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Relationship between Velocity-Dependent Potentials and Hard-Core Potentials
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It is shown that, outside the range of the velocity dependence, the two-body wave function resulting from
a repulsive velocity-dependent force is exactly the same as that produced by an angular-momentum
dependent potential outside a hard core.

'HE purpose of this paper is to clarify the relation-
ship between two-body hard-core potentials and

repulsive velocity-dependent potentials. We shall show
that, outside the range of the velocity dependence, the
wave function resulting from a repulsive velocity-de-
pendent force is exactly the same as that produced by
a hard core and an angular-momentum dependent
potential. The apparent core size obtained by dropping
the angular-momentum dependent terms is larger for
nonzero angular momentum than fox zero, and is energy-
independent for zero angular momentum.

As any but the simplest theory of nuclear forces in-
volves contributions of a velocity-dependent type (or
nonlocal, which is in effect the same), it seems likely
that there are, in fact, velocity-dependent forces
between nucleons. Relativistic corrections introduce
(small) velocity-dependent forces. For example, the
Dirac equation for an electron moving in a static po-
tential may be reduced rigorously to a Schrodinger
equation with a velocity-dependent potential. '

We will prove the above results by transforming the
two-body Schrodinger equation with a velocity-de-
pendent force of the type considered by Green' and
Razavy, Field, I.evinger, Rojo, and Simmons into one of
standard, nonvelocity-dependent type. A somewhat
related investigation was reported by Bell4 from, how-
ever, a rather different viewpoint. We start with the
Schrodinger equation for a pair of nucleons

l (1/4M)Ltz(r)p'+2p tt(r)p

+P'p(r)3+ V(r))ib(r) =~4(r) (1)

where tz( ~)=1. The condition for a repulsive force is
p.&1. We have chosen this Hermitization for de6nite-
ness. It is the one implied by the Weyl correspondence'
for the classical quantity ts(r)p'. Other Hermitizations
differ from this one only by a function of r. Equation

As we have chosen p, and U to be functions of r alone,
we may separate (2) into radial and angular components
I't~(8, io)ft(r). If we now make the transformation

Eq. (2) goes into

r=r(p),
A=&(p)ut( )

u(r)n(p) d'ui -»'(p)u(r) 2p(r) t '(r)
+ + +

L"()j' dp' — L"()]' r(p)"() "(p)
r" (p)p(r) -du, (p)

n(p) + z[V'p(r) jn(p)
Lr'(p)]' dp

tz (r)n" (p) f 2tz (r) tz'(r)
+— +i, +

L '(p)l' ~ (p) '(p) '(p)

«" (p)p(r), l(l+1)p(r)
"(p) ut(p) — n(p)ut(p)

Lr'(p)j' — r'(p)

M
+—P~—I'(r( ))3 ( )u ( ) = o (4)

A2

If we equate the coefficient of dut(p)/dp to zero, we may
readily solve for n(p). It is

n(p) = Lr(p) j—'Lr'(p)/tt(r) j' '.

Likewise, equating the coefficient of n(p)d'ut/dp'- to
unity, we obtain

r'(p) = Lp(r) j'" (6)

(1) may be rewritten as

tt(r) VQ(r)+ Vtt (r) VP(r)+g (r) V'tt(r)

+ (~/~') L&—I'(r) j4(r) =o (2)

Thus,
n(p)=Lr(p)j 'Lp(r)) '". (~)

Substituting (6) and (7) into (4) and dividing by n(p),
we obtain, after a little manipulation,

d'ut(p) l(i+1)t (r)
ut(p)

dp2 r2

3II- tz' tt'(r) 1)+—, ~—I'(r)+ &'(r)
A2 23f Stz (r) r f
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This equation is now of the usual static-potential type.
Matrix elements between states f (r), pb(r) of (2) are
related to those between the corresponding states u. (p),
pb(p) of (S) by

P.*(r)SiPb(r)r'dr = u.*(p)Sub(p) dp, (9)

where S is any operator, and p is rela, ted to r by the inte-
gration of (6),

I
u(r)]-»'dr. (10)

Outside the range of the velocity-dependent potential,
u(r) =1, and hence in that region

p r ay ut tl'ly

where

Dropping the angular-momentum dependent terms
we have a hard core of state-dependent radius; however,
the radius is always at least as large as given by (12).

The l(l+1) factor must, of course, be replaced by the
Legendre differential operator if the wave function
is not an angular momentum eigenfunction. YVe remark
that a hard core could be exactly simulated, outside
the range of the velocity dependence, by subtracting
this term from the original Hamiltonian. This remark
is equivalent to Bell' s' result that a slightly more compli-
cated velocity dependence than contained in (1) simu-
lated a hard core exactly. If a potential W(R) outside
a hard core of radius a is used to 6t two-body scattering
data, then by reversing the steps which led to (14) we
see that the family of velocity-dependent potentials
characterized by the arbitrary function p(r), which are
implied by

{1—[u(r)]—' '}dr. (12)
1 d d l(l+1)

/b(r) ——r'——
r' dr dr [p (r)+a]'

R=p+a. (13)

In the velocity-dependent potential-free region, R=r.
Equation (S) becomes [let w&(R) =u&(R—a)]

To study the apparent effect of the velocity-dependent
force let us introduce

M
+d/b(r) ~+,'v'p(r)-+ E —w(p(r)+a)—

52

fs' /b'(r) 1
/ '(r) —— 4 /(r) =0, (13)

2M Su(r) r

where p(r) and a are given by (10) and (12), give identi-
cal results for the two-body problem. Identical results
for the two-body problem do not, of course, necessarily
imply identical results for the m~ny-body problem.

We have investigated the effective size of the core
implied by the velocity-dependent potentials of Rojo
and Simmons. ' They take

d'wb(R) l(l+1) M
w, (R)+—Z — V(r(R a))—

dE.' R2 A2

X (/b
(r(R a))

w/(R) =0, (14)
S/b(r (R—a)) r (R a)3— (16)p(r)=1+se 'e

Thus, from (10) and (12),

/b(r (R—a)) 1 fs'

+—l(1+1) —— p'(r(R a))—
iV [r(R—a)]' R' 2M

subject to the boundary condition w&(a) =0. We see at
once from the form that this is exactly the problem of a,

potential (enclosed in large square brackets) outside a,

hard core of radius a. However, the effective potential
is angular-momentum dependent. As the coeScient of
l(l+1) in the potential can easily be shown. [from (10)—
(13)]to be non-negative, to drop it to obtain an angular-
momentum independent potential is equivalent to add-
ing an attractive potential. The effect of an attractive
potential is to bend the wave function more rapidly
toward the axis and hence w/(R) =0 for a value of R& a,
its original intercept. Thus, we have shown that the
velocity-dependent force given by (1) is exactly equiva-
lent to an angular-momentum dependent potential
outside a hard core.

p(r)+a=r+2P ln

—1+(1+se—r/e)1/2-

a=2P ln
1+(1+s)'"

~ J, I,. Gammel an. d R. M. lhaler, Phys. Rev. 107, 291, 1337
(&9S7).

Using their values of s=10.0 and p=1/'3. 6 f, we com-
pute a=0.43 f. This size is quite comparable with, for
instance, that found by Gammel and Thaler. '
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