
PHYSICAL REVIEW VOLUME 128, NUMBER 4 NOVEMBER 15, 1962

Thermal Excitations in Solid He'

Locrs GoLDsTzzN
Ios Alamos Scientific Laboratory, Untserssty of California, Los Alamos, Pew Mexico

(Received June 21, 1962)

The present paper is devoted to an extension of recent work on solid He' using a heuristic approach. The
anomalous or negative isobaric expansion coefficients of the solid, in equilibrium with the anomalous liquid
He4II, will be re-evaluated in terms of the here derived approximate compressibilities of the solid based on
sound velocity data. The entropy of solid He4 will then be obtained in terms of the recent Los Alamos de-

terminations of entropy changes on solidification and of two different sets of entropy values of the liquid along
the melting line. The latter yield two distinct sets of solid entropy values. While numerically these are
diGerent, they appear to be much too large to be accommodated by simple phonon excitations of the solid
at temperatures below Ts(p ), the temperature of the heat capacity anomaly of the liquid at the melting
pressure line P . Below Ts(p ), both of these numerically different solid entropies exhibit temperature varia-
tions of such strength as to rule out their description in terms of simple phonon entropies. In addition, the
two sets of solid entropies give rise to molar heat capacities of the order of the gas constant R, at the ap-
proaches of Ts(P ).The preceding thermal anomalies will be discussed from the viewpoint of the equilibrium

between the fundamentally anomalous liqu'd and the solid. Analysis of the liquid entropy yields a new set
of onset temperatures of the ordering process responsible for its peculiar transition phenomenon. The thermal
anomalies, at or in the vicinity of the melting line, suggest peculiar dispersion and distribution properties of
the frequency spectrum of solid He4. Direct experimental investigations of the above apparent anomalies of
the static thermal properties as well as of transport properties of this solid near the phase separation line

seem to be of interest.

1. INTRODUCTION

N recent work', we have been led to prove that solid
- He4, in equilibrium with the thermally anomalous

liquid He4II, must have anomalous thermal properties
over a finite domain of its thermodynamic state surface.
The analysis leading to the above proof was based on
the formalism of thermodynamics, and the hypothesis
that the solid was less compressible than the liquid,
whereby use was made of various experimental data
referring to both liquid and solid He4 along the phase
separation line. The existence of the anomalous character
of solid He4 over Rnite intervals of the allowed range of
variations of the primary variables of state, pressure,
volume, and temperature, extends to this heavy isotope
a similar state of aGairs predicted earlier' to occur in
the light isotope He'. The thermal anomalies of solid
He', in equilibrium with the thermally anomalous liquid
He' along the phase separation line, have been verified
indirectly by Sydoriak. , Mills, and Grilly. They showed
that solid He' had negative isobaric volume expansion
coefficients along the melting line from about 1.25'
down to 0.4'K, the temperature range they have ex-
plored. This conclusion results from the assumed normal
elastic properties of the dense phases of He', in analogy
with the hypothesis used with He4. However, direct
determinations of the anomalous expansion coefficient
of solid He over even a limited region of its phase dia-
gram are lacking at the present time.

A similar indirect verification of the predicted, nega-

'L. Goldstein, Phys. Rev. Letters, 5, 104 (1960); Phys. Rev.
122, 726 (1961).

'L. Goldstein, Ann. Phys. (New York) 8, 390 (1958); Phys.
Rev. 112, 1483 (1958).

3 S. G. Sydoriak, R. L. Mills, and E. R. Grilly, Phys. Rev.
Letters, 4, 495 (1960);R.L.Mills, E.R. Grilly, and S.G. Sydoriak,
Ann. Phys. (New York) 12, 41 (1961).

tive isobaric expansion coeScient of solid He4 in equi-
librium with the thermally anomalous liquid He4II has
also been performed recently by Grilly and 4Iills. 4 This
verification has been made by these workers through
their own experimental determinations of the various
thermal properties of liquid and solid He4 along the
phase separation line over the temperature range ex-
tending from 1.30 to 2.0'K.

The anomalous expansion coeKcient of solid He4 is
only one aspect of the thermal peculiarities of solid
He'. We have called attention earlier' to the rather
remarkable temperature dependence of the entropy of
solid He' along the melting line. In the present work,
we should like to rediscuss brieQy the anomalous iso-
baric expansion coefBcients with the help of the here-
obtained approximate compressibility coefficients of the
solid. These have been obtained with the help of sound
velocity data of Vignos and Fairbank, with the limita-
tions of simplifying assumptions on the elastic isotropy
of the solid He4 phases. The main object of the present
work is, however, the investigation of the apparent
entropy and heat capacity anomalies. The results ob-
tained in the fi.eld of these problems appear to be, to a
reasonable degree, independent of the simplifying as-
sumptions which were needed to derive some of the bulk
elastic properties of solid He4.

As in our previous work, the approach in the present
studies is of heuristic character, the methods of thermo-
dynamics being used with certain elements of the
statistical thermodynamic two-Quid model of liquid
He4II. Actually, the results obtained are again inde-
pendent of the limitations inherent in the latter model.

4 E. R. Grilly and R. L. Mills, Ann. Phys. (New York), 1962
(to be published).

~ J. H. Vignos and H. A. Fairbank, Phys. Rev. Letters, 6, 265
(196i).
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The main limitations of the results could only arise
from the exceptionally poor accuracy and precision of
the various thermal properties of liquid and solid He'
used in the thermodynamic relations. It is expected that
the results derived here will be submitted to direct
experimental verification.

2. VARIOUS ELASTIC PROPERTIES OF SOLID He'

Before entering the main subjects of the present work,
we should like to derive various approximate elastic
properties of solid He4 using recent sound velocity data. '
These derived elastic properties will, in turn, enter into
a re-evaluation of the anomalous isobaric expansion co-
efEicients of the solid using the recent Los Alamos solid
volume data. 4 The derivation of the approximate elastic
properties is based on an assumption necessary, it seems,
at the present time because of lack of sufhcient data on
the various directional and polarizational dependence
of sound velocities in the crystalline solid He4.

With the approximate elastic properties a more quan-
titative evaluation will be made of the mild anomaly of
the melting pressure line, which was discussed by us
earlier in a qualitative way. Clearly, the limitations on
the accuracy of the numerical results so obtained arising
from the various assumptions will have to be kept in
mind.

At the present time only compressional wave veloci-
ties of moderate frequency are available in solid He4 at
melting pressure and at pressures slightly higher. ' These
velocities have also been obtained in liquid He4 at or
near the melting line. The latter allow, of course, a
straightforward calculation of the adiabatic com-
pressibility coeKcient of the liquid over the explored
temperature range, with the help of the recent Los
Alamos liquid He4 volume data along the phase sepa-
ration line. In solid He, however, it is necessary to
assume that the velocity data refer to some type of
directional average of the velocities of the compres-
sional waves. This means that even on the working
assumption of the fictitious solid of complete elastic
isotropy, as a consequence of the possibly achieved
collection of a fair number of randomly oriented
crystals, one of the two elastic constants will have to be
approximated in an independent way. Let then X and
p, be the adiabatic Lame moduli, ' ' or coeS.cients of the
assumed elastically isotropic solid He . In such a solid,
the longitudinal, l, or compressional, and the trans-
verse, t, or shear, wa.ves of small amplitude have the
following velocities of propagation' 7:

L"l(p T)7=L~(p T)+2ts(p T)PIP(p T)

L~t(p, T)7=) (p, T)/a(p, T),
(1)

p(p, T) being the density of the solid in the state of
pressure p, and temperature T. It should be remembered

6A. E. H. Love, 3fd,theoretical Theory of Elasticity (reprint,
Dover Publications, New York, 1944), pp. 293—309.

L, Brillouin, Les Tensenrs en Meeanigue et en Etastieite (reprint,
Dover Publications, New York, 1946), pp. 212—349.

X,(p, T)W)t(p, T). (3)

The lack of desired precision to obtain, in the present
attempt, the approximate elastic moduli of solid He',
is compounded with the assumption of the fictitious
solid of elastic isotropy. Such an elastically isotropic
solid is then described in terms of two elastic moduli,
the two Lame moduli A and p, . The connection between
a linear combination of the two latter moduli of the
solid and the adiabatic bulk modulus ) z, of the liquid,
in equilibrium with each other, through

l (p, T)+lt (p,T)»z(p, T),
or

Lltz(p, T)3 '& Llt(p, T)+st (p, T)j ', (4a)

has been considered by us' in the limit of the heat
capacity ratios yz„or (C„,z/Cr, z), and p, or (C, , „/C, , s )
being close to unity. In this case, p& p, 1, the in-

equality (4a) is equivalent to the one connecting the
isothermal compressibility of the liquid, trr, z, (p,T),
with that of the solid, tts (p, T), the two phases being in
equilibrium along the phase separation line, or to

ttr, z(p, T) & tts (p, T). (5)

In the assumed elastically isotropic solid, p, &0. In
connection with the relation (5) considered earlier' the
volume decrease on solidification

aV„(T)= V&(T) V, (T)&0, —

Vl. and V, referring to molar volumes of the liquid and
solid, has to be kept in mind.

In elastically isotropic materials, the Poisson ratio

a =X/2(lt+tt) &0,

or the ratio of the transverse contraction to the longi-
tudinal extension under longitudinal pull, appears to be
positive. ' Empirically, ' in liquid He'II and solid He4,

here that solid He4 exists only as a consequence of the
application of external pressure. Inasmuch as the
longitudinal wave velocity data refer to a limited pres-
sure interval along the melting pressure and above it,
it will be shown brieQy below that it is justified to omit
the explicit pressure dependence~ of the right-hand sides
in Eqs. (1).In the liquid phase, the compressional wave
velocities of small amplitude are given by

L»(p, T)7=~z(p, T)/Pz(p, T) (2)

pl, being the density of the liquid, and ) & its adiabatic
elastic bulk modulus. In order to obtain the approxi-
mate moduli P and p of the solid, it is necessary, at the
present time, to assume that the adiabatic modulus X

of the solid, in equilibrium with the liquid, is equal, in
some approximation, to the bulk modulus ) ~ of the
liquid. This assumption, in the absence of sufhcient data
on the propagation of elastic waves in the solid, is

probably equivalent to the use of a lower limit of X.
One would expect, in general,
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p(P, T)&o, (10)

one obtains with (4), through (5), and with y values
near unity,

in equilibrium along the phase separation line, one has

bi(P, T)7&Lvi(P, T)7, (8)
or, with (1),

) (P,T)+2p(P, T)& LP(P, T)/pi(P, T)3&~(P,T) (9)

Since the possibility of propagation of shear waves
imposes, by (1), the relation

TABLE I. Approximate Lame moduli of solid He' along
the phase separation line.

1.28-1.44
1.44-1.76
1.80-1.92

2.28-2.29
2.29—2.36
2.58-2.62

PKb
(10' atm)

1.00

1.00—0.90

PC, I

1.38

PC, II

1.62

' This is the bulk modulus of the liquid.
b Hexagonal phase (H) at T (1.44'K; see reference 5.
' Cubic phase (C), with the two extreme values of the observed velocities

(I) and (II); 1.44 (~T ~(1.76'K. See references 5 and 8.

or
) (P,T)&) i(P,T)—sp(p, T)

X+p) Xr,+p/3) 0.

limitations on the types of terms retained in the series
representation of the elastic energy of deformation' the
Lame moduli may be written, in the present case,

Combining this relation with the condition (7) on the
Poisson ratio, one obtains

X,(p +p, T) —+X(P„,T)+p,
p(p-+ p, T) ~ p(P-, T) p— (18)

~(P,T)=L) (P T)+sp(p»)3 '

one obtains, within the above limitations,

(15)

(P»)=l (P,T)L1+(p '/2p ')1 ', (1~)

while the approximate Poisson ratio becomes

~= [&+(pvi'/p»~') j ' (17)

The approximate Lame moduli of the solid in equilib-
rium with the liquid along the phase separation line as
well as the approximate adiabatic compressibility co-
eKcient of the solid a(p, T) have thus been expressed in

terms of the experimentally measured densities, p(T)
and pr, (T),4 and longitudinal wave velocities vr and vr, .'
We should like to emphasize again the limitations of the
preceding expressions of the elastic properties of the
solid, limitations imposed by the lack of sufhcient wave
velocity data on the solid.

We give in Tables I, II, and III, the approximate
adiabatic moduli X and p, , the Poisson ratios 0- of solid
He', and the adiabatic compressibility of the liquid and
solid, respectively. With the exception of ~&, the adi-

abatic liquid compressibility, all of these are based on
the approximate method of derivation outlined above.
The Lame moduli have values in the range of 100 to
260 atmospheres, which would thus justify the omission
of their explicit pressure dependence at moderate excess
pressures above the melting pressure. Within various

(12)

The latter inequality is thus compatible with the as-
sumption stated above, or

(13)

which yields, with (1) and (2), the approximate shear
modulus as

2 (p T) =p(P, T)L~r(p») j' pi(P, T)L~—~(P,T)7 (14)

Also, through the definition of the adiabatic cornpressi-
bility of the elastically isotropic solid,

These modi6cations in the moduli predict the decrease
of the longitudinal wave velocities in the solid on com-

pression. By Eqs. (1), it is seen that the numerator of

TABLE II. Approximate Poisson ratios of solid He'
along the phase separation line.

T
('I)

1.28—1.44
1.48—1.76
1.80-1.92

0.35

0.37

O'C, I &C, II

0.29

the longitudinal velocity expression decreases on com-

pression, that is with increasing p, while its denomina-

tor, that is the density of the solid increases on com-

pression, with the latter increase being rather small

though. The behavior (18) of the moduli also yield a
decrease of the compressibility on compression according
to (15), as expected, of course. It is clear that in (18),
the eRect of the increased excess pressure p could also

1.28
1.32
1.36
1.40
1.44
1.48
1.52
1.56
1.60
1.64
1.68
1.72
1.76
1.80
1.84
1.88
1.92

4.39
4.38
4.38
4.37
4.37
4.36
4.35
4.34
4.33
4.31
4.29
4.27
4.24
3.87
3.85
3.84
3.82

&K

(10 '/atm)

3.39

3.38

3.11

&C, I

3.12

3.05

&C, II

2.97

2.90

TABLE III. Approximate adiabatic compressibility coefheients of
liquid (I.) and solid He'(H, C) along the phase separation line.
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be described in terms of the associated volume decrease,
so that in crossing from the larger volume cubic phase
(C),' into the smaller volume hexagonal close-packed
phase (H), the above type of modification of the moduli
would be expected to exist in the normal, constant
temperature-constant pressure first-order solid (C)-solid
(H) phase transformation. The change in the moduli
) and p, could be defined with more precision if shear
wave velocities were available, that is as long as the
assumption of elastic isotropy is acceptable. If the
Brillouin relations (18) were to describe, within limita-
tions, the effect of an excess pressure on the I.arne
moduli, this effect is more pronounced, by (18) and (1),
on the velocities of shear waves than on those of the
longitudinal waves. At the present time, experimental
indications' would appear to be consistent with the
relations (18).

It may be noted here that the liquid velocity data,
at the melting line, appear to be incomplete in that they
failed to exhibit the well-known cusp-like shape at the
passing of the temperature of the heat capacity anomaly
of the liquid. A more detailed investigation of the ve-
locities in the liquid along the melting line and around
the temperature of anomaly would be desirable. The
same remark applies to the velocities in the solid or
solids at and around their upper triple point.

In closing this section, we wish to re-emphasize the
approximate character of the elastic properties of the
solid derived above, and that the nature of the approxi-
mations achieved on these properties can not be assessed
satisfactorily at the present time. As soon as shear wave
velocities become available in solid He4, elastic moduli of
better approximation may be obtained, at least in the
hexagonal solid with its ideal axial ratio. In the latter,
as well known, the assumption of elastic isotropy may
be expected to be better justified, in contrast with the
body-centered cubic solid where elastic anisotropy pre-
dominates. ' The elastic properties obtained thus for the
cubic solid He' may be expected to be considerably
poorer approximations to their actual values than those
obtained for the hexagonal close-packed solid He'.

3. THE ANOMALOUS MELTING LINE OF He4

AT LOW TEMPERATURES

Ke have shown previously' that at temperatures
where the thermal excitations of both liquid and solid
He' would be expected to reduce to phonons of the
Debye type the entropy of solid He', in equilibrium with
liquid He4 along the phase separation line, should be
larger than that of the liquid. Or, with

' The structure determinations by x-ray diffraction of the low-
pressure solid He4 have been completed recently by A. F. Schuch
and R. L. Mills (to be published).

'A. F. Schuch, Proceedings of the Fifth International Con-
ference on Low-Temperature Physics and Chemistry, 3Iadison,
Wisconsin, August 30, 1957 (The University of Wisconsin Press,
Madison, Wisconsin, 1958), p. 79, D. G. Henshaw, in the same
Proceedings, p. 81.

lim AS (T)=Sr„(T) S—, , (T)
T sma11

&0,

solidification is accompanied by entropy increase. This
would be expected to originate with the excitation of
acoustic phonons of all three directions of polarization
in the solid continuum, in contrast with their excitation
in the liquid phase where the transverse polarization
phonons are absent. At low enough temperatures where

the thermal excitations of both phases might be
expected to be essentially of the continuum phonon

type, the temperature derivative of the melting pressure

p (T) was shown' to be given by

lim dp /dT= (4ir4/15) (T/81)'(R/AV )
T small

Xt1—(V /V, )"'(./ )'"v( )], (20)

where 0~ is the characteristic temperature of the liquid

along the melting line, R is the gas constant, AV is the
molar volume change on solidification (VI.-V,), Vi, and

V, being the molar volumes of the liquid and solid, ~,
and ~1, are the adiabatic compressibilities of the solid

and liquid, and p(o.), a function of the Poisson ratio
whose well-known form was given earlier. ' With the
I.os Alamos volumes Vl, and V„4 and the Yale sound

velocities, ' one finds, using the Tables of the preceding
section,

AV ~2 cm'/mole, y(o) = 10.6, 8r, =32.2'K,

so that the value of the quantity inside the square
brackets is (—6.55). To the approximation of the
Tables given above, and on the assumption stated on

the essentially continuum phonon type of thermal ex-

citations in both phases, as well as the approximate
temperature independence of the factors of T' in

Eq. (20), probably well justified at low temperatures,
one obtains, as predicted earlier, '

lim dp /dT= —(4n4/15)b(R/AV ).(T/81,)', (21)
T small

where b is the numerical value of the quantity in the
square brackets. If p„,o is the melting pressure in the
limit of the absolute zero, one obtains with (21), on the
assumption of 0~ being constant,

p (T)=p, o
—(ir4/15)b(R8r, /DV ) (T/8r, )'. (22)

With the large value of 8~ of about 32'K, it is seen that
the decrease of the melting pressure in the phonon
range of the thermal excitations in both liquid and solid

is quite small to be detected, let alone to be measured,
without possibly considerable labor, at the present
time. One has, indeed, with (22)

p (T=1.O K)—p„,= —O.OS2 atm,

with d, V taken to be 2 cm'/mole. Since p around its
minimum is about 25 atm, it is seen that the pressure
increase over a reasonable temperature interval, say



1524 LOU I S GOL DSTE I N

TABLE lV. Approximate Debye characteristic temperatures
of liquid (Hz) and solid He'(Hrr, so), along the phase separation
line.

1.28—1.44
1.44-1.76
1.76—1.92

32.2—32.3
32.3-32.6

~a('I)
23.7

~ ~ ~

22.3

~ ~ ~

27.6
~ ~ ~

29.9

0.5'K, amounts only to about 0.2%%uq of the total pressure,
at most.

For later use, the approximate values of the Debye
characteristic temperatures of the continuum solid have
also been obtained in terms of the approximate nu-
merical values of the Poisson ratios and the compressi-
bilities, Tables II and III. The explicit expression of the
solid characteristic temperatures have been given pre-
viously'; their approximate numerical values are in-
cluded in Table IV

If the thermal excitations of both liquid and solid He4

did reduce to phonons of the continuum type, and since
the calculated characteristic temperatures of the solid
may reasonably be expected to be fair approximations
to their actual values at T &1.0'K, with the derivative
(dp /df) becoming very small, the p (T) curve tends
to become a segment of straight line at T&1.0'K. This
state of affairs would, however, be strictly of observa-
tional origin, and it can not represent an actual thermo-
dynamically acceptable situation. It is, indeed, clear
that the entropies of the liquid and solid phases, being
continuous and differentiable functions of the variables
of state, can become equal only at isolated values of the
range of allowed variations of these variables.

The difhculty of observing the upswing of the melting
line p (T) at decreasing temperatures might possibly
be overcome through the observation of the nonmono-
tonic character of the volume lines Vl, (T) and V, (T).
The latter increase with decreasing temperatures, (4),
down to T&1.30'K, the lowest temperature of the
explored range. The volume lines could have maxima
at the same temperature where p (T) is minimum.
These volume and pressure extremes are reasonably
expected to occur at the temperature of intersection of
the locus of vanishing isobaric expansion coefficients

n„(p, T) or of the vanishing derivatives (eip/BT)y of
isochores of the liquid, tha, t is T (p)rr and the melting
line p (T). In the volume-temperature diagram, the
maximum of VI, (T) is at the foot of the locus of the
vanishing partial derivatives (r)Ur/r)T)„at the Vr, (T)
line. Inasmuch as dielectric constant measurements at
radio frequencies are susceptible of great precision
through frequency measurements, these could be used,
indirectly, to locate the peak values of Vz, (T) and V, (T)
as well as to verify the decrease of these volumes beyond
their maximas. It is of interest to note here that the
discussion given by us recently, ' of the thermodynamic

'~L. Goldstein, Ann. Phys. (New York) 16, 205 (1961).

diagrams of He', seems to apply in the case of He4 with
even less restrictions, as a consequence of the practi-
cally verified existence of the locus T (p) rr.

4. THE ANOMALOUS ISOBARIC EXPANSION
COEFFICIENT OF SOLID He4 ALONG

THE MELTING LINE

In our previous work, we have advanced various
arguments of thermodynamic character which tended
to indicate that the thermal anomalies of liquid He4II
may persist in the solid also, at least over a 6nite,
though possibly small, pressure interval above the
melting pressure, One could thus expect the isobaric
volume expansion coefhcient of the solid along the phase
separation line to be negative over finite temperature
intervals. This property could though be positive also,
with numerical values less than the absolute value of
the isobaric expansion coeKcient of liquid He'II in
equilibrium with it. The anomalies expressed by the
inequalities, the subscript s referring to the solid phase,

n. .(T p) = I:V.(»p)7 '(~V./~T). «,
pBS, (T,p)/ap7r) 0,

(23)

could actually be verified by us' using the rigorous
thermodynamic relation

n. .-(T,P) = LV.(T,P)7'(d V./d T)
+Kr, (T,p)(dp /dT), (24)

where the subscript m refers to equilibrium conditions
along the phase separation lines. A satisfactory evalua-
tion of o.„, of the solid was, however, prevented by the
complete absence of solid compressibility values ~z.
Only approximate liquid compressibilities ~&,1. were
available. In terms of the relation (5), it is seen that the
substitution of ap, z, for Irz, ~ in (24) yields an upper limit
of n~ „,since both Irz and dp /dT are positive quanti-
ties, the latter is positive over the explored temperature
interval. Or,

lim sup n~ = pV, (T,P)7 '(dV, /dT)
+&&.r(P )(dP /dT) (25)

These upper limits of the solid isobaric expansion co-
efhcients turned out to be negative at T &1.50-1.55'K,
and became positive above these temperatures up to
about 1.65'K. Beyond the latter temperature even ex-
trapolated liquid compressibilities f(:z,I.along the melting
line became unavailable.

In their recent experimental work on liquid-solid
equilibrium in He, Grilly and Mills have obtained iso-
thermal compressibility values of liquid He4 along the
phase separation line. The latter more accurate and
directly determined ~z, l, values, as compared with the
ones we were constrained to use, also yielded negative

values of the solid at low temperatures, in good
agreement with our earlier 6ndings.

It is possible now to achieve a possibly improved
approximation to 0,„, than the one obtained through its
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upper limit (25). Namely, the approximate solid. com-
pressibilities of Table III may now be used in (24),
provided that these adiabatic compressibilities z(T,p)
are not much smaller than the isothermal ones. Since,

"(T,p) =y(T,p)z(T,p), v=c./C„
where the heat capacity ratio p is necessarily larger or
at least equal to unity, it is seen that in terms of the
exact adiabatic compressibilities, one has

lirn inf. n~ (T,p) = V, '(dV, /dT)

+z(T,p) (dp„/dT). (26)

As will appear in the next section, the ratio y, in the
temperature range of interest here, appears to be close
to unity, so that if accurate adiabatic solid compressi-
bilities K(T,p) were available, the lower limit (26) may
be a fairly good approximation to the actual values of
n„, . The assumption on the normal elastic properties
expressed by Eq. (4a) has to be kept in mind in con-
nection with the anomalous expansion coefficients under
discussion.

Numerical evaluation of n~, with (26) and the
necessarily approximate values of z(T,p) of Table III,
again yields n„, values similar to those obtained earlier
with the upper limits (25). The approximate lower
limits of n~, became positive at T 1.55'K, where
they stayed positive and became zero again at 1.70'K,
beyond which they decreased again rapidly to reach
large negative values at the approaches of Ts(p ), at
1.76'K. These approximate lower limit solid n„, values
increase rapidly at T)Ts(p ) from large negative
values close to the latter to become positive again at
about 1.85—1.87'K. The existence of this latter anoma-
lous region of n„, around Ts(p ) has been erst sug-
gested by Grilly and Mills' on the basis of their attempts
at an approximate evaluation of the solid He' isobaric
expansion coeKcients along the melting line.

While this anomalous behavior of solid He4 confirms
and extends the anomalies found earlier, a direct ex-
perimental determination of the isobaric expansion co-
efBcients of the solid seems to be necessary, in view of
the absence of accurate solid isothermal compressibility
values zr to be used in the rigorous formula (24). These
experimental determinations of n„, would also help to
clarify the existence of the normal or positive expansion
coeKcients over a limited temperature interval along
the melting line.

5. THE EQUILIBRIUM BETWEEN THE ANOMALOUS
LIQUID He4II AND SOLID He4

The main results of the preceding sections concern
the likely naive phonon type of thermal excitations in
both liquid and solid He4 in equilibrium with each other
at low enough temperatures. At higher temperatures,
T&1.0'K, the anomalous, i.e. , negative, isobaric ex-
pansion coefhcient tends to rule out thermal excitations
due to phonons of the continuum type as being of any

quantitative significance. This conclusion is supported
not only by the anomalous negative sign but also by
the large numerical values of this thermal property. To
be sure, we saw above that the expansion coefficient of
the solid exhibited a normal or positive region over a
short temperature interval, bracketed by the anomalous
regions, with the one on the high-temperature side
derived with only approximate values of the solid com-
pressibility. This oscillatory behavior of the solid n„,
is rather strange, and its direct experimental investiga-
tion over its normal and anomalous regions, according
to the approximate calculations, is necessary and not
without interest.

These results have been obtained earlier, ' at least in
part, when we have also called attention to the possi-
bility of a mild transformation like process in solid He4

at or near the melting line.
The solidification process of liquid He4 is different at

low temperatures from what it is at higher tempera-
tures, as indicated by the shape of the melting pressure
line p (T).' In terms of the two-Quid model of the
liquid, we have shown' that the very strong tempera-
ture dependence of the liquid entropy, SL„, through
that of the normal Quid fraction (p„, /p ), the p's re-
ferring to the densities, determines in a first approxima-
tion, the very strong temperature dependence of the
temperature derivative dp /dT of the melting pressure.
This leads in turn to the stronger temperature de-
pendence of the melting line p (T) at the approaches
of Ts (p ), the temperature of the heat capacity
anomaly of the liquid. This result appears to emphasize
the expected dominance of the normal Quid atoms in
the solidification process. The physical interpretation
of this situation may be close to the one advanced
earlier. ' Namely, the solidification process, at tempera-
tures T)T (p )rr, being accompanied by entropy loss
of the liquid, the only atoms which can lose entropy are
those which have entropy to begin with, that is the
atoms belonging to the normal Quid fraction of the
liquid, which, by definition, carry alone entropy.

The two-Quid model of liquid He'II" seems to support
the simple picture, according to which the normal Quid

atoms Xr„„(T,p) are distributed over a group of excited
energy levels of the system as a whole, while the re-
maining (X—Xr„„)or Xr„s(T,p) atoms, E being their
total number, are still in a group of low-lying levels of es-
sentially vanishing excitation energy. "If the Xl., o atoms
of the liquid played only a secondary role in the solidi-
6cation process, such as changing necessarily their zero
point motion and energy, then the normal atoms E&,„,
on losing part of their entropy, may still retain in the
solid, in some limited sense, their inherently entropy
carrying character.

It seems of interest to consider the following argu-
ment which tends to favor also the possibility of the
normal Quid atoms to preserve on solidi6cation, in some

"L.Tisza, J. phys. radium (8) 1, 164 350 (1940).
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form, their normal character. Namely, the entropy
change is, from thermodynamics,

6,S (T)=Sr„„(T) S,—,„(T)
= (dp„/dT)/VI„(T) V, ,„—(T)j. (27)

The empirically determined melting pressure function

p (T), and its calculated temperature derivative were
found to be very rapidly increasing functions of the
temperature. But S, , (T) is a linear combination of the
very strongly temperature-dependent liquid entropy
Sr, (T), and of the similar function AS (T). Hence,
even though S, (T) can become numerically small,
its temperature dependence must resemble that of
Sr„(T) and DS (T) or (dp /dT). The temperature
dependences of these functions, according to their ex-
perimentally determined values, are such as to elimi-
nate naive or continuum phonon type of excitations as
being of any significance in solid He4 along the phase
separation line, across from the thermally anomalous
liquid He4II, at higher temperatures.

The preceding argument leading to the anomalous
temperature behavior of S,, is strictly of heuristic and
thermodynamic character. It does not involve any
element of a tentative description of the liquid in terms
of some model.

Ke would like to compare now the liquid entropy
Sz„(T) with the entropy of the solid S, , (T) over the
temperature range of interest here. The solid entropies
result from (27), with the empirical Sr, (T) values and
the recently measured AS (T) values. ' Inasmuch as
there are two sets of liquid entropy values which are
difIerent enough to give rise to consideraly different
solid entropies, the latter will have to be studied on the
basis of both sets of Sr„(T)values, those of Keesom" "
and those of Lounasmaa '4

The solid entropies S,, (T) with the Keesom Sr„„
values as well as the earlier set of DS values due to
Swenson" have been given by us previously, ' up to
the temperature of the heat capacity anomaly of the
liquid at Tp(p ). A recalculation of these with the more
recent Grilly-Mills DS values yields solid entropies
in good agreement with those obtained previously.
Above Tp(p ) the Keesom entropies are probably of
lower accuracy, particularly near Tp(p ), since when

they were evaluated the extension of the entropy
anomaly because of the positive sign of (BSz/Bp)z up
to the locus T (p)z)Tp(p), was unknown. Actually,
these liquid entropy values yield with the Grilly-Mills
AS values, at T&1.80'K, slightly decreasing solid
entropies. One is inclined to attribute this behavior,
which is rather dificult to contemplate, to the fairly
large combined uncertainties in both Sr„(T) and
DS (T). Between about 1.80 and 2.00'K, these en-

~~ W. H. Keesom and Miss A. P. Keesom, Physica, 3, 105 (1936).
'3 W. H. Keesom, Helium (North-Holland Publishing Company,

Amsterdam, 1942), pp. 226-247.
'4 O. V. Lounaslnaa, Cryogenics 1, 212 (1961).
~s C. A. Swenson, Phys. Rev. 79, 626 (1950); 86, 870 (1952);

89, 538 (1953).

tropics of the hexagonal solid seem to develop a plateau
like region at about 0.20 to 0.25 R.

At all temperatures T&1.30'K, the solid entropy
values are small differences of the liquid entropies Sl„
and the entropy changes AS . This is particularly pro-
nounced at the lower temperatures, where the accuracy
of the S„values is likely to become quite poor. At the
triple points Tg, liquid He'II-hexagonal solid He -cubic
solid He4, 4 ' of about 1.44 and 1.76'K, the solid entropy
has a discontinuous decrease given by

~S~,(T~) =Sc, (T~) S'a, (T—~), (28)

the entropy difference of the two solid modifications.
The numerical values of these transition entropies are
quite small, and their determination at the upper triple
point which seems to be close to' Tp(p„) could not be
obtained as yet with satisfactory precision. The Los
Alamos data bracket this entropy change approxi-
mately according to

0.03R &DSt, (Tp) &0.06R. (29)

0.07R)SIr,m(Tp) )0.044R. (30)

Beyond Tp(p ), as was the case with the solid entropies
SII, obtained with the Keesom entropies, these smaller
solid entropies resulting with the Lounasmaa liquid
entropies, have a decreasing trend which is now more
marked because of their lower values. These smaller

SII, entropies are now entirely within the range of
simple phonon entropies, in terms of the approximate
characteristic temperatures 0~ given in Table IV. It
should. be noted here that the possibly larger value of
0.07R of S~, (Tp) could not be easily reconciled with
continuum phonon excitations alone. At the present
time, the Sa(T) values along the cubic-hexagonal phase
transition line are not available.

In terms of the larger liquid entropies of Keesom, the
hexagonal solid entropy of about 0.14—0.11R at Tp(p )
would increase rapidly from this value to reach the
large plateau-like value of about 0.20—0.25R at
r& &.80'K.

The smaller liquid entropy values of Lounasmaa lead
to a numerically less anomalous situation, above all at
T) Tp(p ). The entropy of the solid along the melting
line, Sz, (T), that is the cubic solid entropy, increases
very rapidly with temperature to reach a value of about
0.10—0.11R at the triple point Tp(p ). To illustrate this
rapid increase, it will suffice to consider the ratio

Sc,„(1.68'K)/Sc, „(1.76') 0.5.

It should be noted that the ratio of these cubic solid
entropies resulting from the Keesom liquid entropies
is also about 0.5 at these two temperatures. The ap-
proximate entropy values at Tp(p ), taken to be the
temperature of the upper triple point, are now, in the
hexagonal solid, as a consequence of the uncertainties
in AS„(Tp) given above, such that
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where So,~ is the entropy at the start of the plateau-like
region. This entropy might possibly be connected with
the reaching of complete disorder within the liquid, in
the sense that the characteristic distribution of its atoms
over the group of excited energy levels and the group of
low-lying levels or the ground level of vanishing excita-
tion, has ceased to exist. In terms of the two-Quid model,
the peculiar static thermal properties of liquid He4II
might possibly originate with the circumstance that the
major part of the thermal excitations consists in the lift-
ing of atoms from the group Ã~ p(T, p) into the group of
excited atoms Nz, „(T,p), with the additional thermal
excitations of the latter group being of the order of a
correction, or very small in comparison with the former.
With,

Nz, „(T,p)+Nz, o(T,p) = const, (32)
one has

0= [B(Nz„+1Vz„p)/BT),hT+ $8 (1Vz„„+Nz„o)/8p7r pp,

or, for arbitrary oT and bp,

LONE, (T,p)/BT7 = —$8Nz„p(T, p)/BT7„, 33
pNz„„(T,p)/Bp7r = [BNz„p(T,p)/—Bp7r.

Since on thermal excitation, that is on temperature
increase, Ez„„increases, one must have

pNz„(T, p)/a T7„&0. (34)

If, in some approximation

Sz (T,p) o piNz„„(T,p), (35)

the entropy of the liquid is a measure of the number of
normal atoms, an assumption which seems to be fairly
well supported by the data on the entropy, as recog-
nized by Tisza, " then (34) is simply a statement
equivalent to the requirement of the positive de6nite
character of the constant pressure heat capacity. The
anomalous or negative expansion coeS.cient imposes
the positive sign on the partial derivative

$8Nz„„(T,p)//Bp7o &0 (36)

through that of the entropy. The latter inequality
ceases to be valid, in terms of the approximate entropy
representation (35), at T&T.(p)».

On the basis of the preceding two sets of entropy
values of solid He4 along the melting line, one is in
presence of two possible situations (A) and (8). In
case (2), resulting from the larger Keesom liquid en-
tropies, the solid entropy curve S, (T) is similar to
that of the liquid. That is S, (T), or Sz, (T), at
T&1.44'K, increases very rapidly through Tp(p ),
and after its discontinuous decrease there, continues
to increase as Szz, (T), reaching a plateau-like region.
If we denote by 7- a 6nite though small temperature
interval beyond Tp(p ), one has, in the liquid phase,

lim Sz„~(T)=Sp z, (T)+sz, (T); sz„&So,l-, (31)
T )Tp+r

Actually, the proportionality constant opi in (35)
depends to some extent on T and p, but this dependence
is very mild indeed in comparison with the dependence
of Nz„„(T,p) on these variables of state. The entropy
expenditure per normal atom a.pi may be written as

0 pl (S0,L/N) (35a)

so that So,&, the entropy at the start of the plateau-like
region, is achieved on exhausting the low-lying levels of
the system by lifting all the atoms into the group of
normal atoms. In Eq. (31), the additional small
entropy term s(T,p) may be associated with the more
routine type of thermal excitations, of possibly trans-
lational or of similar origin. Inasmuch as beyond the
temperature (To+7), assumed to define the start of
the entropy branch of strongly reduced temperature
rate of increase, the plateau-like branch, o.pi becomes
there essentially constant, the decreased temperature
and pressure dependence of the liquid entropy reduces
to that of s(T,p).

The preceding tentative modification of the approxi-
mate two-Quid picture of liquid He4I I accounts for the
extension of the anomalous static thermal properties
beyond the locus Tp(p) of the temperatures of the heat
capacity anomaly, although it goes beyond the locus
T (p)z. The return to normalcy there could originate
with the s(T,p) term, which could be included in (35),
and whose negative pressure derivative would com-
pensate the pressure derivative of Nz„„(T,p) at
T~&T-(p)i.

It seems of interest to further digress here on the
behavior of the entropy of the liquid. The empirical
results" ' seem to indicate, as is necessary, that

mls(T, p)/Bp7o &0,

and as would be expected from this normal component
of the entropy. The preceding relation manifests itself
through the loss of sharpness of the entropy plateau
formation with decreasing pressure. As s(T,p) increases
with decreasing pressure, it becomes a larger fraction of
Sp, z, (T,p) in the representation (31) extended to a state
(T,p) of the liquid, and the plateau-like behavi'or so
sharp along the melting line, disappears essentially at
the liquid-vapor phase separation line, to become
recognizable mostly by a sharp bend of the entropy
curve. This tendency to form a plateau-like region is
connected with the change in sign of the curvature of
the entropy Sz,(T,p) on the two sides of the temperature
of the heat capacity anomaly of the liquid. Or,

doSz/dT &0, T&To,' d Sz/dT &0, T&To, (38)

since the inequality

dSz,//dT= Cz,/T&0,

requiring the liquid heat capacity to be positive ever
along the melting line, is probably always satisfied here.
The entropy Sz, (T,p) is thus concave upward at T&Tp,
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(O'S+IOT') r, & (C+/T—p'), (43)

or the second temperature derivative jumps discon-
tinuously from the positive value of (O'S /d T') r p to the
negative value of (d'S+/dT')rp. The second of the rela-
tions (42) is equivalent to

~(d'S/OT') = (O'S IOT') (O'S Id T') (42a—)-
g0

with this negative discontinuity being Gnite. It is seen
at once that this discontinuity tends toward (—pp), if
the heat capacity tended toward infinity at Tp, on
either side or both sides of it.

Beyond To, the second derivative will have to in-
crease rapidly to insure the observed tendency of the
entropy to become Qat, with the formation Grst of a
minimum of C+, beyond which

dC+ldT=(C+/T) T~d S+/dT ~)0, —T)Tp+r,'(44)
the heat capacity increases, even though the entropy
is concave downward with a small enough numerical
value of O'S+/dT'.

The plateau-like region of the entropy would thus
start at T)Tp, where O'S+/dT' is much larger alge-
braically than at Tp, or much smaller numerically. The
entropy Sz, (T,p) would thus be continuous with its first
temperature derivative at Tp, with a break of the latter
at this temperature, on the assumption of the existence
of a cusp in the heat capacity. In addition, SI,(T,p)
would exhibit a step-function-like behavior, as a con-
sequence of its very rapid temperature increase on both
sides of Tp. It is the start of the upper step which we
have attempted to connect with the component entropy
Sp z, introduced through Eq. (31), with (Tp+r) being
the starting temperature of the upper step. At the
present time, a precise determination of ~ and Sp, r,

would be a rather dificult task, although both of them
could be bracketed. The preceding discussion seems to
describe qualitatively the liquid He entropy data""
over a fairly wide temperature range which includes the
temperatures of the heat capacity anomaly Tp(p).

and concave downward at T)Tp, in the (SI.,T) repre-
sentation. With

OCr/OT= (CI/T)+T(d'SI/OT') (40)

it is seen that if the heat capacity had a cusp at Tp,
then, omitting the subscript I,

dC /dT= (C /T)+T(d'S /dT'))0, T&Tp

OC+/OT= C~/T+ T(d'S~/OT') &0, T& Tp
(41)

and, the discontinuity of its temperature derivative, is

a(OC/OT)r, (OCi——/OT)r, (dC /d—T)r,
= Tpl:(O'S+/OT')r, (O'S —/OT')r-, ) (42)
&0.

The heat capacity cusp requires

In terms of the tentative interpretation here ad-
vanced, the physical meaning of the shape of the
entropy curves would require that the temperatures
Tp(p) do not correspond to the ending there of the
peculiar disordering process responsible for the anoma-
lies of the derivative properties, such as heat capacity
and expansion coeKcient or the associated entropy
increase on isothermal compression. The temperature
which would represent the end of this process appears
to be beyond Tp(p), at the starting temperature of the
upper step branch of the entropy curves. This raises, of
course, the problem of the connection between the tem-
perature at which the static equilibrium properties
become anomalous or T (p)i, the knee-point tempera-
tures $Tp(p)+r) of the entropy curves, and Tp(p), that
of the heat-capacity anomaly, which was claimed to
coincide with the start of the anomalous energy and
momentum transport phenomena. The discussion of this
problem, however, is outside the subject matter of the
present paper.

With the I.ounasmaa liquid entropies along the phase
separation line, the rapid temperature increase of the
solid entropy in the cubic phase is still preserved, this
was referred to, above, as case (B). But this behavior
stops at the upper triple point, yielding a one-sided
anomaly limited to temperatures T&Tp(p ). As em-
phasized already, the entropy values of this cubic solid
He' at the approaches of Tp(p ) appear to be too large
to be accommodated by Debye phonon excitations
alone. It should also be noted here, that this one-sided
anomaly of the entropy of the cubic solid leaves out of
account the negative isobaric expansion coefBcient of
the hexagonal solid along the melting line at tempera-
tures below that of the lower triple point at 1.44'K,
approximately, as well as the possible negative expan-
sion coefficient of this solid at pressures above but close
to the melting pressure.

The analysis of the entropy anomalies of both cases
(A) and (B) would be incomplete without studying the
heat capacities they give rise to. The very strong tem-
perature increase of the solid entropy along the melting
line leads, in both cases, to a similar increase in the heat
capacity at the approach of Tp(p ). In case (A), one
finds that the molar heat capacity of the cubic solid,
Cc, (T) reaches values of several R in the vicinity of
T,(p„). In case (B), a value of about 1.5R is reached
somewha, t below Tp(p ). These enormous heat capacity
values result directly from the two sets of liquid entropy
data, Sr„~(T), and the entropy change data hS (T),
using various numerical procedures, the analytical form
of these entropies being unknown. While the various
types of approximations yield different numerical values
of these heat capacities, they never fail to lead to very
large values, of the order of one or several R, in the
neighborhood of Tp(p ). On the high-temperature side
of Tp(p ), actually at T)1.80'K, one observes the
rapid fall of the heat capacities originating with the
case (A) entropies. In this case, as we saw above, the
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anomalous behavior of the solid should extend to both
the cubic and hexagonal solids at T& To(p ). Actually,
satisfactory solid heat capacities could not be obtained
from the entropies because of lack of precision in their
temperature variations at T&Ts(p ), as mentioned
already. The large decrease of the heat capacity of the
hexagonal solid can, however, be demonstrated by
simply using the liquid entropies beyond Ts(p ). The
liquid heat capacities are, indeed, upper limits of the
hexagonal solid heat capacities, according to the
Keesom liquid entropies" and the entropy change data
of Grilly and Mills. ' With,

Crr, =T(dsrr, „/dT)
=Tf(dsr„„/dT) (dhs„—/dT)$, (45)

and, the empirical result, ' expressed by

(dos /dT)&0, T&T,(p„)
it is seen that beyond Ts(p ),

T (dsr„ /dT) =CI„(T)&Crr, „(T). (46)

The heat capacity anomaly would be restricted in
case (8), to T&To(p ), in line with the one-sided

entropy anomaly of the cubic solid. It should be noted
though, that in the absence of the entropy values of the
hexagonal solid at T&To(p ), the one-sided character
of the thermal anomaly of the solid limited strictly to
the cubic phase has not been demonstrated.

We have studied, in some detail, the liquid heat ca-
pacities based on the Keesom entropies in connection
with the more elementary heat capacities, of constant
pressure, C„, ' ', and constant volume Cy, ( ), along
the melting line. It may not be entirely redundant to
give here the rigorous thermodynamic formulas, which
were derived very briefly some time ago in connection
with the liquid-vapor equilibrium, "and which connect
now the elementary heat capacities with those along the
melting line Cg, . One has here

C„, '~'=Cg, P1—P(1+Q)j ',

Cv, '~'=Cr.
,~L1+P(1+Q ')] ',

where
P=T(dVr„ /dT)(dP /dT)/Cr„„,

47a
Q= Vl. , „icr,(dp„/d T)/(d Vr„„/dT).

All properties on the right-hand sides of (47) refer to
properties along the melting line, VL„and Cl. , being
molar volumes and molar heat capacities, ~L, stands for
the adiabatic compressibility of the liquid along the
melting line. The preceding formulas also give, of
course, the elementary heat capacities C„, ('&, C&,
of the solid along the melting line, provided that C, ,

and V, , be used with the solid adiabatic compressi-
bility ~, on the right-hand sides of (47) and (47a).

The calculations indicated that while

"L.Goldstein, Phys. Rev. 112, 1465 (1958).

or pl„ increased slowly along the melting line, its value
in the vicinity of Tp(p„) reached values of about
1.15—1.20, approximately. A similar calculation per-
formed for the cubic solid, in case (A), and within the
limitations of the assumed elastically isotropic cubic
solid He4 adiabatic compressibilities of Table III,
yielded, approximately, values of (C„,„t'/Cv, „'l) or

which were only slightly larger than unity close to
Ts(p„). This then appeared to justify, to some degree,
the use of the approximate adiabatic compressibilities
of the solid phases instead of the isothermal ones in the
evaluation of their approximate isobaric expansion co-
efBcients in Sec. 4 above. The limitations inherent in the
assumption of elastic isotropy of the cubic solid has been
emphasized there.

Returning to the solid heat capacities arrived at in
the present work, it is of importance to note here that
solid He4 heat capacity measurements by Keesom and
Miss Keesom, " at pressures p &~42 atmospheres, or
fairly well above melting pressure, did not disclose any
heat capacity anomaly over the explored temperature
range, 1.25~& T~& 2.0'K, beside the observation that the
temperature dependence of these measured heat capaci-
ties was greater than the T' dependence.

Another series of solid He' constant volume heat
capacity measurements at pressures p&31 atmos-
pheres, "between about 0.5 and 1.5 K exhibited normal
volume dependence over the explored temperature and
volume ranges. These results tend to limit the anoma-
lous entropy and heat capacity regions discussed in the
present work to a fairly narrow pressure interval above
melting pressure. The limited temperature range of the
largest volume heat capacity measurements should be
noted here. The temperature dependence of these heat
capacities was reduced to a (T/8)s dependence, by
assigning to the characteristic temperature of the solid
a fairly strong temperature variation with a peculiar
maximum at about 0.7—0.9'K.

We have often referred, in the present work, to the
limiting Debye continuum type of phonon system.
Isobaric expansion coeKcients, entropies and heat ca-
pacities resulting from various indirect data on liquid
and solid He4 have been compared with corresponding
properties originating with the simplest continuum type
of phonon excitations. This seems to be justified at the
present stage of the scarcity of data on solid He4, in the
pressure and temperature intervals where anomalies
might occur. The complete breakdown of the limiting
simplest model of phonon excitations clearly emerged
here at the approaches of Ts(p ). The phonon system
associated with the discrete lattice motions, "including

"J.Wilks, Proceedings of the International Conference on I.om-
Temperature Physics (Oxford University Press, New York, 1951),
p. 33; F.J.Webb, K. R. Wilkinson, and J.Wilks, Proc. Roy. Soc.
(London), A214, 546 (1952).' For the most recent reviews of the status of the theory,
compare M. Blackman, in Eiicydopedio of Physics, edited by
S.Flugge (Springer-Verlag, Berlin, 1955),Vol. VII/1, pp. 325—382,
and G. I.eibfried, in the same volume, pp. 104-324.
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the low-frequency, or a,coustical, and high-frequencv,
Or optical branches of characteristic vibrations with
their respective groups of polarization directions is,
necessarily, the only realistic method of description of
thermal excitations in crystalline solids, like solid He .
The practical usefulness of this method of approach
necessitates various experimental data. These may
comprise the empirical determination of the dispersion
laws of the characteristic vibration spectrum of the solid
o (k), k being the propagation vector of the vibration
of frequency ~, along a direction specified by a. The
derivation of the associated spectral distribution func-
tion p(o) of the characteristic frequencies, which defines
through the Planck thermal distribution of the vibra-
tions the total excitation energy and the corresponding
constant volume heat capacity, raises in turn a problem
whose solution is again approximate, of semiempirical
character, at least at a certain stage of the corresponding
knowledge of the empirical t (k) function. The approxi-
mate heat capacities resulting from the theory lead to
temperature variations different from the limiting con-
tinuum model T' law. These originate with the tem-
perature dependence of the characteristic temperature
which in some cases become quite strong. " If con-
firmed, the peculiarities in u(k) and p(u) must be ulti-

mately responsible for the entropy and heat capacity
anomalies of solid He' at, or near, the melting line and
near To(p ). The problem of the negative isobaric ex-
pansion coeQicients of the solid, both hexagonal and
cubic, at T&1.50—1.55'K is probably another aspect of
the apparent thermal anomalies of the solid He4 phases.

Ke would like to conclude by stating that while the
above-mentioned solid He4 heat capacity measurements
favor a fairly normal behavior of this solid over the
explored temperature and pressure ranges, additional
experimental work on heat capacities and isobaric ex-
pansion coeS.cients would be of great interest over a
region of the phase diagram around the melting pressure
line. These should clarify the presence or absence of the
various anomalies which present data, however indirect,
seem to favor. In view of the possible connection
between heat capacities and heat conductivity co-
eKcients, experiments on the latter, in the relevant
pressure and temperature intervals, would be also
desirable.
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A theory of the decay of an electric current in a superconductor is presented. The calculations have been
done using a model within the BCS theory of superconductivity, ignoring magnetic eGects. The decay of
current, from a specially chosen initial state, is found both for low temperatures and for temperatures near
the critical temperature. The persistence of currents remains unexplained. The related problem of thermal
conductivity is re-examined in an Appendix.

1. INTRODUCTION

HE Bardeen-Cooper-Schrieffer' (BCS) theory of
superconductivity has been quite successful in

explaining the thermodynamic features and the
Meissner Effect. There has, however, been no quantita-
tive veri6cation of the transport properties of supercon-
ductors. For example, Bardeen-Rickayzen- Tewordt'
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~ J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113,
982 (1959).

(BRT) applied the theory to the case of thermal
conductivity of superconductors but their results were
in disagreement with experiment. The basic question of
electric conductivity has found no satisfactory answer.

The main purpose of this paper is a study of how an
electric current decays in a BCS superconductor. The
calculation is based on a simple model in which the
interaction between quasi-particles can be neglected
without error.

Bogoliubov' has observed that a state of the electron
gas which results from the BCS ground state by a
small displacement in momentum space, is stable, or

s N. N. Bogoliuhov, Nuovo cimento 7, 794 (1958),'


