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Consideration is given to a lattice which has an arbitrary number of magnetic atoms, or spins, in each
magnetic unit cell. The Hamiltonian for this spin system is taken to include the usual isotropic exchange and
magnetic Geld terms. This Hamiltonian is diagonalized in the spin-wave approximation for the case where
the spin-deviation from the + or —s direction is small for each spin. The thermal average values of the s
component of each spin are calculated and found in general to be different for spins on inequivalent sites in
the unit cell. Insofar as the model Hamiltonian and the spin-wave approximations are valid, it is suggested
that nuclear magnetic resonance measurements might be interpreted to give some information about the
effective anisotropy fields.

I. INTRODUCTION

'HIS paper is concerned with the spin-wave
problem for a lattice which has an arbitrary

number of magnetic atoms, or spins, per unit cell,
and for which the spin deviation from the + or —s
direction is small for each spin. The spins are assumed
to interact with each other through the usual isotropic
exchange, and to interact with the s components of
internal and external magnetic fields. On the basis of
this model, the Hamiltonian for the spin system is

P nn', jj' +nn', jj'Snj ' Sn'j' Pnj GgSnj . (1)

Here n labels the unit cell in the lattice (I= 1, 2, , X)
and j labels the site in the magnetic cell (j= 1, 2,
T). S, is the spin vector, expressed in units of A, which
is located at r„;, and J„„;,is the exchange constant
between the spin vectors S„;and S, . It is assumed
that J „,;, depends only on. the distance

~
r;—r„,'~;

the prime on the sum in (1) means to omit the terms
(en,jj).The coeKcient G; is linear in the s components
of internal and external magnetic fields. For example,
with an external field II and an effective anisotropy
field H„at each j site (each field H or H„is directed.
along the s axis, being in the +z direction if the corre-
sponding H or H„ is positive),

G, =g,P(H+H„), (2)

where P is the Bohr magneton (e5/2mc) and g, is the
spectroscopic splitting factor for the spins on j sites.

Following Van Kranendonk and Van Vleck, ' the
Hamiltonian is transformed to harmonic oscillator
coordinates and momenta by the relations

S„,'=S,' 'Q, , S„;"=c,S,'"P„,,
(3)

Sn~'= e~Pi2 (P'nP'+Qni 1)j&

where 5, is the magnitude of the spins on j sites. For
the present case, the spin vector 8„;is either nearly in
the +z direction (e,=+1) or nearly in the —z direction
(e,= —1), so that the spin deviation 2(P„P+Q„,'—1)

*This work performed under the auspices of the U. S. Atomic
Energy Commission.

' J. Van Kranendonk and J.H, Van Vleck, Revs. Modern Phys.
30, 1 (1958).

&nn', jy'=&n'n, y'j= 2(& Sj'') Jnn', jj''
for terms' (ee,jj); (6)

&nn, „''~ = e~$&j+2 Q n', p &nn', ~i'e~'Sj'7.

The specification of the problem is completed by a set
of commutation relations which are good to the same
degree of approximation (namely, dropping spin-
deviation operators compared to unity):

[Q„,,Q pf=LP„, ,P„;]=0,
LQniyPnl jr( = ifinn rejig i.

(7)

It is not within the scope of the present paper to
discuss the approximations which lead to the model
Hamiltonian (1), nor those which are involved in
transforming to (4)—(7). These latter approximations
are discussed qualitatively in references 1 and 2, and
quantitatively for a ferromagnetic case by Dyson. ' It
is the purpose of the present paper to give explicitly
the transformations which diagonalize (4); this is done
in Sec. II. In Sec. III the thermal average value of the
s component of spin for spins on j sites is calculated,
and an application to nuclear magnetic resonance
studies is pointed out. For any case with only two spins
per unit cell the problem can be solved explicitly, and
this is discussed in Sec. IV. Saenz4 has recently found
the eigenvalues for the Hamiltonian (4), and the
relations between his work and the present are discussed
in the Appendix. In the following, the problem is
treated in terms of harmonic oscillator formalism for
simplicity; a transformation to creation and annihi-
lation operators can be carried out at any point in the

' T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 {1940).' Freeman J. Dyson, Phys. Rev. j.02, 1217, 1230 (1956).
4 Albert W. Saenz, Phys. Rev. 125, 1940 (1962}.

is small. Thus, following Holstein and Primako6, '
terms quadratic in spin deviations are dropped and
(1) becomes

1 V+0 + g ~nn', j j' +nn', jj'
X(e,e,'P,P. ,'+Q, Q J j; (4)

P-e'= —g„;e,G, (S,+-', )
nn'jj' ej e,j' Inn', jj'Sj (1+ST&) i (5)
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development without difhculty. The periodic boundary
condition for the lattice is also applied throughout.

where M'k is the Hermitian, involutory matrix whose
components are

II. DIAGONALIZATION OF THE HAMILTONIAN Mk „——Q; V k,;,e;Vk,;. . (20)

~k, js ~—k,js (13)

Finally, since Lk is Hermitian, the eigenvectors can be
chosen to satisfy the orthonormality and completeness
relations

(14)

Qs U k, ,Vk;., 8,«'——

The traveling wave transformation is now defined
in terms of new operators A k„Bk, as follows:

The first transformation consists of the introduction
of traveling waves which have wave vector k (there
are 1V values of k distributed uniformly over the first
Brillouin zone) and branch index s (s=1, 2, , T).
Define first the matrix Lk which has components

Lk,, ——g ~ E,,;exp) —ik (r„—r„)j, (8)

where r„ is the vector to some reference point in unit
cell t«(the definition r„;=r„+r,will be followed). Note
that Lk,t does not depend on the index n fr„=0 can
be taken in (8)7. From the symmetry of the lattice and
the symmetry of the K coeKcients, the following
properties of Lk are derived:

Lk,ii' L—k,i'i )

Lk, ,; Lk, ,',* (——Hermitian property). (10)

From (9) it follows that the set of eigenvalues Xk,
of Lk is equal to the set X k, of L k, and these can be
ordered so that

(11)

Let Vk, , be components of the eigenvectors of Lk and
write the secular equation

g,' Lk,t'Vk, ,'s=XkaUk, ,sa (j=1,2, , T). (12)

Sy taking the complex conjugate of (12), using (9)
and (11) and noting that the Xk, are real, it is seen that
the eigenvectors can be chosen to obey the relation

Also, because of the Hermiticity of the P, , Q„;,

(21)

$bk„ak, $=ib(k+k')Rk, „,
~k, ss' ~ks ~k, ss'~ks'

(24)

(25)

Let the eigenvalues of Rk be a&kt (1=1,2, , T) and
the components of the eigenvectors be W'k, ,~. Then

Q. Rk, „Wk,s t
——ark, Wk, t, (S=1,2, , T). (26)

As in the diagonalization of the matrices Lk above,
the following relations concerning the diagonalization
of the Rk are observed:

~k, ss' ~—k, s's j (27)

Rk,„——Rk...* (Hermitian property); (28)

If all e, =+1 (ferromagnetic case), the problem is
solved at this point, since for this case 3fk,„=b„.
The ferromagnetic Hamiltonian is then

X'f POf+g Pks liks(AksA ks+B—ksB ks 1)—a

Pof +0 +2 Eks ~ksa (22)

where the eigenvalues of ,'(Ak, A —k.+Bk,B k, 1) are-
mk, =0, 1, 2,

It now remains for the general case to transform the
operators in the Hermitian form (17) to new operators
which have the desired commutation relations. If this
is to be accomplished by linear transformations, the
eigenvalues of the final Hermitian form will be positive
if and only if the 'Ak, are all positive; henceforth it will
be assumed that Lk is positive definite for all k.~

Now carry out a second transformation defined by

Ak, ——Xks '"«tk„Bks——Xk, '"bk„(23)
where the positive square root is always taken for Xk,'~'.

The new commutators are

P~, =cV '"e; Pgs Ak. Vk;, exp(-ik r ),
Q, =E '"Pk, Bk,Vk,;, exp(ik r„). (16)

With the aid of (11), (12), and (14), the Hamiltonian
becomes Ps W k, «Wk, ,t ——btt (orthonormality);

(29)

(30)

(31)

+0 + 2 Qka ~ks(A ksA ka+BksB ks)a— —(17) pt W k, ,«Wk, , «=5as (completeness). (32)

PBk„Bk, j=(Ak„Ak, /=0,
(Bk„Ak, 7= i'(k+4')Mk, „, (19)

where use has also been made of the identity

Q„exp/i(k+k') r„j=Xb(k+k'). (18)

The transformation (16) can be inverted and the
comrnutators found to be

A third transformation is now defined by

+ks Pt Wk, stt kta bks Pt Wk, stdkt (33)

5 This important result has been pointed out by Saenz, reference 4.

Equations (33) can be inverted with the aid of (31).
The Hamiltonian, commutators, and Hermitian con-
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jugate relations become

K Ep + 2 Q kt (CktC—kt+dktd —kt) t

calculation yields

(S;*)f——S,—1V
—' Qk, (tttk, )Vk;, U k;, , (46)

[dkttdk't'7 [t ktt&k'v7

[dkttck't'7 =ptdkttt (k+4 )ttt 1' t (35)
(S )=2;(S,+2)—& '2, Zkt l~ktl ((~ktH-2)

Xp„ leak. "9k, '"8'k, ,tW k, , tVk, ;,V k,;, , (47)

~kt=Vtl~ktl'"Ckt, ~kt= l~ktl'"Dkt, (37)

where the positive square root is always taken for

I
tpkt

I

''2. The statement of the problem in diagonal form
is then

~—Ep+-. Zk l~k I

X (C'ktC kt+DktD —kt 1); (—3&)—

Eo—Ep+2 Zkt ltpktl t

[Dkt, Dk t 7= [Ckt,Ck t 7=0,
[Dkt, Ck t 7=iI'(k+k')tt„;

Ckt~ —C—kt& Dk&~ —D—kt.

(39)

(40)

(41)

The eigenvalues of —', (CktC kt+Dk, D k,—1) are 12kt
——0,

12
III. APPLICATIONS

Iet the statistical average of an operator 0 be
denoted by

(0)=Z ' Tr[O exp( —X/1kT)7, (42)

where Z is the partition function, E is Boltzmann s
constant, and T is the temperature. Then

(tttk, )= [exp p k,/ET) —17-';

(~tkt) = [exp(l ~kt I/&T) —17 '. (43)

The statistical average of the energy of the spin system
is

(E)1=Epy+pk, Xk,(tttk, ), (ferromagnetic case) (44)

(E)=Ep+p kt I
tttkt

I (tpkt), (general case) (45)

and the specific heat at constant volume is
Cv = 8(E)/8 T.

An interesting application of the development in
Sec. II is to the calculation of the statistical average of
the z component of spin for spins on j sites. The average
(S„)is found to be independent of 22 and is denoted
by (S;*); for the ferromagnetic and general cases the

(36)

A fourth transformation removes the coi, & from the
commutation relations (35) and thus completes the
diagonalization procedure. Here it must be noted that
the cvj, &, although real, are of indefinite sign. Let
tpkt/Itpktl =yt, where yt=+1 or —1. On the basis of
continuity arguments, Saenz has proved that the
numbers y~ and e, are equal to within a permutation;
an alternate proof of this is given in the Appendix.
The final transformation can then be taken as

where use has been made of the fact that in the general
case (CktCk t), (DktDk t) vanish unless k= —k', t=t'
(and similarly for (Ak, Ak, ), (Bk,Bk, ) in the ferro-
magnetic case). To obtain the statistical average of the
total a component of spin for the system, (S,*) must be
summed over j and multiplied by X. The results are

(S')t ——SP, S,—Qk, (tttk, );

(S*)=Xp, 2;S;—gkt yt(ttkt);

(48)

(49)

IV. EXAMPLES

For any case with only two spins per magnetic unit
cell (T=2), the problem can be solved explicitly in
terms of the elements of the matrices Lk for each k.
Let j=1, 2, suppress the index k for abbreviation, and
represent the elements of I-j, by I-», I-», I.»=I-»*.
The results of the first transformation in Sec. II are,
with s= &,

&g= 2[L11+L22+&'"7;
-'2[1~(L11—L22)A '"7.

I V2+I'=2[1~(L»—L22)~ '"7;
(Lll L22) +4L12L21 j

(50)

where the positive square root is always taken for A'"
and where the phase factor in each of the eigenvectors
V+, V is arbitrary. The condition that I. be positive

the latter formula has been given by Saenz. ' (In the
equation in footnote 20 of reference 4 there should be
a sum over alpha on the left-hand side. ) In obtaining
(49) use has been made of the fact that g, p, =gt yt,
and that the eigenvectors Wkt diagonalize the matrix
Rk ', yielding the eigenvalues ~k& '.

Since the hyperfine field at a j site is proportional to
(S ) for a magnetic material, the nuclear magnetic
resonance (NMR) frequency for a nucleus on a j site
is (approximately) proportional to the magnitude of
this quantity. It is seen from (46) [or (47)7 that the
(S )r (or (S,')) are, in general, expected to be different
for different j. This difference vanishes as T —+0 for
the ferromagnetic case (except perhaps when acoustic
modes exist), but not necessarily for the general case.
If this difference in NMR frequencies for nuclei on
inequivalent sites were observed, it could presumably
give some information about the effective anisotropy
fields H„.; however, in many cases the effect is probably
as small as other effects which have been neglected in
the model Hamiltonian (1) (such as dipolar interactions
between spins), and the approximations used in treating
the model.
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definite (lt~) 0) is
Ltt+Lss) 3'I'.

At this point the problem is solved for the ferro-
magnetic case («t=«s ——+1), the spin-wave energies
being given by X»+, X» . An interesting example is the
case of CrC13, which has been shown by Narath' to be
well approximated by a two-dimensional model. Here
the Cr atoms lie at the corners, but not at the centers,
of hexagons which form a planar net. These Cr planes
are separated from one another by two layers of Cl
atoms. The Cr spins (Si——Ss ——S;gi ——gs ——g) are
assumed to be coupled to nearest neighbors only, with
an exchange constant J. Since the two Cr sites in each
(two-dimensional) unit cell are inequivalent, it is here
assumed that H, ~&H,2. If the elements of L» are
expanded for small ~k~, and gpH i, gpH s((JSis taken,
there results

X,+——gP(H+H, )+6JS&6JSL1—~ (qb)'j;

IU+I'=l(1~1'), IU+I'=l(1~1"); (52)

where q= ~k~, H, =—', (H, t+H, s), b is the distance
between nearest-neighbor Cr sites, I'=gP(H~t —H, s)/
12JS, and F' has been neglected compared to 1. If
now, in (46), the sum over s is restricted to the lower
lying spin-wave branch (it& ) and the sum over k is
replaced by an integral over all k space, the statistical
averages of s components of spin on each site become

(S )f( ) ( )f(0)L1 (1 p)Fj
(53)

(S,*)f(T)= (S,')1 (o)L1—(1+1')F$)
where

F= (~3KT/8' JS') P n ' expL ngP(H+H )—/KT j
n=1

and where (St')y(0) =(Ss*)q(0)=S for this system.
Thus, even for this simple model, the resonance
frequencies for nuclei on sites 1 and 2 are expected to
differ if H, ~&H ~. The average of the two equations
(53) gives (S')f (T)= (S*)~(0)L1—F$, in agreement with
the result of Narath. '

If «i ——+1, «s ———1, and t=n. , P, the solution of the
problem is shown by the following outline (where the
phase factors for U+, U are taken to be equal):

s (Lil L22)L1~ (Lll+L22)+

~ =R p=(LJQLstt (Lit+Lss)'A ' —1]}'";(54)

s C(Lii Lss) ~+ ];
(56)

'Y~ +11) 'ys 1 i (57)

(Lll+L22) 4LlsL21 j

C= LtsLst(LttLss LisLs, )/(Ltts —L22 ) q (59)
' A. Nsrsth, Phys. Rev. Letters 7, 410 (1961).

where (57) follows with the aid of the condition (51),
and where in (55) and (56) the + sign corresponds to
the index n, the —to p. Finally, after some algebra,
(47) reduces to

(S; )=«;((S,+-,') —Ã-'-,' Pi & ((ns,)+-,')
XE(L»+L»)B "+pi«i$}, J=1,2; t=tr, P. (60)

For antiferro- and ferrimagnetic cases, with only
nearest-neighbor interactions and where each site
would be crystallographically equivalent in the absence
of spin, the energy levels ~«e s~ reduce to those given
by Van Kranendonk and Van Vleck in their review
article. ' Again for these simple cases, the difference
between the magnitudes of (Si') and (Ss') persists, even
at T=O.

V. DISCUSSION

The value of the present method lies in the complete

specification of the transformations which diagonalize
the Hamiltonian. This allows thermal average values,
such as (46) and (47), to be computed for the model
which has been treated. If the lattice is complicated
(T)2), then it will generally be necessary to use
numerical methods to solve the problem. The present
method will then be of value since only Hermitian
matrices are diagonalized here.

Saenz' has recently carried out a very clever deri-
vation of the eigenvalues of the present problem. His
eigenvalues are identical with the ones obtained above,
as is shown in the Appendix, although he did not
obtain the transformation matrices. The method of
Douglass" is very useful for special cases (namely,
those where the matrices «=L«, 8» j and Li, commute),
but can not be directly extended to the more general
case treated here.

It would be of interest to investigate, in crystals
which have similar nuclei on inequivalent sites, the
expected difference in resonance frequencies for these
nuclei, to see if this difference can be observed and
meaningfully interpreted.
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APPENDIX

This Appendix discusses the relations between a
recent paper by Saenz' and the present work. Saenz
defines a matrix L„, where x is the wave vector, which
is related to the L» of the present paper by a unitary
transformation

L„(Saenz) = U~ 'L~Uk when s«= k,

7 R. L. Douglass, Phys. Rev. 120, 1612 (1960).
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Let Lx=y; x=L 'y:

SLY=px. (A4)

where U~,;, = e; exp(ik. r, )8,y. Therefore, the eigen-
values of L„(Saenz) are the same as those of the present
Ll„and so the remaining discussion will be carried out
in terms of the Ll, and other notation of the present
paper.

Saenz used the result that the eigenvalues of ~L1,

(e,; = e,h, , ) are real if Li, is positive definite; it seems
worthwhile to include a proof here. If Ll, is Hermitian
and positive definite, then

Ll, ' exists, and is Hermitian and

positive definite; (A2)

Li,'", Ll, '" exist, and are Hermitian and

positive definite. (A3)

Now, suppressing the index k, let an eigenvalue of eL
be p, with a corresponding eigenvector x:

is equal to the number of positive (negative) elements
in the matrix e, provided @&0.This can also be proved
for each matrix L: sig(eL) = sige if L is positive definite
(where sigM=—signature M). Let L'"z=z, x= L '"z, and

(A4) becomes .L1».=I.L;»2..

Multiply on the left by L'/' to get

L'/2eL'/2s = Ij,z

(A7)

(AS)

Now sig(L'I'eL'~')=sig(eL), since both matrices have
the same eigenvalue spectrum L(A4) and (AS)]. But
sig(L'I'eL'")=sige, since the signature is invariant
under a conjunctive transformation (L'~'t = I.'").There-
fore, sig(eI.)= sige.

It finally remains to show that the eigenvalues found

by Saenz, namely, the absolute values of the (real)
eigenvalues p of eL, are the same as those found here.
If U is the (unitary) matrix which diagonalizes L, as
in Sec. II above, then

6p = IJ,L (A5)
(A9)

Take the inner product of each side of (AS) with y to get

(y, ey) =p (y,L 'y). (A6)

Since e and L ' are both Hermitian, the inner products
in (A6) are real, and since L ' is positive definite,

(y,L 'y) 40. Therefore p must be real. Hence L positive
definite is sufficient (but not necessary) to insure p real.

Saenz has also proved, by continuity arguments,
that the number of positive (negative) eigenvalues p,

where Lp, Lp'" are diagonal matrices whose elements are
X„X,'~', respectively. But the matrix of (Ag), whose

eigenvalues are p, , is related by a unitary transformation,
with V, to the matrix R of Sec. II:

V &L1/2$L1/2V= L 1/2V—1$VL 1/2= g (A10)

Therefore, the eigenvalues of eL are the same as those
of E, and this completes the proof. It also follows from
(A10) that sigR= sige, a result which was used in Sec.
III.
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We have investigated the magnetic ground state of metals using an idealized theory of magnetism based
on the Ruderman-Kittel-Yosida indirect exchange interaction. The preliminary, but suggestive, results
reported here are for simple cubic structures and spherical Fermi surface. We hand that as the number of
electrons is increased, ferromagnetism is replaced by two different antiferromagnetic structures before
the Neel state is anally obtained. The first transition occurs at kza 0.57i- (kz= Fermi wave vector, a=lattice
constant) at which value the rapid changeover occurs, from ferromagnetism to an antiferromagnetic struc-
ture of planes of uniform magnetization, which point along alternating directions. These planes lie perpen-
dicular to the (1, 0, 0) axis at 6rst, then abruptly change over to the (1, 1, 0) axis at kso 0.77r. The new
con6guration remains the ground state until k~a is further increased to 0.857i-. But, at that value a Anal
transition occurs to the Neel state. The Neel state (where every spin is surrounded by antiparallel nearest
neighbors) then becomes increasingly stable and reaches maximum stability when the Fermi surface touches
the zone boundary at kza=7i-. It appears from our calculations that the above-mentioned states are the
only stable spiral con6gurations in the simple cubic lattice without the introduction of anisotropy or non-
linearity into the theory.

'

~ VERYONE knows that there are many competing ferromagnetism, but also in explaining with a minimum
~ theories of magnetic metals. Each must be judged of adjustable parameters the various possible antiferro-

on its merits in predicting not just the occurrence of magnetic orderings.


