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the low-frequency, or acoustical, and high-frequency,
or optical branches of characteristic vibrations with
their respective groups of polarization directions is,
necessarily, the only realistic method of description of
thermal excitations in crystalline solids, like solid He?.
The practical usefulness of this method of approach
necessitates various experimental data. These may
comprise the empirical determination of the dispersion
laws of the characteristic vibration spectrum of the solid
va(k), k being the propagation vector of the vibration
of frequency », along a direction specified by a. The
derivation of the associated spectral distribution func-
tion p(») of the characteristic frequencies, which defines
through the Planck thermal distribution of the vibra-
tions the total excitation energy and the corresponding
constant volume heat capacity, raises in turn a problem
whose solution is again approximate, of semiempirical
character, at least at a certain stage of the corresponding
knowledge of the empirical »(k) function. The approxi-
mate heat capacities resulting from the theory lead to
temperature variations different from the limiting con-
tinuum model 7% law. These originate with the tem-
perature dependence of the characteristic temperature
which in some cases become quite strong.!® If con-
firmed, the peculiarities in »(k) and p(») must be ulti-
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mately responsible for the entropy and heat capacity
anomalies of solid He* at, or near, the melting line and
near T'o(pm). The problem of the negative isobaric ex-
pansion coefficients of the solid, both hexagonal and
cubic, at 751.50-1.55°K is probably another aspect of
the apparent thermal anomalies of the solid He? phases.

We would like to conclude by stating that while the
above-mentioned solid He? heat capacity measurements
favor a fairly normal behavior of this solid over the
explored temperature and pressure ranges, additional
experimental work on heat capacities and isobaric ex-
pansion coefficients would be of great interest over a
region of the phase diagram around the melting pressure
line. These should clarify the presence or absence of the
various anomalies which present data, however indirect,
seem to favor. In view of the possible connection
between heat capacities and heat conductivity co-
efficients, experiments on the latter, in the relevant
pressure and temperature intervals, would be also
desirable.
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A theory of the decay of an electric current in a superconductor is presented. The calculations have been
done using a model within the BCS theory of superconductivity, ignoring magnetic effects. The decay of
current, from a specially chosen initial state, is found both for low temperatures and for temperatures near
the critical temperature. The persistence of currents remains unexplained. The related problem of thermal

conductivity is re-examined in an Appendix.

1. INTRODUCTION

HE Bardeen-Cooper-Schrieffer! (BCS) theory of
superconductivity has been quite successful in
explaining the thermodynamic features and the
Meissner Effect. There has, however, been no quantita-
tive verification of the transport properties of supercon-
ductors. For example, Bardeen-Rickayzen-Tewordt?
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(BRT) applied the theory to the case of thermal
conductivity of superconductors but their results were
in disagreement with experiment. The basic question of
electric conductivity has found no satisfactory answer.

The main purpose of this paper is a study of how an
electric current decays in a BCS superconductor. The
calculation is based on a simple model in which the
interaction between quasi-particles can be neglected
without error.

Bogoliubov?® has observed that a state of the electron
gas which results from the BCS ground state by a
small displacement in momentum space, is stable, or

3 N. N. Bogoliubov, Nuovo cimento 7, 794 (1958).
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rather metastable, due to the energy gap A. In this
state, the gas carries an electric current [ (e/m)Xtotal
momentum | which is truly “persistent.” However, if
the gas is heated to a small temperature T, there will be
excitation of quasi-particles and also of phonons, and
their collisions will transfer momentum from the
electrons to the phonons and thereby cause the current
to decay. The rate of this decay is the main object of
the present investigation.

More precisely, we shall take as the initial state of
our model, a statistical distribution which, when viewed
from a moving coordinate frame F,,, looks like a canon-
ical ensemble, at temperature 7, of quasi-particles,
whereas the phonons are assumed to form a Debye
thermal equilibrium distribution in the rest frame of
the crystal, F,. The idealized nature of this model need
not be emphasized, and we are not concerned with the
question under what experimental conditions such a
situation might be approximately realized. The reason
we choose the model is the observation made by
Wentzel* that the initial decay rate of the current
can then be calculated “accurately” in the same sense
as the thermal equilibrium properties of the BCS
superconductor (“reduced Hamiltonian”) can be ob-
tained accurately by using the quasi-particle picture.
One just has to replace the electron gas by a gas of free
(i.e., noninteracting) quasi-particles with the properly
chosen spectrum of single-particle excitations, namely,
with a temperature-dependent energy gap as already
derived by BCS.! Indeed, it has been shown that the
residual interactions among such quasi-particles have
no effect, either on the thermodynamic state functions
(volume proportional part)®® or in special transport
problems? like the one treated here. Wentzel’s proof
was explicitly given for a simpler transport problem
(momentum transfer due to a weak force center dragged
through the gas), but he pointed out that the argument
holds also in our case, provided the initial state of the
electron gas is specified as described (canonical ensemble
in the frame F,). A sketch of the proof is given in
Appendix B. We shall therefore, in the following, ignore
the residual interactions and treat the quasi-particles
as a perfect gas.

In the related problem of the electric resistance of
stationary currents, a similar simplification is probably
not justified, because the deviations of the quasi-
particle distribution from equilibrium play an essential
role. The same remark applies to the problem of the
thermal resistance of superconductors, as treated by
BRT.2 They neglected the residual interactions, and
this may, at least partially, account for their failure to
reach agreement with the experimental data. We
cannot improve their theory in this respect, but there

4+ G. Wentzel, Werner Heisenberg und die Physik unserer Zeit
(Friedrich Vieweg und Sohn, Braunschweig, 1961), p. 189.

5 N. N. Bogoliubov. D. B. Zubarev, and Iu. A. Tserkovnikov,
Soviet Phys.—Doklady 2, 535 (1957).

6 G. Wentzel, Phys. Rev. 120, 1572 (1960).
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are comments (on their variational calculation) which
we want to add in Appendix C.

As will be seen, our results are not encouraging. At
very low temperatures, we confirm the expectation that
the gap suppresses the current attenuation completely.
However, just below the critical temperature, the
attenuation turns out to be even larger than in the
normal state (at the same temperature). This effect
must be attributed to the density of states which,
according to the BCS theory, is larger just above the
gap than in the normal state. Anyway, our calculation
furnishes no indication why the decay should be slow
just below the critical temperature.

In appraising this result, it should be kept in mind
that our calculation can be claimed to be accurate only
for the initial stage of the attenuation process. Whether
the process leads, at roughly the same fast rate, to a
complete decay of the current, or perhaps to a long-lived
state carrying a weaker current, as Bohr and Mottelson”
seem to believe, is much more difficult to decide, because
in the later stages the residual interactions between
quasi-particles will certainly add to the dissipation, or
there may even no longer be any justification for using
the simple quasi-particle picture at all.

We conclude that the transport properties of super-
conductors still pose a difficult problem. In particular,
it is conceivable that magnetic effects help to stabilize
the persistent currents. This aspect of the problem is not
treated here.

2. COLLISION PROBABILITIES

The probabilities of various transitions involving
quasi-particles and phonons, caused by the Bloch-
Frohlich interaction, have already been calculated by
BRT (p. 986 of reference 2) and we summarize their
results in this section.

Note that, in the BRT formulas, all momenta (k)
and energies (e,E) refer to the rest frame of the crystal,
and it is in this frame that the Cooper pairing is
assumed to take place (momenta +k and —k). This
will no longer be the case in our model, but the later
discussion (in Sec. 3) will show why we can use the
same formulas, with some change in interpretation.

We now refer to formulas (4.3), (4.4) of BRT. fio
and i1 denote (single) quasi-particle distribution
functions in momentum space for two spin orientations
called 0 and 1 (or “up” and “down”). The rate of their
change in time, caused by collisions with phonons, is
expressed as follows:

3 fro
— = S 0K)H0K )

o +0: (k) —Qa(lk k)] (2.1)
—= 2 [= 01 K)+0u (k' k)

at
+Q. (k" k) —Q4 (k' k)]. (2.2)
7 A. Bohr and B. R. Mottelson, Phys. Rev. 125, 495 (1962).
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Qo(k,K’) gives the total probability that the quasi-
particle of type “0” is scattered from the state (k,0)
to (k',0) with either absorption or emission of a phonon
of wave vector #=q==(k'—k)

e’ —A?

EE’
+3(E' = E+hv—) (N—o+1)]

Oulk k'>={2—”iv,,12><%(1+ )[B(E'—E—th)Nq
’ 7

ka@(l—fk'o)}

= Po(kK) fro(1— faro),

where V,=-electron-phonon interaction matrix element
(~q"2); e=energy of a free electron of wave vector k
measured relative to Fermi energy E; (cf., 3.2).
Er=u; E=quasi-particle energy; A=energy gap (tem-
perature dependent); kv,=energy of a phonon wave
vector q; frw=mean occupation number of quasi-
particle state (k,0); fri=mean occupation number of
quasi-particle state (—k,1); Q:(k,k") similarly gives the
scattering probability for quasi-particle of type “1”.
But note that for type “1” the momentum is denoted
by —k; 0.(k,k’) and Qa(kk") give the probability that
the quasi-particles (k,0) and (K',1) are simultaneously
created, (Q.) or destroyed (Qg), while emitting or
absorbing a phonon.

(2.3)

K 2T _ 1<1 e —A?
Qc( ) )“{}:I ql X3 EE )

XS (E'+E—hv_)N_y+8(E'+E-+hv,)

X(Nq’{“l)](l"‘fko)(l—fm)}

q=k’—k

=P (kK) (1= fro) 1= fira). (2.4)

wi=[Zim (1“5
) =1 | V21—
0 w0\ ER

XO(E A+ E—hv_p) (N_g+1)+8(E +E-+-hvy)

X (VoD 1fen f}

q=k’—k
=Pa(kK) frofirr.

We are interested in the total momentum transferred
from the phonons to the electrons, or quasi-particles,
per unit time.

BPe]
ot

2.5)

a2
=— 2 Tk (fro— fr1)-
ot x

Making use of (2.1) and (2.2) in this formula, we get
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aPel

27
- Z %‘l Vql ik (Nq_N—q)

at kK, q=k—k

e —A?
x[%<1+ )[6(E—E’—kuq)

EE'
—0(E'—E—hv) J(/=1")
/_A2
+%(1— )[6(E+E’—l—huq)
EE'

—3(EAE —hv)JA=f= ), (2.6)

(where we have written f= fro= fr1 and f'= fro= fir1).
It should be remarked that all spatial variation of
the distribution function f will be ignored. Since, in
reality, the current density [~3_x k(fro— fr1)] varies
through distances of the order of the London penetra-
tion depth A, the volumes considered here should be
confined to layers of thickness <. The magnetic field
associated with the currents, though important in
other respects, shall be disregarded with the under-
standing that we intend only to examine the current
attenuation (2.6) due to phonon-electron interactions.
[To avoid misunderstanding, in the presence of a vector
potential A, the “momentum” %k does not refer to the
“canonical momentum” (—:%V) but to the gauge
invariant quantity (—i%#V —eA)=massXvelocity. ]

3. APPLICATION TO MOVING FRAME

Let v be the velocity of the frame F,, relative to the
crystal rest frame F,, so that the electronic momenta in
the two frames are related by

k,.=k,—mv. (3.1)
Regarding the kinetic energies, we define
€= kr2/2m—l~‘= (kmz/ZM‘ﬂ)-l— A\ km+%—7ﬂ7‘2
= ept V- KptLm? (3.2)

Our model is characterized by the assumption that (in
the initial state) the Cooper pairing interaction operates
in the frame F,, i.e., it couples the momenta k,, and
—K,.. The ground state of the system is then just the
metastable, current carrying state considered by
Bogoliubov.? The excitation energies are

En= (ent+AD12 (3.3)

and theinitial distribution, according to our assumption,
is the canonical one when viewed from the frame
F.,,ie.,

f=[exp(E./KT)+11*

is the number of quasi-particles of momentum k,, in
F., or k, in F,. Such a distribution may be thought to
be generated, from the normal thermal equilibrium in
F,, by a sudden accelerating pulse which displaces the

(3.4)
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whole Fermi sphere in the momentum space by sk=mv.
Of course, v is meant to be very small.

The effects of the electron-phonon interactions will
then be most conveniently studied in the frame F,,.
The Bloch-Frohlich matrix elements will have the
same values in both frames, so in Egs. (2.1)-(2.6) we
can identify k with k,.. The delta functions expressing
energy conservation need not be changed if we interpret
E as E, (3.3) and also », as the Doppler shifted fre-
quency v,

(3.5)

because, then, the v-dependent terms in the total
energy change cancel as a consequence of momentum
conservation (Galilei invariance).

As mentioned in the introduction, we shall assume
the phonons initially to have their thermal equilibrium
distribution in the crystal rest frame F,.

N,=[exp(hw,/KT)—1T". (3.6)

Actually, one might admit a more general assumption
without changing the main result. The essential point
is that N, differs from the canonical distribution in
the moving frame F,, by an anisotropic term

hym=hv,—v-q

=N 244N, (3.7)
0— 1
NL=[exp(hvm/KT)—1] (3.8)
SN #=5N_,.

According to (3.6), (3.7), and (3.8), in particular if
<6Pel> 3Pe1
at /., o4t

><[B(E—E’—wq)—6(E’—E—wq)]<f—f’>+%<1—

AN
/dsk/dak'(Qr)l Vo|2(k.—F ')l:v(k —k.)) J{%(lJr
(27r)6 Jwg
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| v| is much smaller than the velocity of sound,
ONg=V-q(ONL/8(hvg)) (BN_g=—0N,y). (3.9)

If we insert this into (2.6), the factor v in (3.9) guar-
antees that dP.1/94 is proportional to the initial momen-
tum Pe;. In all other factors, we may then neglect v;
in particular, the Doppler shift of the phonon fre-
quencies (in the § functions) may be disregarded, so
that we can write kv,=w,= c¢oq. The resulting expression
may, for convenience, be symmetrized in k and K'.

We obtain
e — A2)
EE’

6Pel
-- x
E—w))(f~f)

2r| Vq|2(k—k’)6Nq{%<1+

ot k,k’,q=k—k’

X[S(E—E' —w,)—6(E'—
e’ —A?
+%<1-—
EFE'

—(E+E —w)]JA—f—1) ] (3.10)

>[a (E+E'+ay,)

4. REDUCTION OF EQUATION (3.10)

In this section we evaluate Eq. (3.10) by changing
sums over k, k' into integrals. [Y_x— (27)73 /" d%, per
unit volume. ] (9P.1/8¢), is the only nonzero component
of dP./dt if we define the direction of the velocity v
as 2z axis.

From (3.10) we therefore get,

e€’ — AZ)
EE’

Yo =8 =) Y= | )

Except for the factor (k,—#%.')? the integrand is a function of |k|, |k’|, and |q| only. We can therefore change 2
to « and again 2 to y without changing the integral. On adding and dividing by three, we get

apel

e —A?

at 3 I_ dwg

k—Kk)? 9N,
= dsk/dsk'(Zﬂ-){V ]2( ) r% ]{%<1+
(27r

e’ —A?
"
EE’

BB B =) =30~ E=a) =)

>[5(E+E’~l-wq)—-8(E+E’-wq)](1—-—f—f’) . (4.2)

While keeping k fixed the volume element d*k" may be written d®k’= k"?dk’ singdydg’ where ¢ is the angle between
k’ and k. We express ¢ in terms of ¢=|q| (keeping k and k' fixed):

q=k—K, @=k+Ek2—2kE cosy, qdg=FkE sinydiy.
We then obtain
aPel k! INSL e —A?
/ bk / var [ g1l — (14" - ey - e =)
at (27(')3 k! dwg EF’

e —A?
+%<1-— )[5(E+E'+wq)—6(E+E'—wq):|(1—-f—-f/) } 4.3)
EE’
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Now k=~Fk'~kr and so we can take the upper limit 4%’ in the g integration to be infinite. The lower limit |£—%’|

can be replaced by zero because at the temperatures of interest the contributions of the interval 0<¢< |k—k’| are

negligible (in the main contributions, |k—£&’| ~10~%r, g~10~%r; see the discussion of this point in BRT, p. 988.
We change the variable ¢ to w=gcy (co velocity of sound). Also | V,|2=g%)/2 (g=coupling constant). Note

(aNq°> 6( 1
dw, ) dw\ePa—1

Instead of % and &’ we introduce € and ¢, respectively:

e= (1/2m) (B*—ks?),

)= B
(=1 (1=e)

de=kdk/m.

The lower limit for € (or ¢') may be replaced by — «. We will also express all energies in units of K7'=1/8 so that

the integrals are all pure numbers.
We now get,

0Pq 1

><[6(E—E’—w)—5(E’—E—w)](f—f’)+(1—-

EE’

L 1 26_5 Z/wd w4 ocd wd ) {(1+661_A2)
—4 (0] W— € €
o (2m)F o o (e—=Dl—e*)) o /_w EE'

e —A?

)[a<E+E'+w>—a<E+E'—w>J<1~f—f'>' L)

The terms ~ee’ give zero; also §(E4E'+w)=0. If in the term ~§(E'— E—w), we interchange € and ¢, then

2
EFE'

aPel 00 w4 0 € A
=2A[ dw————————/ de/de'(l—
ot 0 (e*—1)(1—e) Jo 0

)a (B—E—) (1)

—4 /0 "t Efﬁ%j-_s ﬁ “de /0 Y (H—EA;)«S(E—I—E’—w)(l— F—f) (@s)

1
g>—om?(KT)S.
(27!') 3¢ 04

A:

(SN

(4.6)

Note that A~T?%; this determines the temperature dependence in the normal state (A=0).

Integrating over w

(E—E')

P ou [ Caefae (1 AZ)( ")
P I K rermrr )

(E+E)

0 0 A
—A| de| dé /1 L ) 1— f— 7). 7
/0 ~/(; (€E+El—1)(1—— —(E+E"))\ EE’ ( f f) (4 )

In Appendix A we evaluate the above integrals in two
limiting cases of interest

(a) T~T., (b) T—0.

5. DISCUSSION

The results of (4.7) are [see Egs. (A9) and (A15) of
Appendix A7

Case (a): T=T,
dPoy/dt=—124.54{140.78[ (T.—T)/T.]}. (5.1)
Case (b): T~0

9P/ 0= —25.8¢71-75(Te/T), (5.2)

The unsatisfactory character of these results has been
already stressed in the Introduction. Particularly
disturbing is the fact that just below 7', the initial
decay rate turns out to be even larger than that of the
normal state (given by —124.54). As we have men-
tioned, it is conceivable that the process, in its later
stages, leads to a metastable state which still carries a
reduced current, but out method is not adequate for
examining such a possibility.

Finally it should be observed that our result remains
essentially unchanged if the “slab” of material we have
been considering is bent into a torus-shaped object,
like a thin cylindrical shell, with a macroscopic circum-
ference L=2xR. [The condition of single valuedness
of the wave function (¢ — ¢+2) is equivalent to the
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usual periodicity requirement (Z— Z+L, Z=Ro).]
Our initial state then has an angular momentum whose
average value per electron is Rmy=Ldk/2r which is 7%
times an integer. [ This integer is called » in reference 7;
it determines the quantized magnetic flux.] This
initial angular momentum is transferred to the phonon
gas at a rate given approximately by our formulas (5.1)
and (5.2). Again, the initial current attenuation fails to
show any sudden change when the temperature is
lowered through 7. Various reaction effects will
certainly become important at a later stage, but here
also a near-zero gap can hardly make much of a
difference.

ACKNOWLEDGMENT

I wish to express my deep gratitude to Professor G.
Wentzel for having suggested the problem, and for
his constant help and guidance for the past two years
without which it would not have been possible to begin,
and to complete, this work.

APPENDIX A. EVALUATION OF INTEGRAL
Case (a):

Since the energy gap A(T) — 0 as T'— T we expand
(1/A4)(0P./dt) (Eq. (4.7)) in powers of A? [to O(A%)].
The procedure is similar to that of BRT, Appendix A.

(1/4)(0Pe/3t) = a+bA2H-- - -,

a‘"szd £ )/Ed' (=
0 0 (= 1) (1— )

/0 7 w/e (o
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where a=decay rate in normal metals, bA?=term
proportional to A%; b is a constant.

We get from (4.7)

(e—é€)*

a= 2/ de/ dé
(e —1) (1— (=)
0 0 (E+E,)4
—/ de/ dé
0 0 (es+e’

—1) (1= (eten)
ol o o

(/=1

(A=f=7) (A1)

where
F.(E,E',A?)
(E—E)) (2
= /=1
E D) (I EE’)
(e )(1—e ) (A3)
Fy(B,E A?)

(E+E) / A? A—fep)
(eE+E —-1)(01- ‘<E+E'))\ EE')

We will now evaluate e and then b.

(e—€)t

—1) (A=)

(et€)* (et€)*

—/ de/ de
0 0 (eﬂ—e’

—2/ def(é)/ (e—1)(1—e >_2/ def(e)/

. df/

+2 | de f(e dée
=1 (1—e ) /:) K )/o

(A=)

(ee+e'_ 1) (]_ _e—(6+e’))

x4

-+ de f(e _—
(er—1)(1—¢™?) /0 I )/e (e*—1)(1—e)

0 0 x4 0 x4 x
—/ de/ dx—--———=—/ dx——-——/de
o Je (=D (—e) o (ee=1)(A=e") /o

00 x5
_— / L
0o (ee—1)(1—e™)

—124.5.

To calculate b according to (A2), (A3), one has to take the derivatives of Fi, Fs, not only with respect to the
explicitly appearing A2, but also via E= (e+A%)Y2 and E'.

l:dFl:l
dA? A=0—

oF,
R
0A? 2E OE

1 0F, 1 oF,
2]
2FE' dE' dao

(A4)
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In (A4) we add all the terms and simplify. In performing the ¢, ¢ integration, the terms involving 9/de or 8/de
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’

may be simplified by partial integration. This finally leads to

(e—€)

(e— €t

oodﬁ € € 3
+2/ ———/de'
0o €Jo (e—1)(1—e

U / = [ s U

€

© de’ e o
— | de[Fi(e,e’,0)—F1(e,0,0)]— | de ——————(f—%). (AS
+/0 / e [Fa(e,¢,0) = Fi( )]/0 U @

There will be no trouble at e=0 or ¢ =0 after properly grouping the above integrals with those coming from the

second term in b [from (dF,/dA?)a—o]. Similarly one finds
(et€)?

° «© dF, © de [®
—/ de/ de/ l:——:l =_2/ __/ de'
0 0 dA%da_o o €Jo (et —1) (1— g (eteN)

We obtain & by adding the two terms (AS) and (AG6),
and after some simplification,

°°d€ ) x3
b==——2/ —/ o
0o €Jo (e*—1)(1—e™)

KLetartfle=s1=21]
(=1 (—e)

de
A
X[Lf(x+e)+flx—e)—2f(x)].

Note that in (A7) there is no longer divergence at e=0.
After numerical integration = —9.4. We therefore get

(A7)

apel
= — A[124.549.4A7]

& =—124.54[14-0.0755A%]. (A8)
We use A=3.2(1—T/T,)"2 then
0Pe/dt=—124.54{14+-0.78[(T.—T)/T.]}. (A9)
Case (b): T=0.
We will make here the following approximation
= (e+A%)2=~A(14-(¢/247)). (A10)
Also we take ¢F>>1 so that
f(E)= (14 eF)ytmes (A11)

The following is a rough estimate in as much as we
will be calculating only the most dominant term. From
(4.7) we get

A=/=1)

oodE 00
_ / - / d¢ [Fale,d,0)—F2(0,¢,0)].  (A6)

0P * ¢ (E—-E")*
=24 / de / de
at o Joo (FF—1)(1—eE-EN)

1 A E E
x( —E—E,)[f( = JEY]. (A12)

We have neglected the second integral in (4.7) because
it behaves as ¢24, whereas the term we have retained
is ~¢™, It can be easily checked that the main con-
tribution to (A12) comes from a region around the
diagonal in the plane of € and €. The region near the
origin, and a narrow strip along the ¢ (or €) axis does
not contribute to the most dominant term. We can
therefore further simplify (A12) and we get

3Pe1 0 € AZ
zZA/ de/ dé (E—E’)“(l— )
at 0 0 EFE’

Ke=E—EN[g=E— =B  (A13)
(A14)

~—25.84¢4,

where A=energy gap at 7=0 in units K7=1.75
X(KT./KT)=1.15(T./T). On substituting in (A14)

OPe/dt=—25.84¢115(TelT), (A15)

APPENDIX B. RESIDUAL INTERACTIONS

The Bloch-Frohlich interaction which gives rise to
the collisions discussed in Sec. 2 may be written, in
terms of free-electron and free-phonon creation and
annihilation operators

Hine=2 xx Huw,
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where
Hyo~ap*ay, (bknk'*"*‘bk'—k), (Bl)

and the transition amplitude resulting from the term
Hy is, to first order,

ot
Akk»=/ dt exp (itH) Hyyr exp(—itH). (B2)
0

In the spirit of the BCS theory, we include in H,
besides the phonon energy, only the reduced BCS
Hamiltonian which may be split into the free quasi-
particle energy H® (=3 s Exops*ar,+tconst in the
moving frame F,) and the residual interactions H'.
[See, for instance, reference 6, Eq. (4), with (3) and
(13).] The phonon energy in the moving frame is

Hpy= Zq wqbq*bqy

where w, stands for the Doppler-shifted energy [w,
=hvm, see Eq. (3.5)]. Of course, it does not matter
whether H in (B2) refers to frame F,, or F, because the
difference involves only the total momentum

P= Pe1+Pph= st kaks*aks+zq qbq*bq

which commutes with Hy.

The momentum transfer in a transition with ampli-
tude (B2) is proportional to (k'—k)A A, averaged
over the statistical ensemble which we assumed to be a
canonical ensemble when viewed from the frame F,,
as far as the electrons are concerned, whereas the
phonon distribution can remain unspecified. In other
words, we have to study the canonical average.

TrAwrAw exp[—B(H+H')]/
Tr exp[ —B(H4-H')],

where “Tr” is the trace with regard to the states of
the electron gas only (with Hin,— 0).

The expression (B3) has, in all respects of importance,
the same structure as the corresponding expression
which was analyzed by Wentzel in context with a
simpler transport problem [see Eq. (15) in reference 4 ].
His proof which is based on a perturbation expansion
in powers of H' both in exp[— (H°+H’)] and in
exp(FitH) can be taken over without any essential
change. (An average over an arbitrary phonon distribu-
tion may be carried out eventually.) Provided the
quasi-particles are properly defined, namely, as in a
thermal equilibrium at temperature 7=1/K3, a mere
counting of nonvanishing terms leads to the result
that neglecting H' in (B2,3) causes no errors in the
limit of infinite volume. The only important assumption
is the convergence of the perturbation expansion.

(B3)

APPENDIX C. THERMAL CONDUCTIVITY
OF SUPERCONDUCTORS

We re-examine the problem of thermal conductivity
in this section. We will discuss here only the electronic
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contribution to it, extending somewhat the work of
BRT?2

Making use of the variational method, these authors
obtain the expression 1/K.;=N/D for the thermal
resistivity, where

N=T / a3k / BEW (kK )X (X,—X),  (C1)

tk, dfy . 2

and

W (k k)= (KT)Y{ Po(k,k') i (1— far)
+P.(kk)(1—fi)(1—fi)}. (C3)

Py(kk') and P.(kk’) are defined by Egs. (2.3) and
(2.4); also throughout this section f, fir, refer to
thermal equilibrium distribution functions for the
quasi-particles. X, essentially characterizes the depar-
ture from equilibrium of the quasi-particle distribution
function. The variational method consists in choosing
the “best” trial function X The “true” thermal
resistance is smaller than the smallest value we obtain
by use of various trial functions.

The trial functions that BRT use are

X;=>be(E/€)" cosf, n=0,1, —1. (C4)
6 is the angle between the vector k and the direction of
the temperature gradient VT (z axis). The function
with the highest # (viz., n=1) gives the lowest value for
thermal resistivity and so it is the best trial function of
the type (C4), according to the variation principle.
This suggests that we might use a trial function with »
even greater than unity. We expect then to get a still
lower value for thermal resistivity, but there is the
limitation that no divergence should occur at e=0.
(S de Xy, finite). Since in any case BRT expand | E/¢|
= | (e+A2)12/¢| in powers of A%/¢ and retain terms
up to O(A%/€) only, we can allow the exponent # in
(C4) to take large values, provided we also terminate
the expansion of | E/e| after the second term. This wilt
not lead to divergences, any worse than in BRT; again
the integral P S~ de X; will be convergent. The most
general trial function then is
X =Dbe[ 1+ g(A%/€2)] cosh, (C5)
where g is a constant (g=#/2) and can be used as a
parameter in our variational calculation.

With this trial function (C5) we now calculate the
thermal resistivity near the critical temperature. We
will not discuss any details of the calculation, since we
essentially follow BRT? in this respect. From (C1),
(C3), and (CS5), we get, after simplification,
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e o o oo )]

0

(E'+E)?

A? 1 1
2 2l e g —4—
+I6E'+E—1||:e (1+EE’)+2gA +ee (1+ (g—3)A ( ez—l_e’?))i”

EC[/dede,F(E;E,;AZ)s
0

and from (C2) and (C5)
ANk 2
D=2l/d3ke<1+g—>——ef(E)f(—E) 00520} . (€n
e/ m

For temperatures 7'=~7, we can expand N and D in
powers of A%(T)

N=C(a+pA*+-+) (C8)
D=Cy(14+-5A24- - -). (C9)
We get
=f/dede'F(e,e',O), (C10)
8= / f dé' [F(e,é,0)—F(0,,0)]+2(g—3%)
XP / [ @ <1 Na—p), (©1)
5=0.606(g—1). (C12)

These integrals are evaluated numerically, and we
obtain
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N=Ci[14+A2(—0.0564+0.26(g—%)], (C13)
D=Cy[14A%(0.606(g—1)) ], (C14)
1/K o= (C1/Co)[14A2(0.124—0.35g)].  (C15)

Assuming that Ci/C. gives the correct value for the
resistivity in the normal state we get

Kes/Ken=14A2(0.35g—0.124). (C16)

In (C15) g can be made as large as possible, with the
restriction that gA? should remain small enough.

The experimental value of Kes/Ken is less than unity.
Our result (C16) is therefore in disagreement with the
experimental data even more so than BRT’s “best”
result (g=% corresponding to #=1). This reinforces
their conclusion that there must be an “extra mechanism
scattering,” which adds to the dissipation. As Wentzel*
has remarked such a mechanism might well be provided
by the residual interactions between quasi-particles
(see Sec. 1) which were here neglected, or by the many
other interaction terms in the complete Hamiltonian
which one neglects already when writing down the BCS
Hamiltonian. However, the latter interactions would
presumably also accelerate the decay of an electric
current, and hence make the persistent currents even
more difficult to understand.
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The equations for the superconductivity energy gap and transition temperature in the case of overlapping

bands are derived by the Nambu-Schrieffer formalism.

HE case when the Fermi surface of a supercon-
ductor goes through several overlapping bands

has been considered by Suhl, Matthias, and Walker.! A
simple derivation of their equations for the energy gap

* On leave from Warsaw University, Warsaw, Poland.
1 H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Letters
3 552 (1959).

and the transition temperature can be given using the
formalism of Nambu? and Schrieffer.?

We label the one electron states by the wave vector
k lying within the first Brillouin zone and by the band

2Y. Nambu, Phys. Rev. 117, 648 (1960).

3J. R. Schrieffer, Physica 26 124 (1960). See also G. M.

Eliashberg, Soviet Phys ——JETP 38, 966 (1960); ibid. 39, 1437
(1960) ; and S. Engelsberg, Phys. Rev. 126, 1251 (1962)



