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The thermodynamic properties of cubic or uniaxial antiferromagnets are examined using spin wave theory.
The specific heat, magnetization, and parallel susceptibility are shown to be exponentially increasing func-
tions of applied field for values of Ho less than the critical spin-Bopping field. Since this field dependence
suggests that an antiferromagnet can be cooled by the adiabatic application of a magnetic field, the theory
of adiabatic magnetization is investigated. Field-dependent nuclear spin eRects are evaluated on an eRective
6eld model by perturbation theory and are included in the analysis. It is found that when spin wave eRects
are dominant, cooling should be observed; at lower temperatures, when nuclear eRects are non-negligible,
either cooling or heating may be observed, depending on the initial temperature and final value of the
magnetic field. The dependence of the cooling on the physical parameters of the antiferromagnet is discussed
and detailed calculations are made for MnF~.

modes of an antiferromagnet is removed by the applica-
tion of a magnetic field. The modes will therefore
contribute differently to the specific heat. For an in-
creasing applied field, the increasing specific heat of
the lower energy mode more than compensates for the
decreasing specific heat of the higher energy mode. In
other words, ctC/r)H) 0 for antiferromagnetic spin
waves; the same quantity is negative for ferro- and
ferrimagnetic spin waves (and for antiferromagnetic
spin waves when the magnetic field is perpendicular to
the spin axis). This difference was pointed out by
Kouvel and Brooks4 who calculated the spin wave
specific heat of a simple cubic antiferromagnet by
graphical integration.

Since the specific hea, t depends strongly (exponen-
tially) on the applied field, particularly when gtt&Hv/kB
approaches the gap temperature, it may be possible to
cool an antiferromagnet by applying a magnetic field
under adiabatic conditions as was suggested by Akhiezer,
Bar'yakhtar, and Kaganov. ' These authors describe
the thermodynamic properties with sets of equations,
each of which is valid for a particular range of values of
temperature and magnetic field relative to the Neel
and gap temperatures and critical field characterizing
the antiferromagnet. Earlier, Turov' suggested that it
might be possible to eGect a measurable change in the
temperature of an antiferromagnet by the adiabatic
rotation of a crystal in a magnetic field, since the field
dependence of the specific heat is anisotropic.

In the present paper the magnetic field dependence
of the measurable, macroscopic properties of cubic or
uniaxial antiferromagnets is examined theoretically and
the results are presented in an analytical form (Sec. II).
These properties include the total and sublattice

I. INTRODUCTION

'HE low-temperature thermodynamic properties of
antiferromagnets were first examined in detail

by Kubo, ' using the method of spin waves. This analysis
was for zero external field and primarily in the limit of
negligible anisotropy, except where the latter was
necessary to avoid singularities. The spin wave specific
heat was found to be proportional to T' and the sub-
lattice magnetization to T'.

The presence of anisotropy, however, is greatly en-
hanced by interplay with the exchange energy and in-
troduces a gap of a few degrees' magnitude into the spin
wave spectrum. For finite anisotropy and low tempera-
ture, Kubo expressed the free energy and thermo-
dynamic quantities derivable therefrom in terms of
Schlomilch series. ' He noted that for very low tempera-
ture there is an exponential decrease with temperature
for these quantities.

Eisele and Keffer' elaborated on the finite anisotropy
effects in the thermodynamic theory of antiferromag-
nets. It was pointed out that when the absolute tem-
perature is below the gap temperature, the specific
heat and magnetization are much smaller than their
zero-anisotropy values since the number of spin waves
excited falls off exponentially with decreasing tempera-
ture. Well above the gap temperature, however, the
values of the thermodynamic properties approach the
zero-anisotropy values first given by Kubo.

One of the effects of an applied field can be described
in the following way. The degeneracy of the spin wave
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-magnetizations, the parallel susceptibility, and the
magnetic speciGc heat. In Sec. III the anisotropy-
exchange temperature is considered further and the
general expressions of Sec. II are simpliGed by making
some approximations with a fairly wide range of
validity. Since the temperature span of interest will
often extend below 2—3'K, the field-dependent nuclear
spin contribution to the magnetization and specific heat
of the system is evaluated on an effective-field model
(Sec. IV). The results of the previous sections are com-
bined in Sec. V to provide a theoretical description of
adiabatic magnetization of an antiferromagnet, and
in Sec. VI this theory is applied to manganous Quoride.
Section VII contains a general discussion of the de-
pendence of adiabatic magnetization cooling on the
physical parameters of the antiferromagnetic material.

II. MAGNETIC FIELD DEPENDENCE

The antiferromagnetic spin wave properties described
in this and following sections are based on a two sub-
lattice model with uniaxial anisotropy and a single
exchange integral, J, coupling nearest neighbors. A
crystalline field, H&, is used to represent the anisotropy,
being directed along the preferred axis in opposite
senses for the two sublattices. This Geld is allowed to be
temperature dependent as a substitute for explicit
treatment of the higher-order spin wave interactions
which cause the macroscopic anisotropy constant to
decrease with rising temperature. This temperature-
dependent H~ is also useful as a substitute for magnetic
dipole interactions in the Hamiltonian. The dipolar
form of anisotropy requires the evaluation of dipole-
wave sums and depends on k, and thus would necessi-
tate the use of numerical integration to determine the
thermodynamic properties.

The model contains Ep magnetic cells, each cell
having a magnetic ion from both the + and —sub-
lattices. With the applied Geld, Hp, in the preferred
direction and smaller than the critical spin-Qopping
6eld, H. , the spin Hamiltonian for this model may be
written as

8Co ——2J g S) S
( ), m)

+gpnH+Qis~'+gvaH Q S ', (1)

where g is the gyromagnetic ratio and p, & is the Bohr
magneton (both )0), and

H+= Hp&H~.

The & superscript indicates the sublattice with mag-
netic moment essentially parallel or antiparallel to Hp,
respectively, and the symbol (t,m) represents pairs of
nearest neighbors, l being the index for + sublattice
and m for —sublattice.

By using the spin wave formalism developed by
Holstein and Primakoff' for ferromagnets and modified

' T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

by Kubo' for antiferromagnets, the Hamiltonian is
diagonalized and brought into the form

8Cp ——C'+Q p(ns++-', )ep++Q p(ep-+-,') ep-,
where

C'= —21VpS(S+1)JZ—2Ep(2S+1)JZrr,

op+= 2SJZ(((1+rr)' —vp']'"~~o},
rr= ,'gear(H—+ H )/—2SJ—Z= gijriH~/2SJZ,

pro s ggB (H +II )/2S J—Z =gvaHo/2S JZ&
and

yp ——Z—'Pp exp(ik rp),

(3)

(4)

(5)

(6)

(7)

A. Spin Wave Energy

The total spin wave energy is obtained by summing
the ej,+ over Bose distributions in the Grst Brillouin
zone of the magnetic unit cell. For small k in cubic
lattices,

y '=1—(2a '/Z)k'

where ap is the length of a side of the elementary cubic
cell, and the sum over k may be approximated by an
integral to infinity. Thus

oO

E(T,Hp) = {ep+Lexp(pe„+)—1]—'
2X p

+op t exp(Pep )—1j '}k'dk, (13)
o J. M. Ziman, Proc. Phys. Soc. (London) A65, 540, 548 (1952).
9 F. Ke6er, in Harldbuch der Physik (Springer-Verlag, Berlin,

1963) (to be published).
'o F. KeGer and C. Kittel, Phys. Rev. 85, 329 (1952)."L.Neel, Ann. Phys. (New York) 5, 232 (1936).

with Z being the number of nearest neighbors and r~
the nearest-neighbor vector. This equation has been
derived by Kubo, ' Ziman, ' and others, and is a special
case of a more general equation given by KeGer. '

The frequencies of the uniform precession modes
given by Eq. (5) with k=0 do not quite agree with those
of Keffer and Kittel" which were derived classically
and are, in the notation of the present paper,

&&'= 2SJZL(2~+~')'"+~p(1 —oxide/xi)3, (9)

where x~~ (x,) is the susceptibility of the electronic spin
system in a magnetic field applied parallel (perpen-
dicular) to the preferred axis. The factor (1—rsx„/x, )
aAecting the applied field does appear in higher-order
spin wave theory' and expresses the fact that the spin
system has less energy to gain by fiopping to a hard
axis as x~& approaches y& near T~. In what follows the
Exp of Eqs. (5) and (7) will be replaced by

rro=gpBHo(1 —2x I/xi)/2SJZ (10)

Equation (9) now leads to a critical spin-flopping field
given by

H,'= (2HsHg+H~')/(1 —x„/x, ), (11)

where H~=2SJZ/gyp, which is in agreement with the
value predicted by Neel. "
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where U is the sample volume and P= (kiiT) '. The
Bose function for (ep ) has no singularities when
Hp(H. .

Equation (13) is evaluated by expanding the Bose
functions,

1
exp(pep+) —1] '= P exp( —pPpp ),

p=l
(14)

and making the replacement

(2n+n ) i coshy=
1

(2a '/Z)k'+2nyn'j " (15)

where A i= (1/2pr') (Z/2)' P. The series is convergent for
T&(T&z, which is equivalent to the condition for
nonsingularity of the Bose function, Hp(H. . In the
absence of an applied field the summations are known
as Schlomilch series and are rapidly convergent; the
zero-field limit of Eq. (20) is equivalent to Eq. (11) of
reference 3.

The temperature dependence of the spin wave energy
is illuminated by a further revision:

E(T,Hp) = (27r4/15)AiNpkiiT(T/T~)'b, (21)

To simplify notation, effective temperatures are sub- where
stituted for the exchange, anisotropy-exchange, and
magnetic-field energies:

g
Ts =25JZ/ks,

T~s (2 +n')n'"——T~,

TII =0!p T@.

(16)

(18)

Each of these quantities is an implicit function of the
absolute temperature; however, T~ will be considered
constant. After substituting Eqs. (14)—(18) in (13), the
spin wave energy becomes

Te (pTss)
sinhl &T)

pTH
cosh coshy—

1 p T THE

pT&E)
Xexp —

1
coshy sinh'y coshydy . (19)

T

(T~z)' (pTa)
E(T,Ho) = ', AiNokaT~zl

I
-& coshl

&TE) ui 5 T i
/pT~' (p~~ l (~~)X &41

T & T i &Tgs

fpT~ fpT~@ (pT~s
Xsinhl I~ 31 +&I, (20)

5 T k T & T

The integrals are Hankel functions, " and the final ex-
pression for the total spin wave energy is

—2
TAE

Below T~g and H„ the temperature and field depend-
ence of h are basically exponential. When the external
field is zero,

and, when T is much greater than T~E and TII, the
value of h goes to 1. The limit of vanishing anisotropy
for finite applied field is inappropriate since the corre-
sponding ground state with spins perpendicular to the
field is not represented by Eq. (1).

B. Spin Wave Syecific Heat

The specific heat is the derivative of Eq. (20) with
respect to T, holding Hp coilstant, and has the value

C~(T,H p) = (8pr'/15)A iNpks(T/Ts)'8, (24)

where

TH ) T pjT~s) TTa ~TII (pT~z+ 1+2
T~~J T~z aT 3 Tg~' aT & T

"See reference 2, p. 172.
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kgTAzo=giigL2&&(0)/X, (0)j'". (44)

The temperature dependence of TAE is made more
explicit by substituting Eqs. (29) and (30) in Eq. (43)
and using the binomial expansion:

(Ai'& TAE''&'
TAE= T»' 1—s (~+2) (~—1)(1+~)l —

l&si r )

IoETAE= gl g(2HA~. /xi)'"
=gl EL&s(r)/x. (r)3'" (41)

where &&(T) is an anisotropy coeKcient. Pincus's has
shown that the temperature dependence of anisotropy
energy in antiferromagnets is related to the temperature
dependence of the sublattice magnetization by the
expression

"(T)/4& (0)= l
M .(T) /M, (0) j"&"+' & I'

where n is the order of the principal surface harmonic
in the expansion of the anisotropy energy, and the
magnetization value is for zero applied 6eld. If the
temperature dependence (very slight) of the factor
(1+sin) in the denominator of Eq. (40) is ignored, then
the gap temperature, Eq. (41), becomes

TAg=r A'zt M, (T)/M, (0)j "&+' &&" "~', (43)

where TAE' is the spin wave energy-gap temperature
at T=o'K and is given by the expression

(TAEP)'
AM, &p&(T,Hp) =-,'(1+&i)AiNpgi4g

k rE i

(przo (prAz' (prAz'
X g cosh

& r

TAEP)'
Ilf"&(T,Ho) = ', AiNo—gl g

Tg j

przo) —
pTAEP) (pTAz'

X P»nh
l

Eo
l

—EJ; (48)
T 1 T ) «r

g 14g (TAE )
xt &"(T,IIp)=2A[NpV '

Iogrg & Tg I

(prz (prAE
X P coshl Esl — . (49)

5 r r
The sums in these expressions converge for Ho(H„

but the rate of convergence is very slow for Ho near II,
and T near TAE'. For example, the sum which is slowest
to converge is the one in Eq. (49) and in other ex-
pressions pertaining to the susceptibility: about 460
terms are required to obtain better than 99%%uo con-
vergence for HO=0. 99 H and T= TAE'.

xx 4.(
"

~

—sc.(
"') . &44&

TAE (TAE prg )
cg&o&(T,Hp)=A&Nokg

l l P coshr & Tg) &=i T

PTAE''& ( TII' ) prA g '&

X E4 l+ 1+2lr I (TAzoi T

TH (prg (prAE (prAE
3E,

I
+E,

lr r «rTAE

This expansion retains only terms linear in (Ai/S)
X (TAE'/Tz)', thus making it consistent with the ex-
pansions used to determine the parallel susceptibility.
Obviously, TAz' should now replace TAz in Eq. (35).

The Hankel functions approach zero exponentially
with the temperature; since (A &/S) (TAEP/Tz)'((1, most
low-temperature calculations will be su%ciently ac-
curate using both TAE' and TII' in place of TAE and TII.
The resulting expression for E&o&(T,Hp) is obtained by
direct replacement of Tz and TAz in Eq. (22) with
their O'K values. The corresponding zero-order ex-
pressions for CH, AM„Ã, and ply are given below for
convenience.

IV. NUCLEAR CONTRIBUTION

The magnetic hyperfine interaction between atomic
and nuclear spins is treated as a perturbation on the
electron-electron interaction Hamiltonian, Eq. (1):

where
3C=BCo+X',

x'= —
g&v&M&vI (HE+Ho)

(50)

(51)

+Q(S +I +S I +)j—
gz&4&vHo(g Ii'+Q—I~*). (52)

l te

In Eq. (51), g&vI is the magnitude of the nuclear mag-
netic moment in units of the nuclear magneton, &&4&v,

' I is
the nuclear spin in units of A; Hq is the 6eld at the
nucleus due to the electron spins; and Hp is the external
field. The effective field Hg is taken proportional to S
and the perturbing Hamiltonian becomes

K'= g&vie&vA (Q Ii*Si'+—Q I„'S„')
l m

', g&v14~I3[g (S,+I—, y-S, I,+)

"P.Pincus, Phys. Rev. 113, 769 (1959).

(46) The entire perturbation can be expressed in terms of
the spin wave operators for which 3CO is diagonal as
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Marshall" has done for ferromagnets, but it is sufhcient
at present to take S~'= —5 5 '=5 and 5+=0. The
neglected terms are of order (T/T~)", where r =3/2 for
a ferromagnet and r=2 for an antiferromagnet. These
terms and other effects not included in this simple
model are accounted for by replacing AS with an ex-
perimentally determined effective 6eld. In the metals
and transition element ions in salts, the effective field
is primarily due to core polarization and is antiparallel
to the electronic magnetization. "This means that 3&0.
Kith these approximations and substitutions the hyper-
fine perturbation reduces to

X'= —
g p(I&p($(Ho —H.«)p I&'+ (Hp+II.(()p I ']. (53)

Since the off-diagonal matrix elements of K' are zero
in the set of electronic eigenstates of Ko, the perturbed
energy levels through second order in quantum pertur-
bation theory are

(54)

to

C

R

IO

;I
I'I
&/

I i 1X I I I I II I

&s !g IO

FIG. 5. The temperature variation of the specific heat per mole
of MnI'2 in the absence of applied field. The dashed line is the
nuclear contribution C~/E, the dotted line is the lattice contribu-
tion Cr/R, and the dashed-dotted line is the magnetic contribu-
tion Crr/R. The sum of these is represented by the solid line.

The eigenstates
~
n& =

~

I& ~S& are functions of both
the nuclear and electronic coordinates, but the un-

perturbed eigenvalues E„(') depend only on the elec-
tronic quantum numbers. Following Landau and Lif-
shitz, ' this expression is inserted in the formula for the
free energy,

e
—P&=g p Pan—

turbed spin wave Hamiltonian, only the portion

J'~=~—~o

sN p(g p(fjp()'I—(I-+1)(Hp'+H. (P)/kgT (58)

is needed to determine the nuclear contribution to the
thermodynamic properties of the system.

The nuclear spin specific heat is

C~= sXpkrrI(I+1) (g-rrIJ~)'(Ho'+H. rr')/(krPT)'; (59)
and the right side of Eq. (55) is expanded to second
order in 3.".The free energy is then determined to be the sublattice magnetic moments are
(by making a similar expansion of the logarithm):

Mx =WP pI(I+ 1) (gxlJN) Heff/kBT+ s™p(y (6O)

p —ps+a 3( „„'PP( o— )+ pfg 3& „„'PP(P'o a&'~)]s—
where the total nuclear moment is

—rp g (3('„„')pPP(P'o—an&'&) (56) Mp(= ssI(/pI(I+1) (grvtl—,v)'Ho/k~T;

and the parallel susceptibility is

(61)

The second and third terms are zero since positive and
negative values of the quantum numbers appearing in
K„„'can be matched in pairs, but

Q (5('. ')sPP (&o—an& ~)

=2(g~lj~)s(Hos+H Hs)PPEp 2 P PE" L(E Ilz)2—]
= s A'o(grrIJ~)'I(I+1) (Ho'+H. &p). (57)

Since Fp ls the free energy corresponding to the unper-

"W. Marshall, Phys. Rev. 110, 1280 (1958).' R. E. Watson and A. J. Freeman, Phys. Rev. 123, 2027
(1961).This paper includes other appropriate references.' L. D. Landau and E.M. Lifshitz, Statistics/Physics I'Addison-
Wesley Publishing Company, Inc. , Reading, Massachusetts,
1958), p. 93.

x~= slVoV 'I(I+1)(gvtjp()'/knT. (62)

The & superscript above refers to the sublattice with
electronic magnetization essentially parallel or anti-
parallel to the applied field, respectively. Each of the
nuclear properties represented by Eqs. (59)—(62) is
usuallynegligible at liquid helium temperature or above,
compared to the spin wave properties calculated in
Sec. II. However, the nuclear contribution begins to
dominate the thermodynamic properties as the absolute
temperature is lowered to 1 or 2'K. The nuclear and
spin wave specific heats of MnF2 are compared in Fig. 5.
The equations of this section are valid as long as the
perturbation energy per particle is much less than k&T.
For effective fields at the nucleus of a few hundred
kilogauss, the minimum temperature for which this
condition is satisfied is a few tenths of a degree.
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If the substitutions introduced in the discussion
following Eq. (52) are modified, the subsequent equa-
tions are easily adapted to the cases of ferro- and
ferrimagnets. For the former, both S~' and S '~ —S
vrith the result that

lO

IO

E~ (ferro)

s+p(gNpN) I(I+1) (Hp Heff)'/kaT, (63)

an expression equivalent to Marshall's lowest order
term. "The ferrimagnetic case requires S&' —+ —S, and
S ' —+Sy with two effective fields, H =A,S and
Hg=AgSy. The nuclear contribution to the ferrimag-
netic free energy is then

10
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IO
E~ (ferri) 0 'T/T4E 0 '

p+p(jkiv /kBT)(ga Iu(Ia+1) (Hp Ha)' Fie. 6. The temperature variation of the function S for cubic or
sI (I +1)(H + H )s] (64) uniaxial symmetry showing the effects oi applied field and anisot-

ropy. The number below each curve is the value of the ratio
TJI /Tgs The 0.99 curve on the right-hand side is a lower tem-
perature extension to be used with the scale at the top of the 6gure.

The basic assumptions used in deriving the equa-
tions of Sec. II were that (1) T«Trv and (2) Hp&H,
=krrT~sP/g prr. Condition (1) was necessary to presume
the applicability of spin wave theory and to allow the
simplifi. cation of extending the integral over the first
Brillouin zone to infinity; condition (2) assures that the
spins are basically aligned in the preferred direction, the
arrangement for which Eq. (1) is expected to be appro-
priate. The qualitative discussion in Sec. I indicated
that cooling of an antiferromagnet by adiabatic mag-
netization might be possible when the net speci6c heat
shows a rapid increase with increasing applied 6eld.
This implies condition (3), that T&T~s, since the ex-
ponential dependence of the thermodynamic properties
on Ho and T disappears for T& T~~'.

The methods described in Sec. II are used to deter-
mine the field- and temperature-dependent magnetic
spin wave entropy:

Ta~' T&Ply' ~ pTH
S"'(T,Hp) =-',A(Xpkii

~ Q cosh
T T~i &=i T

is given by

and
Cz ——(12m'/5) mR(T/0~a)',

Sl.—3CI,,

(67)

(68)

where m is the number of moles, R is the universal gas
constant, and O'D is the Debye temperature based on
treating the molecular formula unit as a single (three-
dimensional) harmonic oscillator.

Since the total entropy of a sample remains un-
changed in an adiabatic experiment, the isentropic
function T(Hp) is the solution of the transcendental
equation

S"'(T,Hp)+ Sr+S~= const. (69)

This equation contains so many sample-dependent
parameters that a general analytic solution is not
attempted. The spin wave entropy, Eq. (65), however,
can be given reasonable generality by plotting the
function

~AE ~AZ 3 ~H ~H 8= (45/8rr'A i%pkri) (T~/T)'S t'& (T,H p) (70)

The nuclear contribution to the entropy follows from
Eq. (58):

S~= —sNpkn(grail~) I(I+1)(Hp +H, tP)/(kriT) . (66)

Finally, using the Debye model, the lattice specific heat

vs T/T~sp using Tarp/T~sp as a parameter; this is done
in Fig. 6. The quantity S is defined analogously to 8, 6,
etc. , and approaches unity for T))T&zp. Equations (66)
and (68) are easily calculable and can be combined
with the general results of Fig. 6 to determine the
adiabatic eGect for a specific material. In the preceding
discussion it was implicitly assumed that the adiabatic
condition would be met by isolating the sample in a
vacuum so that with the pressure and its differential
change equal to zero, the specific heats at constant
volume or pressure would be equivalent.
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A rough estimate of the temperature change and its
functional dependence on T~~' is made in the following
way. Ignore all but the spin wave contribution in Eq.
(69); assume the initial temperature, T;, to be of the
order of Tg~', and the 6nal temperature, T~, to be
much less than T~g'. Let the applied field which is
switched on adiabatically be of the order of the critical
field. Then, by equating the initial and final values of
the entropy, it is found that

Tf 0.7T s/Tgl:, '. (71)

If the major contribution to the initial entropy comes
from the lattice waves rather than the spin waves, i.e.,
if Oti«3Ts, then the expression for the final tempera-
ture is

Tt~ (5Ts/Q~g)) TP/T~@o. (72)

Except for the numerical factor, this equation is equiva-
lent to one given in reference 5. Both (71) and (72) are
very crude numerical approximations; however, they
serve to indicate that, for a given initial temperature,
an antiferromagnet with a large anisotropy-exchange
temperature would exhibit greater cooling than one
with a lower T~g'. This dependence on T~g' is tested
in Sec. VII. It should be noted that the increased
cooling will be at the expense of applying a larger field,
since most of the cooling effect occurs in the range
0.75(H /Ho, & 1.0 and H, is ProPortional to T~so.

The diBerential thermodynamic equation for an adia-
batic process is given in many texts, such as Epstein";
in a vacuum this equation is simply

d T T(i)M/i)T) tt
(73)

where M and CII represent all contributions to the
magnetic moment and specific heat of the sample. This
equation is, of course, equivalent to Eq. (69), but shows

explicitly how the rate of adiabatic temperature change
depends on the macroscopic properties. In this equation
the sign of (8M/BT)tt dictates whether the sample will

be cooled or heated by magnetizing it, while the size
of the effect is determined by the field dependence of
both 3f and C&. The qualitative discussion of cooling
in Sec. I, based solely on knowledge of the behavior
of C~ rather than of 3f, is entirely equivalent since C&
and 3f are connected through the Cauchy relations,

8 (CH) ri BM

aH& T l~ aT aT ~ It
(74)

Although Eq. (73) generally represents cooling by
adiabatic magnetization for an antiferromagnet, it is

"P. S. Epstein, Textbook of Tkermodyrtomies (John Wiley tk
Sons, Inc. , New York, New York, 1937), p. 352.

interesting to note that the nuclear contribution to
(itM/BT) is opposite in sign to the spin wave contribu-
tion. Thus at low temperatures, the adiabatic switching
on of a magnetic field can result in cooling or heating
an antiferromagnet, depending on the initial tempera-
ture and final value of the field. It can be shown that
the limit as T approaches zero of dT/dH for spin waves
is zero. Since the perturbation theory used to evaluate
the nuclear properties is not valid below a few tenths
of a degree, the limit of the total dT/dH cannot be
examined rigorously. However, the temperature de-
pendence of Ctv and Mtv, Eqs. (59) and (61), is such
that if the perturbation limit is ignored, the total dT/dH
also approaches zero with decreasing temperature.

VI. APPLICATION TO MnF2

The crystal structure of MnF2 is body-centered tetra-
gonal with cp/ttp=0. 68. This ratio is such that nearest-
neighbor Mn~ ions are actually c-axis pairs rather than
corner and body-center pairs. Measurements" of Mn
impurities in ZnF2, however, give a very small, probably
ferromagnetic, interaction between c-axis neighbors and
a larger (X10) antiferromagnetic interaction between
corner and body-center neighbors. In addition, Smart'9
has shown that the Neel temperature, Curie-gneiss
constant, and specific heat anomaly of MnF2 are ex-
plained consistently by a single corner-center exchange
interaction. The body-centered tetragonal structure can
be reduced mathematically to bcc in k space integra-
tions by the simple substitution k,'= (cp/ap)k, . Thus the
equations of Sec. II for total energy, magnetic moment,
etc. , are applicable to MnFs. Justification of the use of
spin wave theory is mentioned later in connection with
the experimental data.

The eGective exchange temperature, T~, is theoreti-
cally related to the perpendicular susceptibility by
Eq. (36). The latter quantity was measured by Bizette
and Tsai" and the experimental data result in a value
for Tz of 77.0'K (TED=68'K).

Johnson and Nethercot" have excited the k=0 spin
wave resonance in MnF~ at low temperatures using
millimeter waves. The zero-field resonance frequency
extrapolated to O'K was found to approach 261.4
kMc/sec within experimental error. This result deter-
mines T&z' as 12.54'K since the resonance frequency is
directly proportional to the gap energy for k=0 spin
waves.

Oguchi" has used spin wave theory to calculate the
anisotropy constant, K(T), in good agreement with
experiment, " and has shown it to be proportional to

"M, R. Brown, B. A. Coles, and R. W. H. Stevenson, Phys.
Rev. Letters 7, 246 (1961)."J.S. Smart (to be published).

'0 H. Bizette and 3.Ysai, Compt. rend. 238, f5'j5 (1954)."F. M. Johnson and A. H. Nethercot, Jr., Phys. Rev. 114, 't|OS

(1959)."T.Oguchi, Phys. Rev. 111, 1063 (1958)."S. Foner, Phys. Rev. 107, 683 (1957).



THERMO 0 YNA M I C P ROPE RTI ES OF ANTI F ERROMAGN ETS

TABLE 1. Adiabatic magnetization of MnF&, AT/T; in percent.

K) 06
(0 048)s

1.0
(0.08)

2.0
(0.16)

4.0
(0.32)

6.0
(0.48)

8.0
(0.64)

10.0
(0.80)

12.0
(0.96)

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.75
0.80
0.85
0.90
0.95
0.99

0.00875
0.0347
0.0777
0.138
0.215
0.309
0.419
0.478
0.536
0.588
0.620
0.602
0.499

0.00865
0.0342
0.0762
0.133
0.201
0.269
0.304
0.287
0.222
0.0791

—0.191
—0.672
—1.34

—0.0374
—0.159
—0.401
—0.825
—1.53
—2.63
—4.31
—5.44
—6.79
—8.41

—10.35
—12.7
—15.1

—0.258
—1.025
—2.31
—4.11
—6.46
—9.38

—12.9
—14.9
—17.2
—19.6
—22.3
—25.4
—28.2

—0.171
—0.678
—1.53
—2.73
—4.29
—6.24
—8.62
—9.99

—11.5
—13.1
—15.0
—17.0
—18.8

—0.111
—0.439
—0.988
—1.76
—2.77
—4.03
—5.56
—6.44
—7.39
—8.43
—9.58

—10.84
—12.0

—0.0762
—0.302
—0.681
—1.21
—1.91
—2.78
—3.82
—4.42
—5.06
—5.77
—6.53
—7.37
—8.11

—0.0554
—0.220
—0.497
—0.886
—1.39
—2.02
—2.78
—3.21
—3.67
—4.17
—4.72
—5.32
—5.83

' IIc =93.3 kOe.
b The column headings in parentheses are values of T;/Txz0; Tg~0 =12.54'K.

M,s'. LMacroscopic arguments leading to Eq. (42)
predict M,s.] Kanamori and Tachiki'4 have calculated
xi(T) from an equation similar to (40), but including
corrections for higher-order spin wave interactions,
and, with their own calculation of M, (T), have evalu-
ated T&E(T) in very good agreement with the measured
T~~ of reference 21.

The nuclear magnetic resonance (NMR) frequency
of F" in MnF2 has been measured with great precision
by Jaccarino and Shulman. "The shift of this frequency
due to 3f, is expected. to be proportional to 3f, with a
temperature independent constant of proportionality. "
Keffer" has calculated the sublattice magnetization
using spin wave theory, taking account of discrete
lattice and zone boundary effects, and has found that
M, (T) fits the experimental curve of the NMR fre-
quency shift up to T T~~'.

The nuclear spin specific heat of MnF2 was measured
from 0.5—2.0'K by Cooke and Edmonds" who found it
to have an inverse T' dependence with a numerical
coefficient corresponding to II,it=650 koe in Eq. (59).
This value of the e6ective field is in good agreement
with values determined by other experimental and
theoretical means. "

The low-temperature specific heat of MnF2 was also
measured by Catalano and. Phillips" in the range
1—5'K. Their analysis of the T3 lattice contribution
gave a Debye temperature of 253'K at about 1—2'K.

5 0 I I I I I I I I I

4.5—

4.0—
O

0z 0

3.0

2.5-

This value falls off slowly with the temperature and is
estimated to be about 242'K at. 15'K from higher
temperature data. "A value of OD=250'K is used in
the present calculations. Other data for manganous
fluoride are S=5/2, g= 2, I=5/2, and go=3.468.

The differential equation (73) was solved numerically
for values of the applied field up to 99'%%uo of the critical
spin-Ropping field, which is about 93.3 kOe in MnF2.
Maximum cooling by adiabatic magnetization was
found to occur for an initial temperature of 3—4'K; the
effect amounts to a 25—

30%%uq decrease in temperature
for the maximum applied field, 92.4 kOe. The isentropic
functions T(Hs) are shown in Fig. 2 for initial tempera-
tures between 2'K and 5'K. From 6'K to 12 K the
curves are nearly parallel to the one starting at 5'K,
i.e., the slope has only a weak dependence on tempera-

s4 J. Kanamori and M. Tachiki (to be published)."V. Jaccarino and R. G. Shulman, Phys. Rev. 107, 1196 (1957);
R. G. Shulman and V. Jaccarino, r'Nd 108, 1219 (1957). ; V.
Jaccarino and L. R. Walker, J. phys. radium 20, 341 (1959).IT. Oguchi and A. Honma, J.Phys. Soc. (Japan) 16, 79 (1961)."F. Ketfer (unpublished).

's A. H. Cooke and D. T. Edmonds, Proc. Phys. Soc. (London)
?1, 517 (1958).'E. Catalano and N. E. Phillips, Proceedings of the inter-
national Conference on Magnetism and Crystallography, Kyoto,
Japan, September, 1961 (to be published).
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Fio. 7. The isentropic functions T(HO) for the adiabatic magnet-
ization of MnF2. The critical spin-fIopping 6eld is 93.3 kOe.

' J. W. Stout and E. Catalano, Jr., J. Chem Phys. 23, 2013
(1955).
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FIG. 8. Dependence of
adiabatic magnetization
on individual parame-
ters. Curves (a), (e), (g),
and (i) represent MnF2
as in Fig. 7. In each of
the other curves one
parameter differs from
the MnFs value: (h)
Tg~' ——25'K; (c) Tg
=38.5'K; (d), (f), (h),
and (j) g~I=O

ture in this range )see Eq. (76)].The magnitude of the
temperature change decreases slowly from 1.1' at 6'K
to 0.70' at 12'K. At 1 K and below both cooling and
heating are observed theoretically, but the size of the
effect is negligible. Complete data for the temperature
range 0.6'K& T& 12'K, equivalent to 0.048& T/Tzzs
&0.96, are given as percent temperature changes in
Table I.

VII. DISCUSSION

It is appearent now that the basic premise, T~&&T;,
which led to the approximate temperature-change
formula of reference 5 frederived as Eq. (72) in the
present paper], is not generally appropriate. A better
approximation is the following. Let T, Tg~' so that
6 and 5K 1; write

CH = &H (T,Hp)+&I, CH (T)$&+ (3TE/&D)'j, (75)

which is proportional to T'. The nuclear contribution is
negligible at this temperature. Equation (73) becomes

d&o

gp, a ' Bo

2s-' kii (1+8)T
(76)

where 5= (3Tx/OD)s. Define AT= Tr T, and T. —
', (Tr+T,); let gp&H-r/k& Tzz' (equivalent to the

critical field) and H, =O. The solution of Eq. (76)
is then

AT —0 13(T~sP)'/(1+8) T, . (77)

Since ~T is fairly small, T, can be replaced by T;. The
MnFs value of AT predicted by Eq. (77) for T;=6'K is
—1.6', and for T,=12'K it is —0.82'. Both of these
values are in much better agreement with the detailed
calculations than are the predictions of either Eq. (71)
or Eq. (72).

Aside from the nuclear terms, the differential equa-
tion (73) can be formulated using the reduced variables
T/TAB and TsP/TQE (or Hp/H. ) and the ratio Tri/O~&.

Consequently the data in Table I are indicative of the

effect of adiabatic magnetization on any antiferromag-
net which fits the model described in Sec. II and for
which Ts/On 0.3 as in MnFs. With this in mind, the
data of Table I can be used to check the functional
dependence of Eqs. (71), (72), and (77) on T~~P. All

three equations indicate that for a given T;, an increase
in T~~' will result in a greater AT (at the expense of a
larger Hp). Since halving T; has the same effect on the
ratio T;/T~EP as doubling T~xs, the data in the last
line of Table I (maximum applied field) show that

~
AT/T,

~

increases from about 6% to 19% as the ratio
T;/T~xs is reduced from 1 to 0.5. The approximation,
Eq. (77), predicts a factor of four in.crease in AT. Com-
parison of curves (a) and (b) in Fig. 8 shows the effect
of doubling T~~' in MnF2 while holding all other
parameters constant.

Adiabatic magnetization depends on the exchange
temperature, Tz, more qualitatively than quantita-
tively. A T~ small compared to the Debye temperature
enhances the importance of the magnetic specific heat
relative to the lattice specific heat. Thus the total CII
depends more strongly on the applied field when

Tg&(OD, resulting in a larger AT. The effect of reducing
T~ to one-half its original value while other MnF2
parameters are unchanged is shown by comparing
curves (a) and (c) in Fig. 8. Because the electronic
moment and magnetic specific heat are proportional
to the same power of TE, the differential equation de-

scribing the adiabatic temperature change is essentially
independent of the value of Tg. Furthermore, if Tg is

very low, the inverse dependence of C~ on the exchange
temperature means that the magnetic specific heat will

also be much greater than the nuclear specific heat, even
at very low temperatures, again improving the prospect
of a large hT.

Since, in the absence of the nuclear terms, dT/dH is
always negative for nonzero T, it is the nuclear mag-
netic moment which effectively sets a low-temperature
limit on the cooling effect. The nuclear moment and
hyperfine field of manganese are particularly large with
the result that the nuclear specific heat is the dominant
specific-heat term in MnF2 below 3'K. In Fig. 8, curves

(d), (f), (h), and (j) were calculated using the physical
constants of MnF2 except go=0; they are to be com-

pared with normal MnFs curves (a), (e), (g), and (i) in
that order. Although dT/dH —+ 0 as T —& 0, it is ap-
parent that the cooling process extends to a much lower

temperature in the absence of the magnetic hyperfine

interaction.
Antiferromagnetic structures containing even-even

nuclei, such as Cr", Fe" and Ni' " as the magnetic
ions should be much more useful for very low tempera-

ture cooling by adiabatic magnetization than those

containing Mn" or Cu"" ions. Even Cr", Fe", and
Ni" may be suitable since their nuclear moments are,
at least, an order of magnitude smaller than that of
Mn". An example would seem to be Cr203, which has
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been extensively investigated by Foner. " The effec-
tive nuclear moment of this crystal is very small
since natural chromium contains less than 10%%u~ Cr".
Chromic oxide has a gap temperature of about 7.9'K
(critical field about 59 kOe) which can be increased
by the addition of Al&03. Less favorable, however, is the
relatively high Neel temperature of Cr&03, Tz= 308'K.
With T~ reduced to 266'K by the addition of corundum,
preliminary calculations indicate that (CrsOs) o.s(AisOs) o.i
would be cooled from 1.0 to 0.5'K or from 0.6 to 0.24'K
by a near-critical field of 81 kOe.

In general, the optimum conditions for observing or
causing cooling in an antiferromagnet by adiabatic
magnetization are: (1) gzI 0 or T&1—2'K so that
the nuclear (heating) effect is negligible (this condition

I S. Foiier, Suppl. J. Appl. Phys. 32, 63 (1961).

is not important if Tz is very small); (2) T(T&zs
so that the number of spin waves excited depends ex-
ponentially on temperature; (3) T&z' large, but no
greater than gpz/kz times the maximum magnetic
field available; and (4) T~(Oo so that the magnetic
speci6c heat is dominant. A possible use for the e6ect
of adiabatic magnetization on an antiferromagnet, other
than the cooling per se, would be as a sink for the heat
generated when a paramagnetic (or ferromagnetic)
material is magnetized prior to cooling by adiabatic
demagnetization.
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