperature span of interest will
often extend below 2-3°K, the field-dependent nuclear
spin contribution to the magnetization and specific heat
of the system is evaluated on an effective-field model
(Sec. IV). The results of the previous sections are com-
bined in Sec. V to provide a theoretical description of
adiabatic magnetization of an antiferromagnet, and
in Sec. VI this theory is applied to manganous fluoride.
Section VII contains a general discussion of the de-
pendence of adiabatic magnetization cooling on the
physical parameters of the antiferromagnetic material.

II. MAGNETIC FIELD DEPENDENCE

The antiferromagnetic spin wave properties described
in this and following sections are based on a two sub-
lattice model with uniaxial anisotropy and a single
exchange integral, J, coupling nearest neighbors. A
crystalline field, H 4, is used to represent the anisotropy,
being directed along the preferred axis in opposite
senses for the two sublattices. This field is allowed to be
temperature dependent as a substitute for explicit
treatment of the higher-order spin wave interactions
which cause the macroscopic anisotropy constant to
decrease with rising temperature. This temperature-
dependent H 4 is also useful as a substitute for magnetic
dipole interactions in the Hamiltonian. The dipolar
form of anisotropy requires the evaluation of dipole-
wave sums and depends on k, and thus would necessi-
tate the use of numerical integration to determine the
thermodynamic properties.

The model contains Ny magnetic cells, each cell
having a magnetic ion from both the 4 and — sub-
lattices. With the applied field, Ho, in the preferred
direction and smaller than the critical spin-flopping
field, H., the spin Hamiltonian for this model may be
written as

Fo=2J X, S;-Sn
(Lm)
+gusH* 31 St tgusH™ 3 m Sw?, (1)

where g is the gyromagnetic ratio and up is the Bohr
magneton (both >0), and

HE=H+H,. (2)

The =+ superscript indicates the sublattice with mag-
netic moment essentially parallel or antiparallel to H,,
respectively, and the symbol (/,m) represents pairs of
nearest neighbors, / being the index for 4 sublattice
and m for — sublattice.

By using the spin wave formalism developed by
Holstein and Primakoff” for ferromagnets and modified

7T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
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by Kubo! for antiferromagnets, the Hamiltonian is
diagonalized and brought into the form

Fo=C"+2 1 (mit+3) e+ (5 +3) e, 3)
where
C'=—=2NS(S+1)JZ—2Ny(25+1)J Za, 4)

e = 25T Z{[ (1+a) — v ] 2ag}, ®)
a=3%gup(H+—H-)/257Z=gusH 4/2SJZ, (6)

ao="3gup(H*+H")/2S]Z=gupH/2STZ, (7)
and

vie=27" 2nexp(ik-1a), ®)

with Z being the number of nearest neighbors and r;
the nearest-neighbor vector. This equation has been
derived by Kubo,! Ziman,® and others, and is a special
case of a more general equation given by Keffer.?

The frequencies of the uniform precession modes
given by Eq. (5) with k=0 do not quite agree with those
of Keffer and Kittel® which were derived classically
and are, in the notation of the present paper,

hot=2STZ[ Qa+a®) Ptao(l—3xu/x1)],  (9)

where xii (x1) is the susceptibility of the electronic spin
system in a magnetic field applied parallel (perpen-
dicular) to the preferred axis. The factor (1—%x;/x.)
affecting the applied field does appear in higher-order
spin wave theory® and expresses the fact that the spin
system has less energy to gain by flopping to a hard
axis as x;; approaches x, near Tx. In what follows the
ao of Egs. (5) and (7) will be replaced by

Q!()::gﬂBH()(].—%X“/XJ_)/ZS]Z. (10)

Equation (9) now leads to a critical spin-flopping field
given by
He= 2HpH 4+H 4%/ (1—x1/x), (11)

where Hp=2S5JZ/gup, which is in agreement with the
value predicted by Néel.!

A. Spin Wave Energy

The total spin wave energy is obtained by summing
the ex* over Bose distributions in the first Brillouin
zone of the magnetic unit cell. For small k in cubic
lattices,

vi=1—(2ad/2)R, (12)

where ao is the length of a side of the elementary cubic
cell, and the sum over k may be approximated by an
integral to infinity. Thus

V 0
E(T,Ho)=;‘2/ {ek+[exp(ﬁek+)—1:]_l

+ e LexpBe)— 1T} R2dEk, (13)

8 J. M. Ziman, Proc. Phys. Soc. (London) A65, 540, 548 (1952).

® ¥, Keffer, in Handbuch der Physik (Springer-Verlag, Berlin,
1963) (to be published).

10, Keffer and C. Kittel, Phys. Rev. 85, 329 (1952).

11T, Néel, Ann. Phys. (New York) 5, 232 (1936).
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where V is the sample volume and g= (k7). The
Bose function for (#;~) has no singularities when
H\<H,.

Equation (13) is evaluated by expanding the Bose
functions,

Lexp(Ber®)—1]7'= 2 exp(—pBe®),  (14)
p=1
and making the replacement
(2ota)'? coshy=[ (2ae*/ Z)k*+2a+ 2. (15)

To simplify notation, effective temperatures are sub-
stituted for the exchange, anisotropy-exchange, and
magnetic-field energies:

Ty=2S7Z/ks, (16)
Tag= (Qato?) Ty, an
TH:aoTE. (18)

Each of these quantities is an implicit function of the
absolute temperature; however, T’z will be considered
constant. After substituting Eqs. (14)-(18) in (13), the
spin wave energy becomes

V/ Z \32 T4m\3
E(T,Ho)=-—(———) kBTAE(T>

’lr2 2(102 E
o [ ?Tx Ty  (pTH
X[ > / [cosh(——~> coshy———sinh —-—)]
»=1lJ T TAE' T
pTar .
Xexp[—( . ) coshy | sinh?y coshydy ;. (19)
The integrals are Hankel functions,”? and the final ex-
pression for the total spin wave energy is
Tar\* = pTu
E(T,Hy)=%4 ZNOkBTAE(—“““> > [ cosh(——)
Tk p=l T
Tar pT 4z Ty
{5 =(F)z)
T T Tur
pTw pTar pT sz
ol () ()
T T T

JOENK

where 4,= (1/2x?)(Z/2)*2. The series is convergent for
Tu<Tap, which is equivalent to the condition for
nonsingularity of the Bose function, Ho< H,. In the
absence of an applied field the summations are known
as Schlomilch series and are rapidly convergent; the
zero-field limit of Eq. (20) is equivalent to Eq. (11) of
reference 3.
The temperature dependence of the spin wave energy
is illuminated by a further revision:
E(T,Ho)= (2n*/15)AiNoksT (T/T5)*8,  (21)

where
15 TAE 4 0 pTH
EOHE
8\ T p=1 T
T T
{=(57)-x(5)]
T T
T T T T ]
—Z—Hsinh<u>[1<s(p AE)—K1<? AE)]} (22)
Tar T T T

Below T'4r and H., the temperature and field depend-
ence of & are basically exponential. When the external
field is zero,

R ) )

and, when T is much greater than T4z and Ty, the
value of & goes to 1. The limit of vanishing anisotropy
for finite applied field is inappropriate since the corre-
sponding ground state with spins perpendicular to the
field is not represented by Eq. (1).

B. Spin Wave Specific Heat

The specific heat is the derivative of Eq. (20) with
respect to 7}, holding H constant, and has the value

CH(T,H()) = (81!'4/15)A lNokB(T/TE)3G, (24)

where

15 /T ag\* = pTH pTar T /aTAE T an
o7 ) 2o (N )= (50
8re\ T / =1 T T ) Tup\ oT T

) )G R 5 G R ()

Tap) Tag\ 0T T\ 0T

12 See reference 2, p. 172.
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F16. 1. The temperature variation of the function € for cubic or
uniaxial symmetry showing the effects of applied field and
anisotropy. The number below each curve is the value of the ratio
Tr®/Taz’. The 0.99 curve on the right-hand side is a lower
temperature extension to be used with the scale at the top of the
figure.

This expression is plotted in Fig. 1 for the case of
constant T4z and T'p. In the limit of zero applied field,

15 /T ar\*
- 52
8mi\ T

y i {K4<PTAE>— T /aTAE>K0(PTAIIJ>

] T ] Tag\ oT T

[i-m G () e

The expression for € in reference 3 was developed
holding T4z constant, but is otherwise equivalent to
Eq. (26). When T far exceeds T4z and Ty, the value
of @ is 1. In this case, the specific heat, Eq. (24),
follows the usual 7 law for Bose particles.

C. Magnetization

The magnetic moments of the sublattices and of the
antiferromagnetic material as a whole are determined
in the usual method from the partition function corre-
sponding to Eq. (3), with the integrals being evaluated
by the procedure which led to Eq. (20). A net mag-
netization exists only when H, is finite causing a differ-
ence in the two sublattice magnetic moments. Since the
sublattice moments are separately determinable from
nuclear magnetic resonance experiments, their indi-
vidual values, as well as the total magnetic moment, are
of interest. The net sublattice moments are
M &E=FkpT (0 In3/dH=)

=M FAM sFAM (T, Ho)+3M (T,Ho), (27)

in which M 0= NogusS and is the moment for complete
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alignment,
AM =%gupd [ (14a) Qat-o®+2a2k?/Z)112—17] (28)
and is the field- and temperature-independent zero-point
deviation (~29, of M) from the completely aligned
trial ground state, and

AM o(T,Ho)= (n*/6)AiN ogus (1+a) (T/ T )M,

with

3 /Tar\*
. -=(=)
™\ T

w T T T
XX cosh(li—g)[Kz(p AE)—K0<P AE):I, (30)
p=1 T T T

represents the deviation due to finite 7" and H,. Eisele
and Keffer® have given Egs. (27)-(30) for Hy=0. The
expression for 9, is shown in Fig. 2; it is defined to have
a value of 1 at high 7. In this limit the sublattice mag-
netization exhibits the usual 7% dependence.

The final term in Eq. (27) is the total magnetic
moment of the sample,

M(T,Ho)= (27*/3)AiNoks(Tu/Tx)
X(T/Tg)?* (0T /0H )M,

(29)

(31)
where

3 TagfTar\*
sm=———(——>
472 Ty \ T

- T T T
X3 sinh(———p H>[K3<P AE)—K1<P AE)] (32)
p=1 T T T

At high temperature the limit of 9 is 1 and M (T,Hy)
is proportional to 72. In the absence of a field, M (T,0)
is zero. Equation (32) is plotted in Fig. 3.
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Fi16. 2. The temperature variation of the function T, for cubic
or uniaxial symmetry showing the effects of applied field and
anisotropy. The number below each curve is the value of the
ratio Tg%/T 4&°. The 0.99 curve on the right-hand side is a lower
temperature extension to be used with the scale at the top of the
figure.
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F1c. 3. The temperature variation of the function 9 for cubic
or uniaxial symmetry showing the effects of applied field and
anisotropy. The number below each curve is the value of the ratio
TH/T 45" The 0.99 curve on the right-hand side is a lower tem-
perature extension to be used with the scale at the top of the figure.

D. Susceptibility

With reference to Egs. (10) and (18), the partial
derivative in Eq. (31) is seen to be

kp(0Ty/dH,)
= 8”3[1_% (XH/XL) - %Hoa (XI!/XL)/aHO:].

Thus the equation for the differential parallel suscepti-
bility, xu= VoM (T,H,)/0H,], becomes a second-
order, inhomogeneous, differential equation in x;; which
must be solved consistently. This situation results from
the inclusion of the higher-order spin wave correction,
Eq. (10), in the quadratic approximation Hamiltonian,
Eq. (3). The expression for the parallel susceptibility is
evaluated in the following manner.

Since % (xn/x)<K1 for T<<Ty, and since x; is
zero at T=0 for the two sublattice antiferromag-
net, the hyperbolic functions are expanded in Taylor’s
series about 7'y’ keeping only terms linear in x;;. [ Note
that kT x'= gﬂBH()[l—%xu (0)/)(1_ (O):]:g,uBHo.] In this
order of approximation the differential equation be-
comes an algebraic equation and the resulting expression
for the susceptibility is

xu(T,Ho)= (22%/3) AN oV(gus*/ k3T 8)(T/TE)*, (34)

with
3 (Tar\* = pTH° pTar
=—(——-—) > cosh( )Kz( ) (35)
I\ T / »=1 T T

Equation (35) goes to 1 at high 7 and the suscepti-
bility then exhibits the usual 72 dependence of an anti-
ferromagnet. The expression for x is plotted in Fig. 4.
Reference 3 gives the value of x for Hy=0.

The Weiss molecular field value for the perpendicular

(33)

JOENK

susceptibility is

x'=NoV'g%up?S/kpT g, (36)
and consequently,
xu/2x:"= (7°/3) (41/S)(T/ T 5)xK1 37

in the temperature range where spin wave theory is
applicable. Thus, even for MnF,, which has a relatively
high T4r=~¢Tz, the approximations used in arriving
at Eq. (34) are valid to at least 7'~ T 4z and the parallel
susceptibility should be well represented by that
equation.

An improvement in x; over the molecular field value
is obtained as follows. In a field applied perpendicularly
to the easy axis the susceptibility is

x1=2V-M ,(T,0) sind/H,, (38)

where 6 is the angle the sublattice magnetization vector
makes with the preferred direction. At equilibrium the
net torque on the sublattice moment must be zero, thus
determining

sinf~0~H,/(2H g+ H 4). 39)

The improved perpendicular susceptibility can now be

written as
x1° AM s AM(T,0)
(=] 1-
1—}—%(1'_ M Mo

This equation, including higher order spin wave cor-
rections, is given by Keffer.? Equation (40) is inde-
pendent of the applied field and only varies slowly with
temperature.

] w

III. T4z; ZERO-ORDER EQUATIONS

By using Egs. (38) and (39) the anisotropy-exchange
temperature defined in Eq. (17) can be put in the

T T T 1717 T T TTTITIm T
102 : 107* 0%
L //\\
X [C .
o' E
102
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|

F16. 4. The temperature variation of the function x for cubic
or uniaxial symmetry showing the effects of applied field and
anisotropy. The number below each curve is the value of the ratio.
TH/T 45° The 0.99 curve on the right-hand side is a lower tem-
perature extension to be used with the scale at the top of the figure.
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form

kpT a5= 8B (ZH aM s/ Xx)m
= gus[2¢(T)/x.(T) ], (41)

where (T is an anisotropy coefficient. Pincus®® has
shown that the temperature dependence of anisotropy
energy in antiferromagnets is related to the temperature
dependence of the sublattice magnetization by the
expression

k(T)/k(0)=[M:(T)/M:(0) Jn=D1, (42)

where # is the order of the principal surface harmonic
in the expansion of the anisotropy energy, and the
magnetization value is for zero applied field. If the
temperature dependence (very slight) of the factor
(1+1a) in the denominator of Eq. (40) is ignored, then
the gap temperature, Eq. (41), becomes

Tag=Tag'[M(T)/M;(0) ] (=14

where T4z° is the spin wave energy-gap temperature
at T'=0°K and is given by the expression

kBT 45"= gus[2(0)/x.(0) J/2. (44)

The temperature dependence of 745 is made more
explicit by substituting Egs. (29) and (30) in Eq. (43)
and using the binomial expansion:

T 4 EO)Z

Te

L CRC)

This expansion retains only terms linear in (4,/S)
X (T 48’/ Tr)% thus making it consistent with the ex-
pansions used to determine the parallel susceptibility.
Obviously, T 4z° should now replace T4r in Eq. (35).

The Hankel functions approach zero exponentially
with the temperature ;since (4:/.S) (T 45’/ TE)*<1, most
low-temperature calculations will be sufficiently ac-
curate using both 7"4£° and 7' in place of T4z and T.
‘The resulting expression for E®(T,H,) is obtained by
direct replacement of Ty and T4r in Eq. (22) with
their 0°K values. The corresponding zero-order ex-
pressions for Cg, AM,, M, and x, are given below for

convenience.
Tae®/Tas’\® = pTH°
(7o) E=(5)
T \Tg/ »=1 T
pT 4z’ TH\? pT a8
k() (5]
T Tas® T
T#® TH° Tz’ Tar®
sy,
Tag® T T T

(46)

(43)

Tan= TAE°{ 1-3(n+2) (n— 1)(1+a)(fls_’)(

Cy®@(T,Ho)=ANoksp

13 P, Pincus, Phys. Rev. 113, 769 (1959).
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TAEO 2
AMS(O)(T,HO)=%(1+a)A1N0gMB( T )

E
- Ty Tas® Tz
X2 cosh(P z )I:Kg(P - )—Kn<p i~ ):l, (47)
p=1 T T T
TAEO 3
M(O)(T,Ho)=%AzNoguB( )
E

< Eann(* e ()0

g2ﬂB2 TAEO 2
X”(o)(T,Ho)—_—'ZAlNOV—'l( )( )
kBTE, TE

© pTH T 4E°
X3 cosh( >K2< > (49)
T T

p=1

The sums in these expressions converge for Ho<H,,
but the rate of convergence is very slow for Hy near H.
and T near T 4£°. For example, the sum which is slowest
to converge is the one in Eq. (49) and in other ex-
pressions pertaining to the susceptibility: about 460
terms are required to obtain better than 999, con-
vergence for Hy=0.99 H, and T=T 42"

IV. NUCLEAR CONTRIBUTION

The magnetic hyperfine interaction between atomic
and nuclear spins is treated as a perturbation on the
electron-electron interaction Hamiltonian, Eq. (1):

Je=50,+5¢, (50)

where

3¢’ = — gnunI- (Hs+Ho). (1)

In Eq. (51), gn! is the magnitude of the nuclear mag-
netic moment in units of the nuclear magneton, uxy; Iis
the nuclear spin in units of #; Hg is the field at the
nucleus due to the electron spins; and Hy is the external
field. The effective field Hy is taken proportional to S
and the perturbing Hamiltonian becomes

3= —gnund G IrSe+2 In*Sw?)
l m
—SgnunB[2 (St +SrIib)
1

+3(Sutln+SuTnt)]
—gvunHo Q- I7+3- 1.5, (52)
l m

The entire perturbation can be expressed in terms of
the spin wave operators for which 3Co is diagonal as



1640 R. J.

Marshall* has done for ferromagnets, but it is sufficient
at present to take Si*=~—S, S,*~S, and S£=0. The
neglected terms are of order (7'/T )", where r=3/2 for
a ferromagnet and =2 for an antiferromagnet. These
terms and other effects not included in this simple
model are accounted for by replacing 4S5 with an ex-
perimentally determined effective field. In the metals
and transition element ions in salts, the effective field
is primarily due to core polarization and is antiparallel
to the electronic magnetization.!® This means that 4 >0.
With these approximations and substitutions the hyper-
fine perturbation reduces to

3= —gnun[ (Ho—Hetr)Y I*+ (Ho+Hets)d, In?]. (53)
l m

Since the off-diagonal matrix elements of 3¢’ are zero
in the set of electronic eigenstates of JCo, the perturbed
energy levels through second order in quantum pertur-
bation theory are

E,=E,©+3C,, . (54)
The eigenstates [#>=|I>|S> are functions of both
the nuclear and electronic coordinates, but the un-
perturbed eigenvalues E,® depend only on the elec-
tronic quantum numbers. Following Landau and Lif-
shitz,' this expression is inserted in the formula for the
free energy,

¢PF=3" ¢BEn (55)

and the right side of Eq. (55) is expanded to second
order in 3¢’. The free energy is then determined to be
(by making a similar expansion of the logarithm):

F=Fy+Y 30, ¢8 Fo—Ea®) L1650 78U o—En®) 2
n n

—38 X (10, FoE, (56)

The second and third terms are zero since positive and
negative values of the quantum numbers appearing in
JCnn” can be matched in pairs, but

2 (BCn”)2eP FomEnl®D)
=2(gnpn )} (HP+Hee?) 0 3 e PEOL (3 11%)? ]n
n l

=3No(gnun) I (I+1) (HP+He?).  (57)

Since Fy is the free energy corresponding to the unper-

14 W. Marshall, Phys. Rev. 110, 1280 (1958).

15R. E. Watson and A. J. Freeman, Phys. Rev. 123, 2027
(1961). This paper includes other appropriate references.

16 L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts,
1958), p. 93.
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F16. 5. The temperature variation of the specific heat per mole
of MnT in the absence of applied field. The dashed line is the
nuclear contribution Cn/R, the dotted line is the lattice contribu-
tion Cz/R, and the dashed-dotted line is the magnetic contribu-
tion Cir/R. The sum of these is represented by the solid line.

turbed spin wave Hamiltonian, only the portion

Fy=F—F,
=—1INo(gvun)2I (I+1) (HP+He)/ kT  (58)
is needed to determine the nuclear contribution to the

thermodynamic properties of the system.
The nuclear spin specific heat is

Cy=3NoksI (I+1) (gwpx)*(Hi+Hes®)/ (ksT)*;  (59)
the sublattice magnetic moments are
Myt=F3NoI (I+1) (gyun)*Heit/ksT+5M 5, (60)
where the total nuclear moment is
My=3No (I+1)(gvun)?Ho/ksT; (61)
and the parallel susceptibility is
xv=3NoVI(I+1) (gwun)*/ksT. (62)

The =+ superscript above refers to the sublattice with
electronic magnetization essentially parallel or anti-
parallel to the applied field, respectively. Each of the
nuclear properties represented by Egs. (59)-(62) is
usually negligible atliquid helium temperature or above,
compared to the spin wave properties calculated in
Sec. II. However, the nuclear contribution begins to
dominate the thermodynamic properties as the absolute
temperature is lowered to 1 or 2°K. The nuclear and
spin wave specific heats of MnF; are compared in Fig. 5.
The equations of this section are valid as long as the
perturbation energy per particle is much less than kgT.
For effective fields at the nucleus of a few hundred
kilogauss, the minimum temperature for which this
condition is satisfied is a few tenths of a degree.
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If the substitutions introduced in the discussion
following Eq. (52) are modified, the subsequent equa-
tions are easily adapted to the cases of ferro- and
ferrimagnets. For the former, both S;* and S,,*— —S
with the result that

Fy(ferro)

=—3No(gvun)*I (I+1) (Ho— Hest)*/ kT, (63)
an expression equivalent to Marshall’s lowest order
term.! The ferrimagnetic case requires .S;* — —S, and
Sn?— Sy with two effective fields, H,=A4,S, and
Hy= 43Sy The nuclear contribution to the ferrimag-
netic free energy is then

Fy(ferri)
= _%NO(#N2/kBT)[ga21a(Ia+ 1) (HO"Ha)2
+e (I +1) (HotHo)*]  (64)

V. ADIABATIC MAGNETIZATION

The basic assumptions used in deriving the equa-
tions of Sec. IT were that (1) 7<<Tx and (2) Hy<H.
~kpT 45°/gup. Condition (1) was necessary to presume
the applicability of spin wave theory and to allow the
simplification of extending the integral over the first
Brillouin zone to infinity ; condition (2) assures that the
spins are basically aligned in the preferred direction, the
arrangement for which Eq. (1) is expected to be appro-
priate. The qualitative discussion in Sec. I indicated
that cooling of an antiferromagnet by adiabatic mag-
netization might be possible when the net specific heat
shows a rapid increase with increasing applied field.
This implies condition (3), that T'<T 4x°, since the ex-
ponential dependence of the thermodynamic properties
on H, and T disappears for 7> T4 x°.

The methods described in Sec. IT are used to deter-
mine the field- and temperature-dependent magnetic

spin wave entropy:

Tar®fTar’\* = pTH°
() Elel(5)

T TE p=1 T

Tar’ Tar® 3 Ty TH°
Xl:K«;(P AR )_K2<P AE >:|——_ H sinh(p H)

T T 2T 45" T

T 45° T 425°
o) () oo
T T

The nuclear contribution to the entropy follows from
Eq. (58):

SO(T Ho)=%1A:Noks

Sy=—3Nokn(gnun)I (I+1) (Hi+He?)/ (ksT)%. (66)

Finally, using the Debye model, the lattice specific heat
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F16. 6. The temperature variation of the function 8 for cubic or
uniaxial symmetry showing the effects of applied field and anisot-
ropy. The number below each curve is the value of the ratio
TH/T 4%°. The 0.99 curve on the right-hand side is a lower tem-
perature extension to be used with the scale at the top of the figure.

is given by

Cr= (127*/5)mR(T/Op)?, (67)
and

S L= %C L (68)
where m is the number of moles, R is the universal gas
constant, and Op is the Debye temperature based on
treating the molecular formula unit as a single (three-
dimensional) harmonic oscillator.

Since the total entropy of a sample remains un-
changed in an adiabatic experiment, the isentropic
function T'(H,) is the solution of the transcendental
equation

SO(T,Hy)~+Sr+Sy=const. (69)
This equation contains so many sample-dependent
parameters that a general analytic solution is not
attempted. The spin wave entropy, Eq. (65), however,
can be given reasonable generality by plotting the
function

8= (45/8m*A N oks) (Tg/T)3S© (T,H,) (70)
vs T/T 45° using T#°/T 45" as a parameter ; this is done
in Fig. 6. The quantity 8 is defined analogously to &, C,
etc., and approaches unity for 7>>T 4 °. Equations (66)
and (68) are easily calculable and can be combined
with the general results of Fig. 6 to determine the
adiabatic effect for a specific material. In the preceding
discussion it was implicitly assumed that the adiabatic
condition would be met by isolating the sample in a
vacuum so that with the pressure and its differential
change equal to zero, the specific heats at constant
volume or pressure would be equivalent.
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A rough estimate of the temperature change and its
functional dependence on 7T'4£° is made in the following
way. Ignore all but the spin wave contribution in Eq.
(69) ; assume the initial temperature, T, to be of the
order of T45° and the final temperature, 7, to be
much less than T4z° Let the applied field which is
switched on adiabatically be of the order of the critical
field. Then, by equating the initial and final values of
the entropy, it is found that

Ti~0.7T#/T 45 (71)
If the major contribution to the initial entropy comes
from the lattice waves rather than the spin waves, i.e.,
if ®p<K3Tg, then the expression for the final tempera-
ture is
Ty~ (5T 5/Op)*T#/ T s’ (72)
Except for the numerical factor, this equation is equiva-
lent to one given in reference 5. Both (71) and (72) are
very crude numerical approximations; however, they
serve to indicate that, for a given initial temperature,
an antiferromagnet with a large anisotropy-exchange
temperature would exhibit greater cooling than one
with a lower T 4z°. This dependence on T4z° is tested
in Sec. VIL It should be noted that the increased
cooling will be at the expense of applying a larger field,
since most of the cooling effect occurs in the range
0.75<Ho/H 1.0 and H, is proportional to T 45"

The differential thermodynamic equation for an adia-
batic process is given in many texts, such as Epstein'’;
in a vacuum this equation is simply

dT  T(OM/dT)x
— (73)
dH Cx

where M and Cy represent all contributions to the
magnetic moment and specific heat of the sample. This
equation is, of course, equivalent to Eq. (69), but shows
explicitly how the rate of adiabatic temperature change
depends on the macroscopic properties. In this equation
the sign of (0M /3T )y dictates whether the sample will
be cooled or heated by magnetizing it, while the size
of the effect is determined by the field dependence of
both M and Cy. The qualitative discussion of cooling
in Sec. I, based solely on knowledge of the behavior
of Cy rather than of M, is entirely equivalent since Cy
and M are connected through the Cauchy relations,

i), 7 G,

Although Eq. (73) generally represents cooling by
adiabatic magnetization for an antiferromagnet, it is

(74)

7P, S. Epstein, Textbook of Thermodynamzcs (John Wiley &
Sons, Inc., New York, New York, 1937), p.
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interesting to note that the nuclear contribution to
(8M/9T) is opposite in sign to the spin wave contribu-
tion. Thus at low temperatures, the adiabatic switching
on of a magnetic field can result in cooling or heating
an antiferromagnet, depending on the initial tempera-
ture and final value of the field. It can be shown that
the limit as 7" approaches zero of d7'/dH for spin waves
is zero. Since the perturbation theory used to evaluate
the nuclear properties is not valid below a few tenths
of a degree, the limit of the total d7/dH cannot be
examined rigorously. However, the temperature de-
pendence of Cy and My, Egs. (59) and (61), is such
that if the perturbation limit is ignored, the total d7/dH
also approaches zero with decreasing temperature.

VI. APPLICATION TO MnF,

The crystal structure of MnF, is body-centered tetra-
gonal with c¢o/ae=0.68. This ratio is such that nearest-
neighbor Mn** ions are actually c-axis pairs rather than
corner and body-center pairs. Measurements'® of Mn
impurities in ZnFs;, however, give a very small, probably
ferromagnetic, interaction between c¢-axis neighbors and
a larger (X10) antiferromagnetic interaction between
corner and body-center neighbors. In addition, Smart!®
has shown that the Néel temperature, Curie-Weiss
constant, and specific heat anomaly of MnF, are ex-
plained consistently by a single corner-center exchange
interaction. The body-centered tetragonal structure can
be reduced mathematically to bec in k space integra-
tions by the simple substitution &,’= (co/a0)k.. Thus the
equations of Sec. ITI for total energy, magnetic moment,
etc., are applicable to MnF,. Justification of the use of
spin wave theory is mentioned later in connection with
the experimental data.

The effective exchange temperature, T'g, is theoreti-
cally related to the perpendicular susceptibility by
Eq. (36). The latter quantity was measured by Bizette
and Tsai® and the experimental data result in a value
for Tx of 77.0°K (Tx=~68°K).

Johnson and Nethercot® have excited the k=0 spin
wave resonance in MnF; at low temperatures using
millimeter waves. The zero-field resonance frequency
extrapolated to 0°K was found to approach 261.4
kMc/sec within experimental error. This result deter-
mines 7 4£° as 12.54°K since the resonance frequency is
directly proportional to the gap energy for k=0 spin
waves.

Oguchi®? has used spin wave theory to calculate the
anisotropy constant, x(7), in good agreement with
experiment,?® and has shown it to be proportional to

18 M. R. Brown, B. A. Coles, and R. W. H. Stevenson, Phys.
Rev. Letters 7, 246 (1961).
9 J. S. Smart (to be published).
20 H, Bizette and B. Tsai, Compt. rend. 238, 1575 (1954).
(1;15 1;) M. Johnson and A. H Nethercot, Jr., Phys Rev. 114, 705
22T, Oguchi, Phys. Rev. 111, 1063 (1958).
23 S, Foner, Phys. Rev. 107, 683 (1957).
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TasLE I. Adiabatic magnetization of MnFs; AT/T; in percent.

T:(°K) 0.6 1.0 2.0 4.0 6.0 8.0 10.0 12.0
(0.048)" (0.08) 0.16) 0.32) (0.48) (0.64) (0.80) (0.96)
(Ho/H.)®
0.10 0.00875 0.00865 —0.0374 —0.258 —0.171 —0.111 —0.0762 —0.0554
0.20 0.0347 0.0342 —0.159 —1.025 —0.678 —0.439 —0.302 —0.220
0.30 0.0777 0.0762 —0.401 —2.31 —1.53 —0.988 —0.681 —0.497
0.40 0.138 0.133 —0.825 —4.11 —2.73 —1.76 —1.21 —0.886
0.50 0.215 0.201 —1.53 —6.46 —4.29 —2.77 —1.91 —1.39
0.60 0.309 0.269 —2.63 —9.38 —6.24 —4.03 —2.78 —2.02
0.70 0.419 0.304 —4.31 —129 —8.62 —5.56 —3.82 —2.78
0.75 0.478 0.287 —5.44 —14.9 —9.99 —6.44 —4.42 —3.21
0.80 0.536 0.222 —6.79 —17.2 —11.5 —7.39 —5.06 —3.67
0.85 0.588 0.0791 —8.41 —19.6 —13.1 —8.43 —5.77 —4.17
0.90 0.620 —0.191 —10.35 —22.3 —15.0 —9.58 —6.53 —4.72
0.95 0.602 —0.672 —12.7 —254 —17.0 —10.84 —-7.37 —5.32
0.99 0.499 —1.34 —15.1 —28.2 —18.8 —12.0 —8.11 —5.83

a H:=93.3 kOe.

b The column headings in parentheses are values of 7i/T 45%; T 42 =12.54°K.

M 2°. [Macroscopic arguments leading to Eq. (42)
predict M 3.] Kanamori and Tachiki?* have calculated
x1(T) from an equation similar to (40), but including
corrections for higher-order spin wave interactions,
and, with their own calculation of M(T), have evalu-
ated T4z (T) in very good agreement with the measured
T 4z of reference 21.

The nuclear magnetic resonance (NMR) frequency
of F¥ in MnF, has been measured with great precision
by Jaccarino and Shulman.? The shift of this frequency
due to M, is expected to be proportional to M, with a
temperature independent constant of proportionality.2
Keffer? has calculated the sublattice magnetization
using spin wave theory, taking account of discrete
lattice and zone boundary effects, and has found that
M,(T) fits the experimental curve of the NMR fre-
quency shift up to T'~T 45°.

The nuclear spin specific heat of MnF, was measured
from 0.5-2.0°K by Cooke and Edmonds?® who found it
to have an inverse 7% dependence with a numerical
coefficient corresponding to Hess=650 kOe in Eq. (59).
This value of the effective field is in good agreement
with values determined by other experimental and
theoretical means.'s

The low-temperature specific heat of MnF, was also
measured by Catalano and Phillips® in the range
1-5°K. Their analysis of the 73 lattice contribution
gave a Debye temperature of 253°K at about 1-2°K.

2¢ J. Kanamori and M. Tachiki (to be published).

25V. Jaccarino and R. G. Shulman, Phys. Rev. 107, 1196 (1957);
R. G. Shulman and V. Jaccarino, zbid. 108, 1219 (1957); V.
Jaccarino and L. R. Walker, J. phys. radium 20, 341 (1959).

26 T, Oguchiand A. Honma, J. Phys. Soc. (Japan) 16, 79 (1961).

27 F, Keffer (unpublished).

28 A, H. Cooke and D. T. Edmonds, Proc. Phys. Soc. (London)
71, 517 (1958).

29 E. Catalano and N. E. Phillips, Proceedings of the Inter-
national Conference on Magnetism and Crystallography, Kyoto,
Japan, September, 1961 (to be published).

This value falls off slowly with the temperature and is
estimated to be about 242°K at 15°K from higher
temperature data.® A value of ®p=250°K is used in
the present calculations. Other data for manganous
fluoride are S=5/2, g=2, I=5/2, and gyI=3.468.

The differential equation (73) was solved numerically
for values of the applied field up to 999, of the critical
spin-flopping field, which is about 93.3 kOe in MnF,.
Maximum cooling by adiabatic magnetization was
found to occur for an initial temperature of 3-4°K; the
effect amounts to a 25-309, decrease in temperature
for the maximum applied field, 92.4 kOe. The isentropic
functions 7' (H,) are shown in Fig. 7 for initial tempera-
tures between 2°K and 5°K. From 6°K to 12°K the
curves are nearly parallel to the one starting at 5°K,
i.e., the slope has only a weak dependence on tempera-
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Fic. 7. The isentropic functions 7' (H,) for the adiabatic magnet-
ization of MnF,. The critical spin-flopping field is 93.3 kOe.

% 7. W. Stout and E. Catalano, Jr., J. Chem Phys. 23, 2013

(1955).
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F16. 8. Dependence of
adiabatic magnetization
on individual parame-
ters. Curves (a), (e), (g),
and (i) represent MnF,
as in Fig. 7. In each of
the other curves one
parameter differs from
the MnF; value: (b)
TAE°=25°K; (C) TE
=38.5°K; (d), (1), (h),
and (j) gnI=0.

oLt 1+ 1 1 1 1
o] 02 T5/Taz 06 08 1.0

ture in this range [see Eq. (76)]. The magnitude of the
temperature change decreases slowly from 1.1° at 6°K
to 0.70° at 12°K. At 1°K and below both cooling and
heating are observed theoretically, but the size of the
effect is negligible. Complete data for the temperature
range 0.6°K<T<12°K, equivalent to 0.048<7/T 45"
<0.96, are given as percent temperature changes in
Table I.

VII. DISCUSSION

It is appearent now that the basic premise, 7,7,
which led to the approximate temperature-change
formula of reference 5 [rederived as Eq. (72) in the
present paper |, is not generally appropriate. A better
approximation is the following. Let T;~T 45" so that
@ and M ~1; write

Cu=Cu(T,Ho))+Cr~Cr(D)[14+(3Tx/Op)*], (75)
which is proportional to 7°. The nuclear contribution is
negligible at this temperature. Equation (73) becomes

kg

dT 5 fgup\* H,
(i) 2

aH, 2Nk ) (T

dH, 272

where 0= (3Tx/Op)’. Define AT=T;—T; and T,
=L(T+7T,); let gusH;/kp~Tar® (equivalent to the
critical field) and H;=0. The solution of Eq. (76)
is then

AT~—0.13(Tar°)?/ (14-0)T u. 7
Since AT is fairly small, 7",, can be replaced by 7. The
MnF, value of AT predicted by Eq. (77) for 7;=6°K is
—1.6° and for T;=12°K it is —0.82°. Both of these
values are in much better agreement with the detailed
calculations than are the predictions of either Eq. (71)
or Eq. (72).

Aside from the nuclear terms, the differential equa-
tion (73) can be formulated using the reduced variables
T/Tsg’and Tg°/Tag° (or Ho/H,) and the ratio T z/®p.
Consequently the data in Table I are indicative of the
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effect of adiabatic magnetization on any antiferromag-
net which fits the model described in Sec. IT and for
which Tr/©®p~0.3 as in MnF,. With this in mind, the
data of Table I can be used to check the functional
dependence of Egs. (71), (72), and (77) on T4z". All
three equations indicate that for a given T, an increase
in T 45" will result in a greater AT (at the expense of a
larger H,). Since halving T'; has the same effect on the
ratio T;/T4x° as doubling T4z°, the data in the last
line of Table I (maximum applied field) show that
|AT/T;| increases from about 6%, to 199, as the ratio
T./T 45" is reduced from 1 to 0.5. The approximation,
Eq. (77), predicts a factor of four increase in AT. Com-
parison of curves (a) and (b) in Fig. 8 shows the effect
of doubling T45° in MnF,; while holding all other
parameters constant.

Adiabatic magnetization depends on the exchange
temperature, Tz, more qualitatively than quantita-
tively. A T small compared to the Debye temperature
enhances the importance of the magnetic specific heat
relative to the lattice specific heat. Thus the total Cx
depends more strongly on the applied field when
T g<X<0Op, resulting in a larger AT The effect of reducing
Tr to one-half its original value while other MnF,
parameters are unchanged is shown by comparing
curves (a) and (c) in Fig. 8. Because the electronic
moment and magnetic specific heat are proportional
to the same power of Ty, the differential equation de-
scribing the adiabatic temperature change is essentially
independent of the value of T'g. Furthermore, if Tz is
very low, the inverse dependence of Cy on the exchange
temperature means that the magnetic specific heat will
also be much greater than the nuclear specific heat, even
at very low temperatures, again improving the prospect
of a large AT.

Since, in the absence of the nuclear terms, d7'/dH is
always negative for nonzero 7, it is the nuclear mag-
netic moment which effectively sets a low-temperature
limit on the cooling effect. The nuclear moment and
hyperfine field of manganese are particularly large with
the result that the nuclear specific heat is the dominant
specific-heat term in MnF; below 3°K. In Fig. 8, curves
(d), (f), (h), and (j) were calculated using the physical
constants of MnF, except gy/=0; they are to be com-
pared with normal MnF; curves (a), (e), (g), and (i) in
that order. Although d7/dH — 0 as I'— 0, it is ap-
parent that the cooling process extends to a much lower
temperature in the absence of the magnetic hyperfine
interaction.

Antiferromagnetic structures containing even-even
nuclei, such as Cr®, Fe%, and Ni%.%, as the magnetic
ions should be much more useful for very low tempera-
ture cooling by adiabatic magnetization than those
containing Mn% or Cu®:5 ions. Even Cr®, Fe®’, and
Ni®! may be suitable since their nuclear moments are,
at least, an order of magnitude smaller than that of
Mn?, An example would seem to be CrqOs, which has
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been extensively investigated by Foner.® The effec-
tive nuclear moment of this crystal is very small
since natural chromium contains less than 109, Cr%,
Chromic oxide has a gap temperature of about 7.9°K
(critical field about 59 kOe) which can be increased
by the addition of Al,Os. Less favorable, however, is the
relatively high Néel temperature of CrqOs, 7'xy=308°K.
With T'y reduced to 266°K by the addition of corundum,
preliminary calculations indicate that (Cry0s5)p.9(Al:03)0.1
would be cooled from 1.0 to 0.5°K or from 0.6 to 0.24°K
by a near-critical field of 81 kOe.

In general, the optimum conditions for observing or
causing cooling in an antiferromagnet by adiabatic
magnetization are: (1) gy/~0 or 721-2°K so that
the nuclear (heating) effect is negligible (this condition

3t S, Foner, Suppl. J. Appl. Phys. 32, 63 (1961).
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is not important if T'g is very small); (2) T'<T1z°
so that the number of spin waves excited depends ex-
ponentially on temperature; (3) Taz° large, but no
greater than gup/kp times the maximum magnetic
field available; and (4) T5<K0Op so that the magnetic
specific heat is dominant. A possible use for the effect
of adiabatic magnetization on an antiferromagnet, other
than the cooling per se, would be as a sink for the heat
generated when a paramagnetic (or ferromagnetic)
material is magnetized prior to cooling by adiabatic
demagnetization.
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