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A lattice dynamics model (A-S model) is proposed for metals which assumes that the restoring forces
between the ions have the character of bond stretching and axially symmetric bond bending. It is shown
that this type of restoring force is derivable from a sum of spherically symmetrical two-body potentials,
s(R;,), taken over all (r'j ) pairs of lattice sites separated by a distance 2t;, .The dynamical matrix for a face-
centered cubic lattice is worked out for the Grst three neighbor shells of atoms. The dispersion curves for
aluminum and copper are derived from the elastic constant and thermal diffuse x-ray data. The A-S force
constants or Cu and Al fall o6 rapidly with distance and give dispersion curves which are at least as good as
those derived from the third-neighbor general tensor force model. Particularly noteworthy is the fact that
Walker's tensor force constants for Al are nearly axially symmetric. However, Jacobsen's tensor force
constants for Cu are not axially symmetric. Contrary to this observation, it is found that White's force
constants derived by using Feynman's theorem are nearly axially symmetric.

The A-S model is also applied to ZrH2 which has a tetragonally deformed fluorite structure. It is shown
that the six optical branches are Hat to within 3% over the entire Brillouin zone and that the hydrogen-
hydrogen interactions are very weak compared to the hydrogen-zirconium interactions. The dynamical
matrix for the acoustic spectrum is derived.

The vibration spectrum for ZrH2 has also been
examined using the A-S model and is described and
compared with existing experimental results in Sec. V.

I. INTRODUCTION

HIS paper is primarily concerned with the study
of lattice vibrations in metals by using a model

which is simpler than the tensor force model employed
by Jacobsen' for copper and Walker' for aluminum.
Our model is based upon the assumption that the
internal energy of the system can be written as a sum
of bond-stretching and bond-bending terms which have
axial symmetry. Ke are able to relate the bond-bending
force constants to the first derivatives of a two-body
potential, ~, and the bond-stretching force constants to
the second derivatives of this same potential. We shall
refer to our axially symmetric model as the A-S model
for brevity. The tensor-force lattice dynamics model for
a monatomic face-centered cubic crystal, employed by
Jacobsen or Walker, requires nine atomic force con-
stants in order to include contributions from the first
three neighbors shells of atoms, while the A-S model
requires only six.

In the case of aluminum, the force constants reported
by Walker indicate axial symmetry. On the other hand,
the force constants found by Jacobsen for copper are
not axially symmetric. However, the experimental
results have been fitted by a set of axially symmetric
force constants which gives a better 6t than Jacobsen
obtained. Our force constants for copper bear a much
closer relationship to those derived by White' from a
first principle calculation.

A description of the A-S model is presented in Sec. II
and is applied to aluminum and copper in Sec. III and
the resulting dispersion curves are compared in Sec. IV
with those obtained by Walker for aluminum and
Jacobsen for copper by thermal diffuse x-ray analysis.
White's results for copper are also included.

' E. H. Jacobsen, Phys. Rev. 97, 654 (1955).' C. B.Walker, Phys. Rev. 103, 547 (1956).
H. C. White, Phys. Rev. 112, 1092 (1958).

II. DESCRIPTION OF THE MODEL

The interaction potential between two atoms which
have been displaced from equilibrium in a crystal is
assumed to consist of two quadratic terms. The 6rst is
proportional to the square of the component of relative
displacement along R, the vector joining the equilibrium
positions of the two atoms, and gives rise to a central'.
or "bond-stretching" force. The second term is propor-
tional to the square of the component of reIative
displacement perpendicular to R and causes a "bond-
bending" force. Since all directions in the plane perpen--
dicular to R are assumed equivalent, the interaction.
potential and corresponding forces are axially sym-
metric. It is important to note that our simple modeI
can be derived from a sum of pair-wise interactions. If
s(~R~) denotes the potential energy of interaction
between two ions separated by a distance IRI,. then

t (i R+Si)=v(R)+e'(R)R —'(5 R)
+-;2-s"(~) (SXR)s+1/2v" (Jt'.)~-s(~ R)s

+higher terms in 5, (1)'

where E is the magnitude of R, 5 is an arbitrarily small
vector displacement, and the primes on e(E) denote
differentiation with respect to E. The term lim. ear in 5
in Kq. (1) must be taken into account when considering
the static stability of a lattice but can be neglected in
determining the lattice vibrational spectrum. The third
and fourth terms in the above equation are the pair
bond-bending and bond-stretching contributions which
arise in molecular vibration theory. 4

4 E.B.Wilson, J.C. Decius, and P.C. Cross, Mol'ecular Vibrations
(McGraw-Hill Book Company, Inc. , New York, 19'55).
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Within the framework of the A-S model, one can
write the quadratic terms in the potential energy of
interaction associated with the nth atom in the zeroth
unit cell as

V(0~) = ~R P, P, l R,-~I-RI:C~(j ~P) (R,-~ ~R,-~)R

+C~U,~P) (Rj"~~Rj")'j (2)

In this equation, R; & denotes a vector from the origin,
chosen as the eth atom in the zeroth unit cell, to the
Pth atom in the jth cell. The 6 denotes a small displace-
rnent operator. C&(j,nP) is the effective "bond-
stretching" force constant for the interaction of the
Pth atom of the jth cell with the nth atom at the origin.
Similarly, C&(j,nP) represents an effective "bond-
bending" force constant.

In the usual way, ' one obtains the dynamical
equations for the motion of the atoms in the central
cell and introduces the usual Born-von Karrnan cyclic
boundary conditions. The vibrational spectrum is
obtained by solving the determinant

is the distance between an n and a P atom in the sth
shell about the qR atom. In Eq. (7),

G(s,nP)= g exp(iq. R. &),
n(s)

(9)

where the symbol n(s), means that the sum is restricted
to sth shell of atoms.

where

G(1)=4(C C,+C,C,+C,C,),
G(2) = 2(CR,+CR„+CRq))

G(3)= 8(CR,C„C,+C CR„C,+C,C„CR,),

(10)

III. APPLICATION TO FACE-CENTERED
CUBIC METALS

It is of considerable interest to apply our model to
face-centered cubic aluminum and copper for which the
results of the tensor force model are known. '' The
generators for the 6rst three shells of neighbors for the
face-centered cubic lattice with lattice constant 2a are

ID(q) —aPIRjl =0, (3) C„„=cos(nq„a), p=x, y, or s. (11)

where cv is the angular frequency, q is the propagation
vector, and IRj denotes a unit matrix of dimension 3f,
with f being the number of atoms per unit cell. The
dynamical matrix, D, may be conveniently regarded
as an f&&f supermatrix whose elements are 3&&3
matrices. From Eq. (2), we obtain the depth element of
the supermatrix, D, as

LD(q) 3-j = (~-~p) '"(~-s Z ~-(0)—~'(q)), (4)
a——1

where m is the mass of the nth type atom and 8 p is the
Kronecker delta. The elements of the 3)&3 matrices,
A &(q), a,re given by

where

+Ce(ep)q;;) exp(eq. R, :e), (5)

k, (jjpP) =c) (jR,nP) cr) (m, nP) — (6).
The subscripts on q; in Eq. (5) refer to the Cartesian
components of q. Equation (5) can also be written a.s

L~'(q))' =& I

—k (~ ~P)j
)e 8)i)q8g j

+Ca(~,~P)&'~ IG(»&P) (&)

where
j.= IR-()'I

5 For a recent review article on lattice dynamics see J. Krum-
hansl, Suppl. J. Appl. Phys. BB, 307 (1962). See also M. Born and
K. Huang, DyrIamica/ Theory of Crysta/ Lattices (Oxford Univer-
sity Press, ¹wYork, 1954).

qRg
——C)R(1)+—,'k) (1)

P). =Cj)(1)

y, =~,—P,=-', k, (1),
qRR

——Cj)(2)+k, (2),

P.= C~(2),

qRR ——Cgg (3)+-,'kg (3),
PR= C~(3)+sk~(3)

VR=~R —PR= Rk~(3)

&R= Rk~(3).

(14)

For sake of completeness, we list the dynamical
matrix elements derived by use of Eqs. (4)—(9). The
diagonal elements of D are given by

MD, ,=4C~(1)P C,C, C,CR —CRC,j- —
+2Cj) (2) I

3—CR'—CRj—CRR$

+8Ca (3)L3—CR,C,CR—CR,CRC;—CRRC,C;]
+2k, (1)L2—C,(C;+CR) )+ 2k ' (2)L1—CR,]
+-', k) (3)L6—4CR,CjCR

—C, (CR,CR+CRRCj) $. (12)

Similarly, the o6-diagonal elements of D are given by

MD;j= 2k) (1)S,S,
+Rki(3) p'.&jCRR+2CR(sR'&j+&Rjs') 3 (13)

In the above equations, i, j, and k stand for x, y, and s.
3f is the mass of the atom and the 5 s stand for the sine
functions whose arguments are the same as those
appearing in Eq. (11).

A correlation between the tensor force and A-S model
shows that the tensor force constants n;, P;, and y;
defjned by Walker for a face-centered cubic lattice are
related to the A-S force constants as shown below.
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A. Relationship between Elastic Constants
and A-S Force Constants

TABLE I. A—S force constants for aluminum and copper
(in units of 10' dyn/cml.

Relationships between the elastic constants and the
A-S force constants are derived by going to the long-
wavelength limit. ' One finds that

CB (1)+Cii (2)+ 6Cii (3)= 4 a(2c44 —cts C44) )

k, (2) =-',a(2ctr —crs—3c44), (15)

ki(1)+6ki(3) = a(crs+c44).

Aluminum

k, (1)= 18.7
Cg(1) = —0.9
k, (2) =3.O

Cg(2) = —1.0
k, (3)=O.o

Cg(3) =0.0

Copper

k1(1)=22.50
Cg (1)= —0.01
k1(2) = —0.12

c&(2) = —o.11
k1(3)=0.22

C~ (3)= —0.03

These equations indicate that ki(2) is fixed. uniquely in
terms of the elastic constants.

B. Dispersion Curves along the
Principal Axes

The dispersion curves are easily obtained along the
L100], L110], and L111] directions in tl space. The
results are presented below.
L100] Direction

L110]Direction

rs J.'= D„(100),
ter'= D„„(100).

(16)

IV. DISPERSION CURVES FOR ALUMINUM
AND COPPER

For a third nearest neighbor calculation, the A-S
model requires the determination of six atomic force
constants while the tensor force model requires nine
constants. These A-S parameters were determined for
aluminum and copper according to a very simple
procedure. I irst, the three elastic equations Lsee Eq.
(15)] were imposed as constraining equations. This
insured that the dispersion curves would have the
correct slope in the region of small q. In order to fix the
high-frequency end of the spectrum, three data points
near the edge of the Brillouin zone were selected. Since
there are seven distinct branches of the dispersion
curves along the three symmetry directions, these three
points could be selected in a variety of ways. The
eigenfrequencies of the dynamical matrix were then
required to match these selected points. This gives three

' For this derivation, see A. E. H. Love, Mathematica/ Theory of
E/asticity (Dover Publications, New York, 1944).

cur.
' ——D„(110)+D,„(110),

cur, 2 ——D„(110)—D,„(110),
cur, 2= D„(110).

t 111]Direction

cur, '= D„(111)+2D,„(111),
ter'= D„(111)—D,„(111).

In the above equations, D;, (pq1') are determined along
the [pqr] direction in q space from Eqs. (12) and. (13).
The subscripts I. and T refer to longitudinal and
transverse modes where the transverse modes are
doubly degenerate along the [100]and L111]directions.

additional equations so that the force constants are
uniquely determined for a particular set of points. By
selecting different sets of data points, a number of sets
of force constants were obtained. The results of this
analysis indicate all sets of force constants are almost
identical and our 6nal set was obtained by a simple
averaging process.

A. Comparison of the A-S Results
with Experiment

Aluminum

The results of this study for aluminum are summar-
ized in Table I. The dispersion curves calculated from
these values are shown in Figs. 1—3, where they may be
compared with the experimental data and the theo-
retical curves of Walker. The agreement with experi-
ment is obviously quite good. It is worth pointing out
that since the third-neighbor interactions vanish we
have electively only one parameter in the A-S model
(the other three constants being determined by the
elastic equations). Nevertheless, the fit obtained with
this single parameter is equivalent to that obtained by

I.O

0.9-

0,7-

~ 0.6-
CL
CP

tO

~ 0.5-

ra

04-

0.3-

0.2—

01-

1

0.1 0,2 0.3 0.4 0.5 0.6 0.7 0,8 09 1.0

Fro. 1. Dispersion curves for aluminum along $100$ direction in
Brillouin zone. Solid circles denote Walker's data. Dashed lines
denote tensor force model. Solid lines refer to A-S model.
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in Table I. The corresponding dispersion curves are
shown in Figs. 4—6. In our opinion the A-S dispersion
curves give a better over-all 6t to the experimental data
than the theoretical curves of Jacobsen. It is interesting
that the tensor force constants computed from the A-S
force model bear no resemblance to those calculated by
Jacobsen. In Table III, we have also listed the tensor
force constants computed by White' from what amounts
to a first principles calculation using Feynman's
theorem. There is a good deal of correlation between
White's atomic force constants and those obtained from
the axially symmetric force constant model.

V. APPLICATION TO ZIRCONIUM HYDRIDE

0.2-

O.I

O.I 0.2 0.3 0.0 0.5 0.6 0.7 0.8 0.9 I.O

Fro. 2. Dispersion curves for aluminum along t 110j direction in
Brillouin zone. See Fig. 1 for labeling of curves.

Walker using 9 force constants. In addition, we obtain
the elastic constants exactly. The results are also
encouraging inasmuch as there is a rapid convergence
of the force constants. In Table II, the force constants
of Walker and the corresponding tensor force constants
from the A-S model calculated by means of the corre-
lation equations LEq. (14)$ are compared. It is seen
that Walker's first-neighbor force constants are es-
sentially axially symmetric.

Copper

The A-S force constants derived from the experi-
mental data by Jacobsen' for copper are also summarized
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FIG. 3. Dispersion curves for aluminum along $1117 direction in
Brillouin zone. See Fig. 1 for labeling of curves.

TABLE II Atomic force constants for aluminum
(in units of 103 dyn/cm ')

Force constant

0!I
pg
Pl
A2

P2
CE3

P3
73
53

Walker's
value

8.45—093
10.67
2.14
0.40
0.27—0,31
0.10—0.19

A-S value

8.45—0.9
9.35
2.0—1.0
0
0
0
0

Experimental evidence, based on inelastic neutron
scattering' and heat capacity measurements, ' shows
that the optical frequencies of ZrH2 are nearly sixfold
degenerate with a wave number of 1190~30 cm—'.

Dynamical Matrix for ZrH2

The dynamical matrix for ZrH2, based on the A-S
model, can be written as

~ll ~12 ~12
~12 ~22 ~23 ~

~~12 ~23 ~22
(19)

The 3&3 8;,* matrices refer to the complex conjugate
transpose of 8;;.The subscripts 1, 2, and 3 refer to the
three face-centered tetragonal lattices composed of
zirconium, hydrogen, and hydrogen, respectively. The
hydrogen lattices are based on (auo, sao, 4co) and
(4ao, 4ao, seo) relative to the zirconium lattice at (0,0,0).

~ H. E. Flotow and D. W. Osborne, J. Chem. Phys. 34, 1418
(1961).

W. L. Whittemore and A. W. McReynolds, Phys. Rev, 113,
806 (1959).

The vibrational spectrum of the e phase of zirconium
hydride, ZrH2, will be worked out in this section using
the A-S model. This hydride has a tetragonally dis-
torted Quorite structure with three atoms per unit cell.
The lattice constants reported by Flotow and Osborne'
are as=4.98&0.01 A and co=4.45&0.01 A for a face-
centered tetragonal lattice.
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Flo. 4. Dispersion curves for copper along $100j direction in
Brillouin zone. Solid circles denote Jacobsen's data. Dashed and
solid lines refer to tensor and A-S model, respectively.

From Eq. (4), one notes that

Bll (~1) LA 11(0)+2A 12(0) A 11(q)])
B,s ———(m tnr s)

—'"A
rs (q),

(20)
B22 (552) $A 12(0)+A 22(0)+A 23 (0) A 22 (q)j
Bss ———(ms)

—'A ss(q).

Q.I 0.2 0,3 0.4 05 0.6 0.7 0.8 0,9 I.O

q qmax

Fro. 5. Dispersion curves for copper along L110$ direction in
Brillouin zone. See Fig. 4 for labeling of curves.

matrix is
B~t 2'" Re(B~s) 2'" Im(Bra)

O'= U*DU= 2'" Re(Bts) Bss+Bss Os.2'" Im(Bts) Os Bss—Bss .
(22)

where Re and Im refer to real and imaginary parts
of Bg2.

Transformation of Dynamical Matrix
to Real Form

The dynamical matrix, Eq. (19), can be transformed
by a unitary transformation, U, into a real-symmetric
matrix, D', since the dynamical equations possess
time-reversal symmetry and the lattice possesses
inversional symmetry. An examination of Eq. (19)
shows that

Dynamical Matrix in Long-Wavelength Limit

Experimental evidence cited at the beginning of this
section suggests that the optical and acoustical modes
are separated by a large frequency range. At q=o, one

10

0.9—

~ I3 03 03
V= O, 2-'/21,

0 2—1/21 2—1/2g
(21)

0.8-

0.7— 0e~

where I3 and 03 refer to 3)(3 identity and null matrices,
respectively. It follows that the transformed dynamical

TABI,K III. Atomic force constants for copper
(in units of 104 dyn/cm ').

~ 0,6-
CL
O

~ 0.5—
O

& 0.4-

AI

Pl
O'2

P2
A3

P3
Y3

B3

Jacobsen

0.87
0.48
1.25
0.35—0.072
0.09—0.022—0.015
0.06

White

1.71—0.24
1.66—0.13—0.07—0.01

+0.005
+0.02
+0.01

A-S

1.21—0.001
1.124—0.0227
0.0105
0.1122
0.00345
0.03625
0.0725

0.3—

0.2—

0.1-

I

0.1

I I

0.2 0.3 0.4 0.5 0.6 0,7 0.8 0.9 1.0
q~q max

Fto. 6. Dispersion curves for copper along L111$ direction in
Brillouin zone. See Fig. 4 for labeling of curves.
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'(22222)'12I2 —(2224)'12I2 02,

Ua= (222 )"I2 (2m2)'"I2 02 (23)
(22222+222, )'@

03 o-l3,

where ~= (22222+mi)'".
This transformation also separates the acoustical and
optical modes in the long-wavelength region and will

yield directly the proper limiting form of the dynamical
acoustic matrix for small q. From Eqs. (20), (22), and
(23) one can show that

D1/ U' +D/U'

where

gA 42(0) 02 Og

03 8' Og

02 02 2222 'LAi2(0)+2A22(0) j.
(24)

g= (22222+2224)/mi2222. (23)
In Eq. (24),

W,= (1/(2m2+mi)]LDA ii(q)+4 Re(~A12(Q)

+»A22(il)+2~»(q) j (26)

represents the dynamical acoustical matrix for small q
where

can show by group-theoretical arguments that there are
three zero frequencies, two sets of doubly degenerate
frequencies, and two sets of nondegenerate frequencies.
Consequently, the D' matrix can be block diagonalized

by a unitary transformation, U0, for q=0 with the
largest blocks consisting of 2&2 matrices. The trans-
formation which accomplishes this is associated with the
introduction of center-of-mass coordinates. Ke find
that

proportional to (m2)'" to within 1 or 2%. Furthermore,
the experimental evidence, v cited previously, shows that
no more than +3% spread exists in the frequencies.
Consequently, the expressions for co&, 2 and cu3 show that
E»,. cannot deviate from E»., by more than about
&6%. Similar conclusions must hold for the last two
equations of Eq. (30). We also note from a comparison
of co~, 2 and co4, 5 or cps and ~6 that E23., „cannot be greater
than a4 or 5% of E,2, ,

The six optical frequency branches have been
examined in some detail at all points in the zone and
we find that these branches are Qat to within a few
percent. Our final conclusion, based upon our lattice
dynamics study and the available experimental data, is
that the hydrogen-hydrogen interactions are quite
weak compared to the hydrogen-zirconium interactions.

The Acoustical Modes in ZrH2

We wish to point out that Eq. (26) for W represents
a good approximation to the dynamical acoustical
matrix over the entire zone. The coupling between
acoustical and optical modes is quite weak and pre-
liminary calculations indicate that a maximum error
of about 3% is introduced in the acoustical spectrum
by neglecting the optical-acoustical coupling. In this
mode of vibration, all three lattices move in phase.
From the form of Eq. (26), we note that the hydrogen-
zirconium coupling plays a vital role in determining the
acoustical vibration spectrum. One also notes that the
effective mass associated with the acoustic modes is
simply 224&+2m2, the factor of 2 coming from the two
hydrogen lattices.

AA;;= A;.(0)—A;, (il).

where

A p(0)= 0
0

0
E p.

0

0
0

+eP; z&

Characterization of the Optical Modes

From Eqs. (7) and (9) one finds that

(27)

(28)

VI. SUMMARY AND CONCLUSIONS

A simple lattice dynamics model for metals has been
developed in this paper which is based upon the
assumption that the total energy, E, of the system can
be written as

E=Ep+P P v(R;,),

E.s., v p, ki(s,np) p,
-' p (T——s)'

+Q, X(s)C2(s,42p). (29)

In Eq. (29), T stands for x or s and X(s) represents the
number of p neighbors in the sth shell about an 42th site.

From Eqs. (24) and (28), it follows that the optical
angular frequencies at g=0 are

-,.=92 .+ )/ ~ .3'"(I~-,.)'",
(V2 ——f(2m2+2224)/mi2222$' '(E,2, g)' ',

(30)
~4,2= (2222) "'(E12; +2E28;.)

~4= (2222) '"(I&22,.+2&22,.)'".
Since 2wi/2222= 91.2 and 45.6 for ZrH2 and ZrD2, respec-
tively, one notes that the frequencies are inversely

where v(R;;) is a potential energy function which
specifies the effective interaction between the ith and
jth ion separated by a distance E;;. Here, E0 is an
energy which is independent of the relative separation
of the ions. We have shown that our A-8 model can be
characterized by the well-known bond-stretching and
axially symmetric bond-bending interactions used in
molecular vibration theory.

We obtain excellent agreement with the dispersion
curves obtained from thermal diffuse x-ray scattering
data of Walker on aluminum and Jacobsen on copper
by using the first-, second-, and third-neighbor inter-
actions. We require that the dispersion curves have the
correct behavior in the long-wavelength or elastic
constant limit. In both copper and aluminum, the A-S
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force constants were found to fall oR quite rapidly.
This behavior indicates that the potential energy
interaction function, ti (R;,), has a well-defined minimum
at the nearest-neighbor separation and decreases
rapidly and has an oscillatory behavior at the second-
and third-neighbor positions. These conclusions are
consistent with the theoretical analyses of Langer and
Vosko' which strongly suggest that the interaction
potential between a pair of ions in an electron gas would

' J. S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196
(1959).

have an oscillatory behavior as a function of separation
distance.

A second application of the A-S model has been
carried out on zirconium hydride and deuteride which
have tetragonally deformed fluorite structures. We
have concluded from this study that the hydrogen-
hydrogen interaction is very weak compared to the
hydrogen-zirconium interaction and that the six optical
branches are nearly degenerate and have frequencies
which are independent of the propagation vector to
within 3'Po.
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Magnetization of Slow Electrons in a Polar Crystal
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An approximate expression for the free energy of an electron which is coupled to a phonon field (a "po-
laron") and is in a uniform magnetic field is given. This expression is obtained by an extension of Feynman's
path integral variational calculation of the polaron binding energy and is valid for all values of the field,
the temperature and the electron-lattice coupling strength. The explicit form of the result is given in terms of
a model system with an action functional different from that of the actual problem. A minimum-variational
method is given for determining the best model to employ in calculations. We have evaluated the magnetic
free energy at small magnetic fields using a model of a simple form. The two variable parameters of this model
have already been optimized by Feynman and Schultz for Frohlich's Hamiltonian and zero Geld. The result
is applicable at all coupling strengths and carried to the 6rst two terms in a Laurent series in the temperature.
The erst (inverse temperature) term yields an approximation to the effective polaron mass that varies, as
the coupling is varied, by at most 1.5% from that calculated by Feynman and others. The second (tempera-
ture independent) term reflects the internal structure (atomic diamagnetism) of the polaron at large coupling
and also the temperature variation of effective mass. The difference between our magnetic mass and that
calculated by Feynman is shown to disappear when the model system is fully optimized.

I. FORMULATION AND METHOD OF
APPROXIMATION

A N electron in the interior of an ionic crystal
surrounds itself with a distorted lattice; a cloud

of phonons. This system, commonly called a polaron,
has been extensively studied theoretically. ' ' We present
here a calculation for the free energy of this coupled
electron-phonon system in a uniform magnetic Beld.
The results are obtained by an extension of Feynman's
variational calculation of the polaron binding energy'
and are applicable at all values of the magnetic 6eld,
the temperature and the electron-lattice coupling

' R. P. Feynman, Phys Rev. 97, 660 (1955); hereafter to be
called I.

H. Frohlich, in Advances ie Physics, edited by N. F. Mott
(Taylor and Francis, Ltd. , London, 1954), Vol. 3, p. 325.' S. I. Pekar, Zhur. Eksp. i Teoret. Fiz. 19, 796 (1949).

4T. D. Schultzr Phys. Rev. 116, 526 (1960). References 2—4
contain a more complete bibliography of polaron studies.

5 P. M. Platzman, Phys. Rev. 125, 1961 (1962).
6 M. Krivoglaz and S. I. Pekar, Izvest. Akad. Nauk S.S.S.R.

Ser. Fiz. 21, 1, 16, 33 (1957).' Y. Osaka, Progr. Theoret. Phys. Japan 22, 437 (1959).

strength. The susceptibility p and other quantities of
interest are easily obtainable from the free energy F.
We will not attempt here to assess all those effects that
would be present in a real material, 4 but rather treat
the polaron as an idealized mathematical model. For
numerical computations, we will specialize even further
and use the Frohlich model of the polaron' in order to
compare our results with those of other theories.

To obtain the polaron free energy F as a function of
the applied uniform magnetic field H (taken to be in the
s direction), we use a path integral formulation equiva-
lent to the TrLexp( —AC)]. This allows the elimination
of all phonon coordinates from the expression for Ii and
results in an expression of the form.

The symbol Qx«& denotes the "path integral, " or sum
over all electron trajectories X(1) for f in the domain 0

' R. P. Feynman, Phys. Rev. 84, 108 (1951).


