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index m. Using the wave function

and the Pauli matrices 7 o= 1, ri, rs, rs, the Hamiltonian
can be written in the form

+=2~a e~A'~a &8'na
——', P„a„a (n'k', n' —k'

~

V
~
nk, n —k)

X(+ a "~H' a)(+ at78' a)+const, (2)

with the reduced two-particle interaction allowing for
interband scattering

(n'k', n' —k
~

V
~

nk, n —1)= V„,„,.
We use the Green's functions

G s(nk, t) =i(ZV„a(t) 4'„at(0) p), a, P=1, 2. (3)

The zero-order Green's function corresponding to the
.Hamiltonian

&"'=Zna enA'na'~8'. a

is given by

(nk) = (~~o+ e a&o) (oo —e„as+ill) i. (4)

Here g=0+ and k=k, oo. We consider the d.iagonal
in n matrix elements of the full Green's function, G(nk).
It satisfies the Dyson equation4

[G(nk) j '= [G"'(nk)j '+Z(nk). (5)

The self-energy operator Z(nk) can be expanded in the
full set of Pauli matrices

Z(nk) = (1 Z„a)an o+x—„a7's+6 'ari. (6)

We set the coeS.cient of the 7-2 matrix equal to zero.
Further we will set Z A,

=1 and choose X„I,=O. Thus
G(nk) expressed in terms of A„a is

G(nk) =—(oo+ e„ass+A„ax i) ((v'—E a'+ig) —', (7)

with E a= (e a'+A„a')'". For a finite temperature
T= (king)

' the corresponding Green's function becomes

G(nk, B)= —(o~+ e„ass+A„a~i)
[E(oP—E a') —im tanh(P/2)coal(n' —E„a')j. (8)

4 J.R. Schrie6er, Argonne National Laboratory Report No. 6527
1962 (unpublished).

This approximation leads to the set of the energy-gap
equations

A~ a V~a~.a. tanh(P/2)E„a. d'k'

nf

We approximate the density of states at the Fermi sur-
face in the eth band by a constant E and each inter-
action matrix element V & I, by a constant V„„diGer-
ent from zero only within a shell of width 2~~ near the
Fermi energy. Neglecting any dependence of d„a on k
one has the equations of Suhl et al. '

h.=P. V..a„.lV„P(a„.,p),
with

"z tanh(P/2) (os+a s)i&~

E(~.,e)= de.
(e2+g 2)1/2

(12)

Near the transition temperature P, one can put 6„=0
in F obtaining the set of linear in h„equations. To Gnd
the transition temperature, one has to solve the secular
equation

det(v „E„F(O,P,)—8„„)=0.

The evaluation of the gaps 6 requires a numerical pro-
cedure. The knowledge of the 6„'s gives all the one-
particle and pair-distribution Green s functions. The
present derivation exhibits the approximations involved
in the equations of Suhl et a/. More satisfactory integral
equations for Z(nk) may be studied by the present
method but the resulting Eqs. (10) are already com-
plicated enough. Particular cases with certain V„„ inde-
pendent of n may be of importance in some instances.
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The superconducting solution in the case of overlapping
bands is obtained if the diagonal in m matrix element of
the self-energy operator is approximated by

d4k'

Z(nk) =i P v sG(n'k')~sv a
n' (2m)'


