
AXIALLY SYMMETRIC MODEL FOR LATTICE DYNAMICS

force constants were found to fall oR quite rapidly.
This behavior indicates that the potential energy
interaction function, ti (R;,), has a well-defined minimum
at the nearest-neighbor separation and decreases
rapidly and has an oscillatory behavior at the second-
and third-neighbor positions. These conclusions are
consistent with the theoretical analyses of Langer and
Vosko' which strongly suggest that the interaction
potential between a pair of ions in an electron gas would

' J. S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196
(1959).

have an oscillatory behavior as a function of separation
distance.

A second application of the A-S model has been
carried out on zirconium hydride and deuteride which
have tetragonally deformed fluorite structures. We
have concluded from this study that the hydrogen-
hydrogen interaction is very weak compared to the
hydrogen-zirconium interaction and that the six optical
branches are nearly degenerate and have frequencies
which are independent of the propagation vector to
within 3'Po.
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An approximate expression for the free energy of an electron which is coupled to a phonon field (a "po-
laron") and is in a uniform magnetic field is given. This expression is obtained by an extension of Feynman's
path integral variational calculation of the polaron binding energy and is valid for all values of the field,
the temperature and the electron-lattice coupling strength. The explicit form of the result is given in terms of
a model system with an action functional different from that of the actual problem. A minimum-variational
method is given for determining the best model to employ in calculations. We have evaluated the magnetic
free energy at small magnetic fields using a model of a simple form. The two variable parameters of this model
have already been optimized by Feynman and Schultz for Frohlich's Hamiltonian and zero Geld. The result
is applicable at all coupling strengths and carried to the 6rst two terms in a Laurent series in the temperature.
The erst (inverse temperature) term yields an approximation to the effective polaron mass that varies, as
the coupling is varied, by at most 1.5% from that calculated by Feynman and others. The second (tempera-
ture independent) term reflects the internal structure (atomic diamagnetism) of the polaron at large coupling
and also the temperature variation of effective mass. The difference between our magnetic mass and that
calculated by Feynman is shown to disappear when the model system is fully optimized.

I. FORMULATION AND METHOD OF
APPROXIMATION

A N electron in the interior of an ionic crystal
surrounds itself with a distorted lattice; a cloud

of phonons. This system, commonly called a polaron,
has been extensively studied theoretically. ' ' We present
here a calculation for the free energy of this coupled
electron-phonon system in a uniform magnetic Beld.
The results are obtained by an extension of Feynman's
variational calculation of the polaron binding energy'
and are applicable at all values of the magnetic 6eld,
the temperature and the electron-lattice coupling

' R. P. Feynman, Phys Rev. 97, 660 (1955); hereafter to be
called I.

H. Frohlich, in Advances ie Physics, edited by N. F. Mott
(Taylor and Francis, Ltd. , London, 1954), Vol. 3, p. 325.' S. I. Pekar, Zhur. Eksp. i Teoret. Fiz. 19, 796 (1949).

4T. D. Schultzr Phys. Rev. 116, 526 (1960). References 2—4
contain a more complete bibliography of polaron studies.

5 P. M. Platzman, Phys. Rev. 125, 1961 (1962).
6 M. Krivoglaz and S. I. Pekar, Izvest. Akad. Nauk S.S.S.R.

Ser. Fiz. 21, 1, 16, 33 (1957).' Y. Osaka, Progr. Theoret. Phys. Japan 22, 437 (1959).

strength. The susceptibility p and other quantities of
interest are easily obtainable from the free energy F.
We will not attempt here to assess all those effects that
would be present in a real material, 4 but rather treat
the polaron as an idealized mathematical model. For
numerical computations, we will specialize even further
and use the Frohlich model of the polaron' in order to
compare our results with those of other theories.

To obtain the polaron free energy F as a function of
the applied uniform magnetic field H (taken to be in the
s direction), we use a path integral formulation equiva-
lent to the TrLexp( —AC)]. This allows the elimination
of all phonon coordinates from the expression for Ii and
results in an expression of the form.

The symbol Qx«& denotes the "path integral, " or sum
over all electron trajectories X(1) for f in the domain 0

' R. P. Feynman, Phys. Rev. 84, 108 (1951).
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to P with the boundary condition X(0)=X(P). The
appropriate "action functional" 5 to employ is deter-
mined by the Hamiltonian chosen to describe the
system. ' 4 ' '

The Hamiltonian characterizing the interaction of a
single nonrelativistic electron in a uniform magnetic
field with a longitudinal phonon field is taken as

x=E +1v+xg,
where

E =(P—Hxj)'/2,

1V=Px tdxaxtax,

(2a)

(2b)

(2c)

s -1t'dX(t) ~'
~+iHx(t) j(t) dt+Qx U '~Cx~'

2I dt )
P P

X— dt ds exp(iK LX(t) —X(s)])
0 0

X/exp( —&ox
~

t—s~ )+2P(&ux) cosh&ox(t —s)], (3)

where P(~x) is the Planck function (exp(P~x) —1] '.
The action Sof Eq. (3) reduces to the one used in I if we
set H=O, P= ~, cox——1 and Cx i2s"n"'~'t'/K. This——
choice gives Frohlich's Hamiltonian' for characterizing
the interaction of an electron with the optical branch
of a continuous ionic lattice.

The variational principal employed in I (and extended
to finite temperates by Osaka~) was based on the reality
of 5 when JI=O. The addition of the magnetic held II
contributes a term to S of the form i(dX/dt) A(X),
which destroys the explicit reality of 5. In this case an
estimate of the free energy by the method employed in
I is iio longer an upper bound and the great accuracy
attained through this variational approach4 might not
be maintained when BNO. However, for small mag-
netic fieMs the accuracy of a perturbed value of Ii from
an Ii calculated at II=0, by the minimal principle,
might be expected to be quite satisfactory.

~ This frequency would be the phonon frequency in Frohlich's
one-frequency model of the polaron.' R. P. Feynman, R. W. Hellwarth, C. K. Iddings, and P. M.
Platzman, Phys. Rev. 127, 1004 (1962).

Xr——Px V 't'Cx*axt exp( —iK X)
+Cxax exp(+iK X). (2d)

The momentum of the electron is P and its coordinate
is X with Cartesian components x, y, z. The operator
aK~ is the creation operation for a phonon of wave
vector K. Our units are such that A, the mass of the
electron, and some convenient frequency co, are set
equal to unity. ' The magnetic field II is measured in
units of the ratio of the cyclotron frequency to the
reference frequency co.

The appropriate S to employ in (1) is' "is

These same considerations arose in I in the calcula-
tion of the effective polaron mass, where the action to
be used required the addition of a term iU. dX/dt. How-
ever, for small velocities U, the effective mass obtained
in I by essentially calculating F(iU), (P~ ~), has
been shown independently to be quite accurate. "Ex-
pressing matters in another way, we may consider F(H)
to be an analytic function of complex II.The variational
principle of I still holds for H imaginary (S is then real)
and the analytic continuation of this result to real II
may be expected to be accurate for small II.

The method of I was to approximate (1) using

Q expS exp(S —Ss) g exp(Ss),
X(t) X(t)

(4)

where the "average" of any functional A (denoted by
(A)) is defined by

(A)= P ALX(t)]
X(t)

Xe p(SoLX(t)])/2 -p(SoLX(t)]). (3)
X(t)

When 5,50 are real, it is easily shown that the left-hand
side of (4) is always larger than the right-hand side.
This is the variational principle of I we have referred to.
In the spirit of I and reference 10, we will compute F(H)
by using in (4) a trial action S& that is equal to S except
that the part of 5 corresponding to the electron lattice
interaction is replaced by a quadratic functional' ' "

e-1tdX(t) '
+iHz(t)it(t) dh

2& dt

d(v C(ru) dh ds LX(t) —X(s)]'

XLe ~~' '~+2P(co) coshco(t —s)]. (6)

Because we have chosen an Ss that is quadratic in X(t),
the right-hand side of (4) can be evaluated exactly. '

One may think of the interaction term in S (at zero
temperature) as indicating that at a time t the particle
acts as though it were in a potential.

resulting from the electrostatic interaction of the elec-
tron with i.ts mean charge density of its previous
positions /the weight for different times and different
modes being exp( —u&x~ t s~)]. The assumpti—on then is
that such a potential may be roughly replaced by a
superposition of parabolic potentials centered at the
mean position of the electron in the past. "

Q V '~Cx)' ds exp fiK PX(t) —X(s)]—&o ~t xs~), —
K 0
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II. CALCULATION OF E

To evaluate the RHS of (4), we will repeatedly make
use of the formula (for one dimension)' "

12 exp i x(t)f(t)dt —— dt ds x(t)x(s)u(t —s)
~(~)

p p

where oi =2nI/P and n takes all positive and negative
integral values. There is no term for m=0 and so all
subsequent sums over e are assumed to omit m=0.

After summing over x(t) the action functional is still
quadratic in y(t) and (7) may be used again to perform
the sum over y(t). The resulting expression for Fp is

1=E exp
2 p

dt ds f(t)f(s)a '(t —s)

—-', Q in'„. (7)

PFp
= ,' Q —ln(b„)+-,' g ln (1+pp„'H'/b '). (13)

The easiest way to obtain B is to differentiate (9) with
respect to y, for from (9), (10), and (5)

B=yctF p/cty. (14)

This expression is true if x(0)=x(P), a(0)=a(P), and
a(t—s) is an operator with positive nonzero eigenvalues
A„, hence with a well-defined inverse a '(t —s). The
operator Sp is of such a form. The i(t)' term is obtained
by using an tt(t —s) of the form P 0"(t—s—ttP), the in-
verse of which may be obtained by considering it to be
the limiting case of a zero frequency harmonic oscillator.
The normalization factor E is independent of the oper-
ator u(t —s) and f(t) and will never appear in a calcula-
tion of that part of the free energy which depends on
the magnetic field H or the coupling constants C~.

Our approximate Ii, in analogy with I, will consist of
three terms,

Therefore, by differentiating (13) we find that

B=yssyP ' Q„Lc /b —-'syto„'H'c„/(b„s+cp„'Hsb„) j, (15)

where yc„—=b —co„'. In order to compute the A term,
we need to evaluate (exp(iK LX(t)—X(s)$}).Since this
term adds only a linear driving force to the action Sp,
all the path integrals are easily evaluated using (7):

(exp(iK [X(t)—X(s)j})
= exp[ K'D+H—'(K,'+K„')Gj (16).

The functions D and 6 are functions of 3—s=—u:

D (I)=P-' P„(1—costc„N)/b„, (17)
(8) and

which from (4) we write as

Fp —P
—'ln ——Q expSpPX(t)],

X(t)

P

B=-'P 'y dt ds

p iy rg ~C ~s

X(exp —ccrc
~
t—s

~
+2P(tore) coshpprc(t —s)j

In order to calculate Fp, (the s components of all
terms are unaltered by II and are the same as in
reference 7), we sum over all functions x(t) in (9)
using (7) with f(t) =Hj(t). Since we are using the trial
action Sp, the eigenvalues 3„ take on the particular
values b„. These quantities may be obtained most
easily by Fourier transforming the kernel in (6). We
find that

III. EVALUATION OF F WITH A TWO-COUPLED
MASS MODEL

We will use a b„obtained from (12) by setting p= 1
and C(cp) =Ch(cp —w). This choice corresponds to the Sp.
used in I and in references 4 and 7. In fact, it describes
the properties of an electron coupled harmonically to a
second particle of mass M=4C/w' with a spring con-
stant k =3fm'. For this modelb„=tp.'+4y dip C(cp)tp

—'L&p„'/(cp„'+co') $, (12)

G(tt) =P ' P„cp„'(1—costo„tt)/(b„s+to 'Hsb ). (18)

Equations (13), (15), (16), (17), (18) give our general
approximation to F at all temperatures, magnetic fields
and coupling constants. The most accurate result that

00 could be obtained from our formulas would come from
C(cp)dto Pe

—"~'—'~ considering H to be pure imaginary so that I"p
—8—c4

p 0 p is an upper bound to Ii and then minimizing our result

+2p( ) cosh (t s) j(LX(t) X(s)js) (10) by»rying th«un«ion C(~) Although the sol«ion of
the full variational problem is not beyond the means

P of machine computation, here, we will use a simpler
G~QS two-parameter function for C(&p) for which the best

parameters have already been tabulated'4 for all
coupling strengths (and H=O, P= ~, and Frohlich's
polaron). In Sec. IV, we will give evidence that the

X(exp(iK $X(t)—X(s)j}). (11) errors added by this simplification are small (for small
HandP ')

"3.Friedman, I'rinciples and Techniques of Applied JttIIuthe-

matics Qohn Wiley tk Sons, Inc., New York, 1956) Chap. 2, p. 107.

b„=(p„'(cp„s+v')/(cp „'+w'),

vs=—w'+4C/w.

(19)

(2o)
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With the choice (19), all sums over u may be evalu-
ated by using the expression for the inverse Fourier
transform of a general denominator of the form (o~„'+a')
(v=0 included here)

+~ cosa) &Q

~Me +a
= Lexp( —alul)+28(a) coshauj/2a. (21)

The second term is the temperature-independent
diamagnetic piece for the model two-particle system.
Using conventional methods, this term is "not easily"
obtained. However, in the limit that the mass of the
second particle becomes infinite the results are in agree-
ment with a standard perturbation treatment of the
isotropic three-dimensional oscillator. ' In order to see
this, we rewrite (25) in terms of the spring constant k
and the various combinations of masses in the problem.

8Fo= H')Pmo '+3p(@+4/reo) (IJ/k)'~'j/24 (26)For example, the first sum in (13) may be done by
differentiating it with respect to v, making a partial
fraction decomposition, using (21), and integrating the
result over v. This gives the zero field result which we
will not reproduce here (see references 1, 4, 7). The
second sum in (13) may be done by differentiating with
respect to H, using (21) and then integrating the result
with respect to H. This procedure requires, in general,
a knowledge for arbitrary D of the roots of the cubic
equation,

Here, mo ——M+1 the total mass of the model, M is the
mass of the second particle, k is the spring constant and
p is the reduced mass of the system. In the limit of
3II~ ~ the free-particle term (term proportional
to P) vanishes and the temperature-independent piece
becomes,

6Pp ——-'H'k —'~' (27)

oo ((o'+v')/(oio+ iv')+i os =0

If we turn oG the phonon coupling, the best value of v

approaches m' and this equation becomes linear. For
this case A =8=0, and an evaluation of (13) using (21)
causes our approximation to give exactly the well-known
free energy of a free electron in a magnetic field. "That
is, in this limit

8Fo
——H'(r'). /12 (28)

which is the usual atomic temperature independent
diamagnetic part. "For finite M, the problem does not
simply break up into a center of mass mode and a
relative mode, since the magnetic field couples only to
a single particle. A more detailed discussion of the types
of terms appearing in a perturbation treatment of the
problem may be found in reference 14.

According to Eq. (14), we may obtain 88 by differ-
entiating Eq. (25). With our choice (19), (14) indicates
that now 8=CBFo(C,iv)/BC, and therefore

F = —P ln((27rP) (HP/2)l sinh(HP/2)] ) (23)

At small magnetic fields the quadratic term in the mag-
netic field (in our units) is,

Fo PH'/24. ——

In these units (r'), = ', k '"—
, where (r'&, is the expecta-

(22) tion value of the electron coordinate in the ground state
of the oscillator. Thus,

For small magnetic fields and 6nite phonon coupling,
all sums of Eqs. (13)—(18) may be expanded to order H'
and then evaluated as a power series in the temperature
T—:P ', the leading term being a 1/T term correspond-
ing to the usual "free-particle diamagnetism" such as
exhibited in (24). We will evaluate this and the next
term which is independent of temperature. The latter
term may be thought of as arising from several sources
which will be discussed in Sec. IV.

To evaluate Fo, we expand the logarithm in Eq. (13)
to order H' and evaluate the sums using (21). If we
retain only terms of the order of the inverse erst power
and the zeroth power of the temperature, the magnetic
change in Ii p is

(v' —w') Piv' 1 6w' 15w4)
bB= ——',IP +— 1+ —

l
. (29)

6v' 8 vo v4

(1—cos
u)( '+w')'

G(u) ~P 'P
&~ +v

(30)

The summand may be expanded into partial fractions.
Then using (21) all sums may be performed. The result
to terms of order T is

To calculate the correction to the 2 term of (11) at
small H, we need the function G(u), of Eq. (20) to
zeroth order in H' whence

~Fo= (H'/2)l:(P/12)( / )'
+ (v' —w') (v'+3iv')/4v']. (25)

G(u) = (w/v) ou'P/24+8(u),
where

(31)

(33)

For extremely low temperatures, the first term domi- &(u) = —u'(~/v)o/12+aif(v, u)
nates and is, in fact, just the expected effective mass +a&f'(v, u)+a,f"(v,u)+a4u. (32)
correction for the model system since the total mass of » Eq (32),
the model is (v'/w') f(v,u)=(1—e " )/2v

"A. H. Wilson, Theory of 3Ietals (Cambridge University Press,
New York, 1934), p. 164.

"Van Vleck, Electric aed 3IIagnetic Susceptibilities (Oxford
University Press, New York, 1952).
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and the primed notation indicates di6erentiation with
respect to v. The parameters a~, a2, a3, and u4 are ex-
pressed in terms of n and m:

ai ———3w'(v' —w') v
—'= —2a4

a —s (v2 ws)2(vs+ 3w2)v —7

as ,'——(w-' v—')'v

(34a)

(34b)

(34c)

Io-'

If we expand (16) to first order in H' and substitute it
with Eq. (31) into Eq. (11) for A, we obtain a magnetic
contribution Ri to 3:
W. =H V-'P )C (

~lQ 2

I-

CO

I
tL
Ld

BIO ~
CA

du (k,'+k„')G(u) exp —E'D(u) (35)

Using (21) and (12), we find (to order 1/P) that (17)
gives

D(u) = k(w/v)')R(1 e "~ "—~)+u u'/P]— (36)

where R= (v' —w')/(w'v).
Ke now specialize to the case of the Frohlich Hamil-

tonian, i.e., we choose Cx=in'~'2"4''"/E and carr
——1.

The volume is allowed to go to infinity and the sum on
K becomes an integral. The integral on K is easily
performed and the result for W. is,

1 —1/22 —3/2+2

(e "+2Fi coshu)G(u)D 't'du (37)

At large P, 8A may be expanded in a Laurent series in

P '. We will compute the 6rst two terms, one propor-
tional to 8, and the next independent of P:

6A =6A &'&+5A"'
where

8A &'& = 'rr '~'n(w/v)s-H'p

X u'e ~(R(1—e "")+uj '"du/24, (39)

BA &'& = 'rr '~'rr(v/w)sH'-

(E(u)e "LR(1—e "")+u] '"

+ '(w/v) 'u'—e "tR(1 e
—'")+u—$ s—i') du

—(40).
The integral on the rhs of (39) is easily written in

terms of an expression for the effective polaron mass mp
computed in I and (by another approach) in reference
11,and evaluated numerically4 for all coupling strengths
(with the two-parameter model we have employed).

This expression was

tnt =1+tv '~ 2'~'n u'e "D '~ (u)du
0

/with P = ~ in D(u) j.
The terms from (25), (29), and (40) are easily com-

bined with (41) to give for the leading term proportional
to P in the magnetic free energy

6F&"=BH'(w/v) '(3v'/w' 2'p)/24— (42)

Using the best values of v, m and nsp computed else-
where'4 we have plotted the ratio of the polaron
susceptibility x to that of the uncoupled electron
yo as a function of the coupling constant n in Fig. 1.
x/xs=~F"'(PHs/24) '

The terms independent of the temperature are more
complicated. We have evaluated them numerically using
the same values of v, w computed in references (4)
and (1), and plotted bF&'& vs n in Fig. 2. This correc-
tion (3F"') is further altered by the changes in v, w

occurring at small temperatures. We have estimated
these corrections at small o, and n= 3 and found them to
be negligible.

IV. DISCUSSION

It has been shown" that the complete effect of lattice
interactions on the low temperature term proportional
to P in the exact magnetic free energy (for small H) is
to replace the free mass nz by the "exact effective mass"

"E.I. Blount, Phys. Rev. 126, 1636 (1962).

)05 ——~

0 2 4. 6 8 IO

COUPLlNG CONSTANT o

Fio. 1. Plot of leading low temperature term (proportional to P)
in polaron susceptibility x (in units of the free susceptibility xo)
vs coupling strength parameter o..
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function calculated in the approximation which yieIds
mp, ' hence, mo approaches mp upon full optimization of
Sp, and from (43)

mII ~ mg~ mo

as our method is pressed to its limit of accuracy.
Nevertheless, our cruder treatment which employs a

two-parameter Sp is quite accurate as it stands in (42).
In this case Feynman has shown' that the best values
of v, zv cause mp to approach 1+4n/27 at small n and
(4e'/9m)' at large n. In these limits, (42) gives

1.0

0.5

nil ~ 1+n/6 for small n

-+ (4n'/9m)' for large n
(45)

0 I l

0 1 2 3 4 5 5 7 8 9

FIG. 2. Plot of the temperature independent correction to the
low temperature free energy at small magnetic fields vs the
coupling strength parameter ~.

m"' in the free-particle expression (24) (which with m/1
reads IIPPm '/24). Therefore, our result (42) for 6Fo&

may be thought of as an approximate expression for the
polaron effective mass. If we call this approximate
"magnetic mass" m~, and use the fact that the model
mass mp equals n'/w', we may rewrite (42) as

(m~)
—'= (3mp —2mF) mp

—'

It may be easily shown that our result would remain in
this form if we had used a different model So.

Since our approach parallels closely that of Feynman
et ul. ,

' "why do we not obtain a mass mIt equal to that
(mz) obtained by the two other calculations? Evidently
we are using the same methods, but to evaluate a
different function of m*: i.e., m~ ' rather than m*

itself. However, if we had used the best model So
(having optimized the infinite set of parameters fi„ in
(13)—(18)1 we would indeed have found mH equals m~
if the latter had also been similarly recalculated with the
improved D(N) in (41). We may demonstrate this by
reca1.ling that in reference 11 it was shown that solving
the full free energy variational problem (at zero tem-
perature and magnetic field) yielded an optimum model
Sp which possessed the same response function (to an
applied electric field pulse) as the polaron response

which are the same limits obeyed by m~. Furthermore,
by comparing Fig. 1 with Shultz' numerical results4 for
mp at intermediate couplings, we find that mII is at
most about 1.5% lower than mp at intermediate n,
whereas mp varies as much as 16% from mp. Of course,
we expect mp and m~ to be more accurate approxima-
tions to m* than is mo because they are computed using
corrections (from (S—Sp)) to the expSp term from
which mo is derived: Suppose that mo is different by
some small fraction p from mpLmp=nap(1+p) j. Then
(43) gives mri=rep&1+0(p') j.

The first correction for higher temperatures 8F"&
which is plotted in Fig. 2 is not easy to interpret pre-
cisely, it seems to arise from at least two effects. At
small couplings, these corrections coincide with the
corrections to the effective mass caused by the electron
feeling a slightly different curvature at the bottom of
its energy band. At high coupling strengths, we find
the 88&'& nearly cancels 6A "& leaving bF(') UFO('). This
indicates that the two-mass model imitates the polaron
well there, and since this model is atomic in character
(i.e., a bound system with clearly separated excited
states) the corrections in this region are atomic in
character and are due to the internal structure of the
polaron; that is, its long-lived excited states which
occur in its own self-induced potential at strong enough
couplings.
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