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the low-frequency, or a,coustical, and high-frequencv,
Or optical branches of characteristic vibrations with
their respective groups of polarization directions is,
necessarily, the only realistic method of description of
thermal excitations in crystalline solids, like solid He .
The practical usefulness of this method of approach
necessitates various experimental data. These may
comprise the empirical determination of the dispersion
laws of the characteristic vibration spectrum of the solid
o (k), k being the propagation vector of the vibration
of frequency ~, along a direction specified by a. The
derivation of the associated spectral distribution func-
tion p(o) of the characteristic frequencies, which defines
through the Planck thermal distribution of the vibra-
tions the total excitation energy and the corresponding
constant volume heat capacity, raises in turn a problem
whose solution is again approximate, of semiempirical
character, at least at a certain stage of the corresponding
knowledge of the empirical t (k) function. The approxi-
mate heat capacities resulting from the theory lead to
temperature variations different from the limiting con-
tinuum model T' law. These originate with the tem-
perature dependence of the characteristic temperature
which in some cases become quite strong. " If con-
firmed, the peculiarities in u(k) and p(u) must be ulti-

mately responsible for the entropy and heat capacity
anomalies of solid He' at, or near, the melting line and
near To(p ). The problem of the negative isobaric ex-
pansion coeQicients of the solid, both hexagonal and
cubic, at T&1.50—1.55'K is probably another aspect of
the apparent thermal anomalies of the solid He4 phases.

Ke would like to conclude by stating that while the
above-mentioned solid He4 heat capacity measurements
favor a fairly normal behavior of this solid over the
explored temperature and pressure ranges, additional
experimental work on heat capacities and isobaric ex-
pansion coeS.cients would be of great interest over a
region of the phase diagram around the melting pressure
line. These should clarify the presence or absence of the
various anomalies which present data, however indirect,
seem to favor. In view of the possible connection
between heat capacities and heat conductivity co-
eKcients, experiments on the latter, in the relevant
pressure and temperature intervals, would be also
desirable.
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A theory of the decay of an electric current in a superconductor is presented. The calculations have been
done using a model within the BCS theory of superconductivity, ignoring magnetic eGects. The decay of
current, from a specially chosen initial state, is found both for low temperatures and for temperatures near
the critical temperature. The persistence of currents remains unexplained. The related problem of thermal
conductivity is re-examined in an Appendix.

1. INTRODUCTION

HE Bardeen-Cooper-Schrieffer' (BCS) theory of
superconductivity has been quite successful in

explaining the thermodynamic features and the
Meissner Effect. There has, however, been no quantita-
tive veri6cation of the transport properties of supercon-
ductors. For example, Bardeen-Rickayzen- Tewordt'
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(BRT) applied the theory to the case of thermal
conductivity of superconductors but their results were
in disagreement with experiment. The basic question of
electric conductivity has found no satisfactory answer.

The main purpose of this paper is a study of how an
electric current decays in a BCS superconductor. The
calculation is based on a simple model in which the
interaction between quasi-particles can be neglected
without error.

Bogoliubov' has observed that a state of the electron
gas which results from the BCS ground state by a
small displacement in momentum space, is stable, or

s N. N. Bogoliuhov, Nuovo cimento 7, 794 (1958),'
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rather metastable, due to the energy gap' A. In this
state, the gas carries an electric current L(e/m) Xtotal
momentum) which is truly "persistent. " However, if
the gas is heated to a small temperature T, there will be
excitation of quasi-particles and also of phonons, and
their collisions will transfer momentum from the
electrons to the phonons and thereby cause the current
to decay. The rate of this decay is the main object of
the present investigation.

More precisely, we shall take as the initial state of
our model, a statistical distribution which, when viewed
from a moving coordinate frame P, looks like a canon-
ical ensemble, at temperature T, of quasi-particles,
whereas the phonons are assumed to form a Debye
thermal equilibrium distribution in the rest frame of
the crystal, F„.The idealized nature of this model need
not be emphasized, and we are not concerned with the
question under what experimental conditions such a
situation might be approximately realized. The reason
we choose the model is the observation made by
Wentzel4 that the initial decay rate of the current
can then be calculated "accurately" in the same sense
as the thermal equilibrium properties of the BCS
superconductor ("reduced Hamiltonian") can be ob-
tained accurately by using the quasi-particle picture. ' '
One just has to replace the electron gas by a gas of free
(i.e. , noninteracting) quasi-particles with the properly
chosen spectrum of single-particle excitations, namely,
with a temperature-dependent energy gap as already
derived by BCS.' Indeed, it has been shown that the
residual interactions among such quasi-particles have
no eBect, either on the thermodynamic state functions
(volume proportional part)' ' or in special transport
problems4 like the one treated here. Wentzel's proof
was explicitly given for a simpler transport problem
(momentum transfer due to a weak force center dragged
through the gas), but he pointed out that the argument
holds also in our case, provided the initial state of the
electron gas is specified as described (canonical ensemble
in the frame F ). A sketch of the proof is given in
Appendix B.We shall therefore, in the following, ignore
the residual interactions and treat the quasi-particles
as a perfect gas.

In the related problem of the electric resistance of
stationary currents, a similar simplification is probably
not justified, because the deviations of the quasi-
particle distribution from equilibrium play an essential
role. The same remark applies to the problem of the
thermal resistance of superconductors, as treated by
BRT.' They neglected the residual interactions, and
this may, at least partially, account for their failure to
reach agreement with the experimental data. We
cannot improve their theory in this respect, but there

4 G. Wentzel, Werner Heisenberg und die Phys~k unserer Zest
(Friedrich Vieweg und Sohn, Braunschweig, 1961),p. 189.'

¹ N. Bogoliubov. D. B. Zubarev, and Iu. A. Tserkovnikov,
Soviet Phys. —Doklady 2, 535 (1957).' G. Wentzel, Phys. Rev. 120, 1572 (1960).

are comments (on their variational calculation) which
we want to add in Appendix C.

As will be seen, our results are not encouraging. At
very low temperatures, we confirm the expectation that
the gap suppresses the current attenuation completely.
However, just below the critical temperature, the
attenuation turns out to be even larger than in the
normal state (at the same temperature). This effect
must be attributed to the density of states which,
according to the BCS theory, is larger just above the
gap than in the normal state. Anyway, our calculation
furnishes no indication why the decay should be slow
just below the critical temperature.

In appraising this result, it should be kept in mind
that our calculation can be claimed to be accurate only
for the initial stage of the attenuation process. Whether
the process leads, at roughly the same fast rate, to a
complete decay of the current, or perhaps to a long-lived
state carrying a weaker current, as Bohr and Mottelson~
seem to believe, is much more dificult to decide, because
in the later stages the residual interactions between
quasi-particles will certainly add to the dissipation, or
there may even no longer be any justification for using
the simple quasi-particle picture at all.

We conclude that the transport properties of super-
conductors still pose a difficult problem. In particular,
it is conceivable that magnetic effects help to stabilize
the persistent currents. This aspect of the problem is not
treated here.

2. COLLISION PROBABILITIES

The probabilities of various transitions involving
quasi-particles and phonons, caused by the Bloch-
Frohlich interaction, have already been calculated by
BRT (p. 986 of reference 2) and we summarize their
results in this section.

Note that, in the BRT formulas, all momenta (k)
and energies (e,E) refer to the rest frame of the crystal,
and it is in this frame that the Cooper pairing is
assumed to take place (momenta +k and —k). This
will no longer be the case in our model, but the later
discussion (in Sec. 3) will show why we can use the
same formulas, with some change in interpretation.

We now refer to formulas (4.3), (4.4) of BRT. fss
and fj,t denote (single) quasi-particle distribution
functions in momentum space for two spin orientations
called 0 and 1 (or "up" and "down"). The rate of their
change in time, caused by collisions with phonons, is
expressed as follows:

~fso = & (—Qs(k, k')+Qo(k', k)
at

+Q, (k,k') —Qs (k,k') ] (2.1)
r)fr i= Z L-e.(k,k)+e.(k,»

+Q, (k', k) —Qs(k', k)j. (2.2)
r A. Bohr and B.R. Motteison, Phys. Rev. 125, 495 (1962).
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22r

Q.(k,k') = —
I V, [ Xll 1+ (L~(E -E-h;y,

a 5 EE' i

+8(E' E+h—v p) (X,+1)]

Xf~o(1—fp o)
g=k' —k

Qp(k, k') gives the total probability that the quasi- pjpel

particle of type "0" is scattered from the state (k,O)

to (k',0) with either absorption or emission of a phonon
of wave vector &q= a(k' —k)

27r—
i V, i

2hk(X E—)
k,k', q=k—k

pp

X —p, i 1+ p(E E'—hv,—)EE'

"p(E—' E —hvo)—](f f')—
6C g2

+ ', (1— -L5(8+2'+h", )zz'
—~(E+E'—h")](1—f—f'), (2.6)

=&o(k,k')f.o(1—f'o), (2.3)

where V~= electron-phonon interaction matrix element
(~qU2); p= energy of a free electron of wave vector k
measured relative to Fermi energy Ey (c.f., 3.2).
Ev= 12', E= q—uasi-particle energy, ' A= energy gap (tem-
perature dependent); hv, =energy of a phonon wave
vector g; f2p= mean occupation number of quasi-
particle state (k,0); f2~ ——mean occupation number of
quasi-particle state (—k, 1); Qq (k,k') similarly gives the
scattering probability for quasi-particle of type "i".
But note that for type "1"the momentum is denoted

by —k; Q, (k,k') and Qz(k, k') give the probability that
the quasi-particles (k,O) and (k', 1) are simultaneously
created, (Q,) or destroyed (Qz), while emitting or
absorbing a phonon.

22r

Q, (k,k')= —
f
V

i
X-,'I 1—

EE' i

Xt "o(E'+E hv p)N, +—8(E'+E+hvo)

(where we have written f= fl p
——f2~ and f'= fp. p

——fp. ~).
It should be remarked that all spatial variation of

the distribution function f will be ignored. Since, in
reality, the current density t gz k(f&p —fp&)] varies
through distances of the order of the London penetra-
tion depth ), the volumes considered here should be
con6ned to layers of thickness (X. The magnetic field
associated with the currents, though important in
other respects, shall be disregarded with the under-
standing that we intend only to examine the current
attenuation (2.6) due to phonon-electron interactions.
)To avoid misunderstanding, in the presence of a vector
potential A, the "momentum" hk does not refer to the
"canonical momentum" ( i7iV) but to—the gauge
invariant quantity ( i7iV —eA) =—massXvelocity. ]

3. APPLICATION TO MOVING FRAME

Let v be the velocity of the frame I' relative to the
crystal rest frame Ii „, so that the electronic momenta in
the two frames are related by

X (Xp+1)](1—fpp) (1—fg g) k„=k„—2Nv. (3 1)

=P, (k,k') (1—fj,p) (1—fj,.&).

22r ( op' —A

Q.(l,l')= —
i V, i'X-,'i 1—

EE'

q=k' —k

(2.4)

XP(E'+E hv p)(X,+1)+—5(E'+E+hv, )

X (&,+1)]fpp F2
q=k' —k

Regarding the kinetic energies, we define

p„=h„2/2222 —p= (h„2/2222 —p)+v k„+-,'2m'

= p~+V k„+222M'. (3.2)

Our model is characterized by the assumption that (in
the initial state) the Cooper pairing interaction operates
in the frame F„, i.e., it couples the momenta k and
—k . The ground state of the system is then just the
rnetastable, current carrying state considered by
Bogoliubov. ' The excitation energies are

=&~(k,k') fp( fp i. (2.5) (p 2+A2) 1/2 (3.3)

Ke are interested in the total momentum transferred
from the phonons to the electrons, or quasi-particles,
per unit time.

~Pel =—2 &k(fao —f2~).
Bt Bt k

Making use of (2.1) and (2.2) in this formula, we get

and the initial distribution, according to our assumption,
is the canonical one when viewed from the frame
Ii, i.e.,

f= /exp(E /ET)+1]—' (3.4)

is the number of quasi-particles of momentum k in
7, or k„ in F,. Such a distribution may be thought to
be generated, from the mortal thermal equilibrium in
Ii„, by a sudden accelerating pulse which displaces the
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whole Fermi sphere in the momentum space by 3k= q)iv.

of course, v is meant to be very small.
The effects of the electron-phonon interactions will

then be most conveniently studied in the frame Ii

The Bloch-Frohlich matrix elements will have the
same values in both frames, so in Eqs. (2.1)—(2.6) we
can identify k with k„.The delta functions expressing
energy conservation need not be changed if we interpret
E as E (3.3) and also vq as the Doppler shifted fre-
quency v

hv =hv„—v. Q (3.5)

lV» Nqq+3N»

N, '=I exp(hv /ET) —1$ '

6N, ASN q.

(3.7)

(3 g)

According to (3.6), (3.7), and (3.8), in particular if

because, then, the v-dependent terms in the total
energy change cancel as a consequence of momentum
conservation (Galilei invariance).

As mentioned in the introduction, we shall assume
the phonons initially to have their thermal equilibrium
distribution in the crystal rest frame F„.

N»=
I exp(hv, /KT) —1j '. (3.6)

Actually, one might admit a more general assumption
without changing the main result. The essential point
is that 3, differs from the canonical distribution in
the moving frame Ii by an anisotropic term

I
v

I
is much smaller than the velocity of sound,

8N»= v qI(aN»P/a(h)fq)) (8N q= —8N»). (3.9)

If we insert this into (2.6), the factor v in (3.9) guar-
antees that aP, )/at is proportional to the initial momen-
tum P,i. In all other factors, we may then neglect v;
in particular, the Doppler shift of the phonon fre-
quencies (in the 8 functions) may be disregarded, so
that we can write hv, =co,= coq. The resulting expression
may, for convenience, be symmetrized in k and k'.

We obtain

aP, i
2~IV, I'(k —k')3N, -,'1+

EE' i
&&La(E-E'-M.)-~(E'-E-~.)j(f-f')

ee' —A2

+ ', (1— -[8(q+Z'+, )

a(E+E—' ~.)3(1 f f') ——(3 10)

4. REDUCTION OF EQUATION (3.10)

In this section we evaluate Eq. (3.10) by changing
sums over k, k' into integrals. I P), -+ (2»r) 'J'd'k, per
unit volume. ] (aP,)/at), is the only nonzero component
of aP, )/at if we define the direction of the velocity v

as z axis.
From (3.10) we therefore get,

aP.i az.i

Bt , Bt (2»r)q

BN,' ee' —62
d'k d'k'(2»r)

I V, I
'(k, —k, ') v (k,—k, ') —', 1+

OGDEN
EE

&&I &(E E' ,)-a-(E' -E ,)j(f-f'-)+:1---La(E+E'+ .) 3(E+E' -,)j(1 f-f') . -(4.1-)

Except for the factor (k,—k, ')' the integrand is a function of IkI, Ik'I, and
I qI only. We can therefore change s

to x and again z to y without changing the integral. On adding and dividing by three, we get

Bp,.i (k—k')'- aN '-
d'k d'k'(2»[)

I V, I

' v q 1+, I[8(E E p)q) p(E E (pq)]—(f f')— — —
a, EE' i

66 g2
+ ', (1— [il(q+q'+-, ) ll(B+E ,)](1 f —f') . (4.—2)——

While keeping k fixed the volume element d'k' may be written d'k'= k"dk' sinP@dp' where P is the angle between
k' and k. We express P in terms of q=

I q I (keeping k and k' fixed):

ql=k —k' q'=k'+k" —2kk' cosf, qdq=kk' sinPdP.
We then obtain

gP g$ oo oo

-';v kdk k'dk'
at (2»r)' p ()

dqq IV, I

BNq 66

q 1+, L~(E E' ~q) a(E' E—~q)(f f—')— —
Bcoq — EB

g2
+*'(1— L&%+& +.) -&(&+&' .)](1'f f—') (& ~)———
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where
Hi~ &k *i' (bk k *+bi k), (81)

and the transition amplitude resulting from the term
HI,~ is, to first order,

contribution to it, extending somewhat the work of
BRT'.

Making use of the variational method, these authors
obtain the expression 1/IC„=1V/D for the thermal
resistivity, where

dt exp(itH)Hik exp( i—tH) . (82)

In the spirit of the BCS theory, we include in H,
besides the phonon energy, only the reduced BCS
Hamiltonian which may be split into the free quasi-
particle energy H' (=pk, E&nk, *nk,+const in the
moving frame F ) and the residual interactions H'.
LSee, for instance, reference 6, Eq. (4), with (3) and
(13).]The phonon energy in the moving frame is

Hph ——Q, (vqbq*bq,

where cp, stands for the Doppler-shifted energy Lip,

=hv, see Eq. (3.5)]. Of course, it does not matter
whether H in (82) refers to frame F or F„because the
difference involves only the total momentum

Pel+Pph Eke kiike oke+Qg Qbq bq

which commutes with II~~ .
The momentum transfer in a transition with amp¹

tude (82) is proportional to (k' —k)Ai khaki, averaged
over the statistical ensemble which we assumed to be a
canonical ensemble when viewed from the frame Ii

as far as the electrons are concerned, whereas the
phonon distribution can remain unspecified. In other
words, we have to study the canonical average.

TrAivpAkk~ expL —P(HP+H )]/
Tr expL —P(H'+H')], (83)

where "Tr" is the trace with regard to the states of
the electron gas only (with H; &

~ 0).
The expression (83) has, in all respects of importance,

the same structure as the corresponding expression
which was analyzed by Wentzel in context with a
simpler transport problem Lsee Eq. (15) in reference 4].
His proof which is based on a perturbation expansion
in powers of H' both in exp[—(H +H')] and in
exp(&itH) can be taken over without any essential
change. (An average over an arbitrary phonon distribu-
tion may be carried out eventually. ) Provided the
quasi-particles are properly defined, namely, as in a
thermal equilibrium at temperature T= 1/EP, a mere
counting of nonvanishing terms leads to the result
that neglecting H' in (82,3) causes no errors in the
limit of infinite volume. The only important assumption
is the convergence of the perturbation expansion.

APPENDIX C. THERMAL CONDUCTIVITY
OF SUPERCONDUCTORS

We re-examine the problem of thermal conductivity
in this section. We will discuss here only the electronic

S=T d'k d'O'W(k, k') Xi(xg, —Xi, ), (C1)

hk, deD= 2 XI, eg d'k
sz dE

(C2)

W (k,k') = (ET)—'(PP(k, k') fk(1—fk )
+P, (k,k') (1—fi,) (1—fk )}. (C3)

Po(k,k') and P, (k,k') are defined by Eqs. (2.3) and
(2.4); also throughout this section fj„ fi, , refer to
thermal equilibrium distribution functions for the
quasi-particles. XI, essentially characterizes the depar-
ture from equilibrium of the quasi-particle distribution
function. The variational method consists in choosing
the "best" trial function X~. The "true" thermal
resist. ance is smaller than the smallest value we obtain
by use of various trial functions.

The trial functions that BRT use are

Xk=be(E/c)" cosset, e=O, 1, —1. (C4)

Xi, ——beL1+g(LP/e')] cos0,

where g is a constant (g=it/2) and can be used as a
parameter in our variational calculation.

With this trial function (C5) we now calculate the
thermal resistivity near the critical temperature. Ke
will not discuss any details of the calculation, since we
essentially follow BRT' in this respect. From (C1),
(C3), and (C5), we get, after simplification,

0 is the angle between the vector k and the direction of
the temperature gradient VT (s axis). The function
with the highest e (viz. , e= 1) gives the lowest value for
thermal resistivity and so it is the best trial function of
the type (C4), according to the variation principle.
This suggests that we might use a trial function with m

even greater than unity. We expect then to get a still
lower value for thermal resistivity, but there is the
limitation that no divergence should occur at &=0.
(J'de Xi, finite). Since in any case BRT expand ~Z/e~
=

~

(e'+lV)'I'/c( in powers of dP/e' and retain terms
up to 0(LV/e') only, we can allow the exponent e in

(C4) to take large values, provided we also terminate
the expansion of ~Z/e~ after the second term. This will

not lead to divergences, any worse than in BRT; again
the integral P J' „"de Xk will be convergent. The most
general trial function then is
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