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Let Lx=y; x=L 'y:

SLY=px. (A4)

where U~,;, = e; exp(ik. r, )8,y. Therefore, the eigen-
values of L„(Saenz)are the same as those of the present
Ll„and so the remaining discussion will be carried out
in terms of the Ll, and other notation of the present
paper.

Saenz used the result that the eigenvalues of ~L1,

(e,; = e,h, , ) are real if Li, is positive definite; it seems
worthwhile to include a proof here. If Ll, is Hermitian
and positive definite, then

Ll, ' exists, and is Hermitian and

positive definite; (A2)

Li,'", Ll, '" exist, and are Hermitian and

positive definite. (A3)

Now, suppressing the index k, let an eigenvalue of eL
be p, with a corresponding eigenvector x:

is equal to the number of positive (negative) elements
in the matrix e, provided @&0.This can also be proved
for each matrix L: sig(eL) = sige if L is positive definite
(where sigM=—signature M). Let L'"z=z, x= L '"z, and

(A4) becomes .L1».=I.L;»2..

Multiply on the left by L'/' to get

L'/2eL'/2s = Ij,z

(A7)

(AS)

Now sig(L'I'eL'~')=sig(eL), since both matrices have
the same eigenvalue spectrum L(A4) and (AS)]. But
sig(L'I'eL'")=sige, since the signature is invariant
under a conjunctive transformation (L'~'t = I.'").There-
fore, sig(eI.)= sige.

It finally remains to show that the eigenvalues found

by Saenz, namely, the absolute values of the (real)
eigenvalues p of eL, are the same as those found here.
If U is the (unitary) matrix which diagonalizes L, as
in Sec. II above, then

6p = IJ,L (A5)
(A9)

Take the inner product of each side of (AS) with y to get

(y, ey) =p (y,L 'y). (A6)

Since e and L ' are both Hermitian, the inner products
in (A6) are real, and since L ' is positive definite,

(y,L 'y) 40. Therefore p must be real. Hence L positive
definite is sufficient (but not necessary) to insure p real.

Saenz has also proved, by continuity arguments,
that the number of positive (negative) eigenvalues p,

where Lp, Lp'" are diagonal matrices whose elements are
X„X,'~', respectively. But the matrix of (Ag), whose

eigenvalues are p, , is related by a unitary transformation,
with V, to the matrix R of Sec. II:

V &L1/2$L1/2V= L 1/2V—1$VL 1/2= g (A10)

Therefore, the eigenvalues of eL are the same as those
of E, and this completes the proof. It also follows from
(A10) that sigR= sige, a result which was used in Sec.
III.
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We have investigated the magnetic ground state of metals using an idealized theory of magnetism based
on the Ruderman-Kittel-Yosida indirect exchange interaction. The preliminary, but suggestive, results
reported here are for simple cubic structures and spherical Fermi surface. We hand that as the number of
electrons is increased, ferromagnetism is replaced by two different antiferromagnetic structures before
the Neel state is anally obtained. The first transition occurs at kza 0.57i- (kz= Fermi wave vector, a=lattice
constant) at which value the rapid changeover occurs, from ferromagnetism to an antiferromagnetic struc-
ture of planes of uniform magnetization, which point along alternating directions. These planes lie perpen-
dicular to the (1, 0, 0) axis at 6rst, then abruptly change over to the (1, 1, 0) axis at kso 0.77r. The new
con6guration remains the ground state until k~a is further increased to 0.857i-. But, at that value a Anal
transition occurs to the Neel state. The Neel state (where every spin is surrounded by antiparallel nearest
neighbors) then becomes increasingly stable and reaches maximum stability when the Fermi surface touches
the zone boundary at kza=7i-. It appears from our calculations that the above-mentioned states are the
only stable spiral con6gurations in the simple cubic lattice without the introduction of anisotropy or non-
linearity into the theory.

'

~ VERYONE knows that there are many competing ferromagnetism, but also in explaining with a minimum
~ theories of magnetic metals. Each must be judged of adjustable parameters the various possible antiferro-

on its merits in predicting not just the occurrence of magnetic orderings.
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VVe have found that an indirect exchange theory
(IET) based on the Ruderman-Kittel-Yosida interac-
tion seems satisfactory in this respect when properly
considered, and in the present communication we shall
present a simple criterion based on this theory. The
criterion is that, atl other things hei' eqnut, a three-
dimensional metal made of magnetic atoms is ferro-
magnetic when there are few conduction electrons, or
when the magnetic atoms are spatially close, and anti-
ferromagnetic when there are many of them or when
the magnetic atoms are far apart. By "antiferromag-
netic" we mean to include spiral spin configurations
(of which the Neel state is but a special case, when it
is allowed by the crystal configuration). In the simplest,
isotropic version of the theory applicable to idealized
cubic materials, the only parameters which determine
the ordering of the magnetic ground state are the
product of Fermi wave vector and lattice parameter
kpa, and the electronic mean free path l. On the basis
of these alone, the theory is capable of distinguishing
between the ferromagnetic and various antiferromag-
netic orderings in the ground state in a given crystal
structure. But the crystalline structure is equally im-
portant and we must recognize that, all other things
(such as nearest-neighbor spacing) being equal, it is
also quite likely for identical magnetic atoms imbedded
in different crystallographic arrays to have different
magnetic ground states, although there is no simple
criterion for this. These conclusions, which are reason-
ably arrived at on the basis of a model interaction
which is long ranged and has nodes, are apparently
at variance and invite comparison with any simple
analysis on the basis of the nearest-neighbor-overlap
description of magnetic interactions.

Before describing the calculation, we must recall

briefly some familiar but essential results. In the IET,
the magnetic metal is defined as an array of localized
spins. These have a direct "exchange" interaction with
the delocalized electrons which provide the metallic
bonding. The interaction among the localized spins is
therefore mainly virtual, by the emission and reabsorp-
tion of spin deviations in the conduction medium. The
resulting "indirect exchange interaction" is typically
long ranged with oscillations characteristic of a sharp
Fermi surface; in the simple IET, we assume constant
exchange matrix element, spherical Fermi surface, and
the rapid convergence of perturbation theory leads one
to the Heisenberg-type Hamiltonian for the residual
interaction among the localized spins:

H=P P J(R;,)S; S;.

The eA'ective coupling J(R;;) is the famous Ruder-
man-Kittel- Yosida' ' interaction:

J(R;;)~R,; $2ksR;, cos(2ksR;, )—sin(2ksR;, )$. (2)
' M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).' K. Yosida, Phys. Rev. 106, 893 (1957).
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FIG. 1. Finer points of the first ferromagnetic-antiferromagnetic
transition Lalong (100) axisgr Note that (b) indicates the only
(and inconclusive) evidence we have found for spiral antiferro-
magnetism with qo not on the principal points of the Brillouin
zone boundary or at the origin. Here we plot F(q) along the
(1,0,0), (1,0.2,0), and (1,0.2,0.2) direction from the origin to the
zone boundary.

S; =S cosqp'R;, S,&=S sintlp R;, S;*=0, (3)

J. Bardeen, in Encyclopedia of Physics, edited by S. Flugge
(Springer-Verlag, Berlin, 1956), Vol. 15, p. 274.'D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958),
and references therein.

~N. Sloembergen and T. J. Rowland, Phys. Rev. 97, 1679
(1955).

However, one should also include an exponential
dependence on electron mean free path, which is already
well established in the theory of electrical conduc-
tivity, ' ' and multiply this expression by exp( —R,,/i).
In this connection, we should also mention the theory
of Bloembergen and Rowland' on the indirect coupling
mechanism in insulators. They find that (2) must be
multiplied by exp( —R;;n), where cr is a factor propor-
tional to the square root of the forbidden energy gap.
Although there are at least these two reasons for multi-
plying Eq. (2) by an exponential decay factor, at
present we are reporting on our preliminary results
which were found without this factor, and we shall
mention the results of subsequent calculations only
briefly below.

The Hamiltonian (1) defines quantum —and statis-
tical—mechanical problems which cannot be exactly
solved in general. But for the present purposes, a
knowledge of the magnetic ground state in the Hartree
(product wave function) approximation is sufhcient,
and this is equivalent to treating the spins as classical
vectors. In this approximation the ground state is
generally a configuration,
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to the more familiar energy-band structure and vibra-
tion spectra in a lattice. It is defined in the first Bril-
louin zone, and points of maximum interest are at the
center and on the zone boundary. It is therefore quite
obvious that the shape of the zone, and therefore, the
crystallographic structure, should affect the determina-
tion of the ground state as we asserted above. The
dependence on crystal structure should be most pro-
nounced when 2k' approaches a reciprocal lattice vec-
tor in magnitude.

At the opposite extreme, when ksa ~ 0, the sum (4)
can be accurately represented by an integral which
shows no dependence on lattice structure at all, and
one finds Yosida's result' (valid for qa also small)
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FIG. 2. Finer points of the transition between the spiral
qo ——(~,0,0)/a structure and the spiral qo= (wp. ,0)/a structure.
It occurs between frames (c) and (d). This is a very rapid transi-
tion and may even be discontinuous, as there is no evidence that
q0 assumes intermediate values on the zone boundary. Here
F (q) is plotted along various directions, but the position of the
curves near the origin (which is now a maximum) is not shown.

and it is mainly in this sum that the crystal structure
has an effect. s Note that values of F(q) away from the
minimum also give information, and in principle the
energy of elementary excitations may be calculated
therefrom. The one case which is exactly soluble is
when qp=0, when elementary arguments give for the
spin-wave energies,

e,=»(F, Fo)=~q'(d'F—ldq')I. =o+ "
which leads one directly to the Bloch T'" law, at
su%ciently low temperatures.

The function F(q) has topological properties similar

'D. Lyons and T. A. Kaplan, Phys. Rev. 120, 1580 (1960).
7 T. A. Kaplan, Phys. Rev. 124, 329 (1961).'E. J. Woli and S. J. Nettel, Phys. Rev. 123, 796 (1961).' In cubic structures with one spin per magnetic cell, this sum

is real. Also, q can be reduced to the Grst Brillouin zone. The
classical theory for the hexagonal structure is given in reference
7, and the spin-wave theory in reference 8.

leaving qo as a vector to be determined below. Interest-
ing limiting cases are ferromagnetism (ils ——0), and the
Neel state Lile= a '(m. ,s p.), in the simple cubic lattice].
The proof that the class of states (3) includes the
classical ground state is relatively general, but it is
required that the spins form a Bravais lattice. ' Com-
plications in the hexagonal close-packed structure have,
however, been discussed. "The vector qp is the value
of q for which the following lattice sum is a minimum:

F(11)= P J(R,)e'& R',
Rs&0

which is, of course, the well-known Fourier transform
of J(E). Integrating, instead of summing, always re-
sults in ferromagnetism, for which Eq. (5) is applicable.
Lcommon knowledge of this ferromagnetism probably
obscured the various antiferromagnetic possibilities of
the simple IET. Even among ferromagnetic materials
the similarity in spin wave spectra cannot be expected
to be as great as predicted by a universal formula (6),
for the assumption kp ~ 0 is not generally valid. )

Previous work has been reported' "" which points
out various antiferromagnetic possibilities of the inter-
action (1), but we are reporting on what we believe to
be the first systematic investigation of the lattice sum

(4), in the simple cubic structure, which we have pro-
grammed on the IBM 7090 as a direct lattice sum of
up to 6000 points and an approximate integration of
the remainder. The results which are displayed are for
infinite free path. We have searched the Brillouin zone
for the minimum of F(q) for various values of k~ from
0.1 w/a to a value s/a where the Fermi sphere touches
the zone boundary, and in the figures we present some
of the more interesting graphs in self-explanatory form.
It is interesting to see the various sorts of antiferro-
magnetic orderings that occur in the range intermediate
between the regions of stable Neel state and stable
ferromagnetism.

To summarize the figures, successive minima corre-
spond at first to ferromagnetism then to (100) planes
of parallel spins in alternating array, spaced u apart.
This is followed (as ksa is further increased) by (110)
planes of parallel spins in alternating array, the dis-
tance between nearest antiparallel planes now being
only a/V2. This arrangement finally gives way to the
Keel configuration, the "most antiferromagnetic" of all.
There are no minima except at points of high sym-
metry, and the transitions are rather abrupt.

These results are completely confirmed by calcula-

IP. G. DeGennes, Compt. rend. 247, 1836 (1958).' J. Chevalier and %'. Baltensperger, Helv. Phys. Acta 34,
859 (1961).
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the results of the finite free path calculations completely
at a future date, in conjunction with other interesting
features of this investigation which are not germane to
the present discussion. For the present, suQice it to say
that although a finite free path does slightly aBect the
ranges of kga over which the various configurations
are stable, it does not change the abruptness with which
the transitions occur, e.g., as shown in Fig. 2.

A surprising result of the calculation is that for
k&a=~/2 only, all contributions to the lattice sum
except from nearest neighbors apparently canceled out
to good accuracy, and this feature persisted at all
values of the free path. Thus, in comparing Fig. 3(a)
with a nearest-neighbor spectrum

F(q„q„,q,) = —const(cosq, a+ cosq„a+cosq.a), (7)
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tions using a finite mean free path, which converge
faster and are therefore the most reliable. On the basis
of such calculations, we conclude that the dubious
minimum in Fig. 1(b) can definitely be disregarded,
and we can consider it established that in the simple
cubic structure the planes of parallel spins coincide
with principal crystallographic planes, within the ac-
curacy and the validity of Eq. (1).We plan to present

I'zG. 3. Plot of

R(q) —=a' Z /exp(iq. R;)g(2kipR; cos2kzR,
i +0

—sin2krR;) (8vk~R, 4) ~

along the three principal directions for the simple cubic structure,
from the origin to the zone boundary. Note how the minimum at
g0, which determines the ground-state spin con6guration, moves
with increasing k~a. The ferromagnetic state (go

——0) is stable in
frame (a) and for all values of kro smaller then s./2. The Neel
state Grat occurs in frame (e) and is, of course, much stabler at (f).

we find this formula fits the curve to within an ac-
curacy of 10%. However, this does not necessarily
mean that a magnetic substance with kFa=n-/& is in-
distinguishable from one with nearest-neighbor inter-
actions, although they can reasonably be expected to
share many similar properties at low temperatures
where spin-wave theory is applicable.

The interaction of Eq. (2) which we have investi-
gated has qualitative merit in that it has the oscillatory
behavior expected in metals, " and depends on a pa-
rameter which presumably can be obtained experi-
mentally by other means. However, it does not serve
as a quantitative theory of magnetic behavior, for it
does indeed depend on a series of approximations which
are not universally valid. Ke also have neglected
effects of, e.g., electromagnetic, and anisotropic inter-
actions, '""all of which must be pieced together in
order to understand the magnetic properties of a
specific substance. However, we hope to have made
apparent the many possibilities of the simple IET in
magnetic metals which future refinements should
amplify and clarify.

The authors are grateful to Dr. S. H. Liu for useful
comments on the physical properties of rare earth
metals, and to Dr. T. D. Schultz for many stimulating
conversations.
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