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The Mandelstam representation in potential theory is proved for superpositions of absorptive, energy-
dependent Yukawa potentials. The dependence of the potential V(r, s) on the energy s is such that V(r,s)
is analytic in the s plane cut from s0 to infinity, where s& is a threshold for inelastic processes. Such a potential
is implied by the causality condition that the scattered wave cannot precede the incident wave. Further, it
is shown that certain interactions nonlocal in both space and time can also be reduced to the above type of
local, energy-dependent potential. The postulate of ahsorptivity )ImV(r, s) 0) is crucial for the existence
of the usual Mandelstam representation. The relationship of the absorptive potentials in the Schrodinger
equation and in dispersion theory to unitarity is discussed. An analysis of partial waves with complex
angular momenta is given from the point of view of the Green's function, and it is shown that absorptive
energy-dependent causal potentials behave qualitatively like real energy-independent potentials, so faz as
Regge pole trajectories are concerned. Regge poles for emissive potentials can behave anomalously. Absorp-
tive potentials may, however, give rise to new singularities in unphysical regions.

I. INTRODUCTION tions of the weight function pi(s, m') to which one is
led by requiring causality and over-all conservation of
probability. The requirements to be placed on the
potential lead to the following restrictions on pi(s, m'):
(a) pi(s, m') is, for every m, an analytic function of s in
the s plane cut along the real axis from so&0 to infinity;
(b) pi(s, m') is such that

~
V (s,r) ~

(Ã/r' for all s and r,
where 3f is a fixed constant independent of s and r;
(c) ImV(s, r)+0 for all r. The branch point at so

corresponds to an inelastic threshold; one hopes that a
potential of the type (2) ca,n represent quite generally
the inHuence of inelastic processes on the elastic
scattering amplitude. Justification for the representa-
tion (2), along with conditions (a) and (c), will be
given in Sec. II; further, it will be shown that certain
types of potentials which are nonlocal in both space
and time variables can be given equivalent representa. -

tions in the form (2).
The proof of the Mandelstam representation, just as

in the ordinary potential case, proceeds in two steps.
First, one proves the analyticity of the scattering
amplitude f(s,t) in s for f fixed inside the Lehmann
ellipse; then, one proves that f(s, t) for fixed s is analytic
everywhere in the finite I, plane. It is the fact that the
potential can be written as a sum of Yukawa potentials
that allows one to conclude the analyticity in t. These
questions are taken up in Sec. III.

There are at least two methods of proving the energy
dispersion relations: the Fredholm method, based on
the work of Jost and Pais, ' and used by Khuri' in his
proof; and what will be called the Green's function
method of Klein and Zemach. " The essence of the
K.lein and Zemach argument is knowledge of the
analytic properties in k=s"' of the Green's function of
the Schrodinger equation G(r, r'; k). For a Hermitian
Hamiltonian (real potential) these properties are well

HE Mandelstam representation, which remains
unproven in field theory, has been proved for

scattering by real energy-independent potentials which
are superpositions of Yukawa potentials' ': the
potential must be of the form

V(r) = —— dm' ps(m')
m0

2

The real static potential of Eq. (1) does not, represent
the most general kind of spatially local potential for
the description of the elastic scattering of two particles
within the framework of the Schrodinger equation;
rather, one is led to consider energy-dependent poten-
tials of the type

1. AT

V(r, s) = —— dm' pi(s,m'), (2)
7r m02 r

where s is the total center-of-mass kinetic energy' and
p& is not necessarily real. Such energy dependent
complex local potentials have long been utilized in the
optical model; they have also been suggested by the
full relativistic Mandelstam representation. ' In this
work, the Mandelstam representation will be proved
for potentials of the type (2), subject to certain condi-

s R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).
9 N. N. Khuri, Phys. Rev. 107, 303 (1957).
"A. Klein and C. Zemach, Ann. Phys. (New York) 7, 440

(1959);C. Zemach and A. Klein, Nuovo cimento 10, 1078 (1958).
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known: G(r, r'; k) is analytic in k except for poles in
the lower half k plane, and poles along the positive
imaginary axis corresponding to bound states. When 6
is expressed as a function of s, there appears a branch
cut of the square root type along the positive real s axis,
corresponding to the continuous spectrum. Provided
conditions (a)—(c) given above are satisfied, the Green's
function for a complex energy-dependent potential can
be shown to have the same analyticity properties,
except that there is an additional branch cut in the s
plane, beginning at sp, the threshold for inelastic
processes. Then, one may take over the Klein-Zemach
arguments to prove the dispersion relations in energy.

The analyticity in momentum transfer has been
proved by a number of authors' ' for Yukawa-type
potentials, and these proofs may be taken over at once
for the energy-dependent case. Once the Mandelstam
representation is proved, it is possible to give an
algorithm for computing the spectral function in terms
of the complex potential so that a knowledge of the
potential together with the Mandelstam representation
is equivalent to the Schrodinger equation even without
the usual unitarity condition.

In Sec. V, we also discuss complex angular moments
from the point of view of the Green's function method.
The Green's function for the complex potential case is
the inverse of an operator H= —V'+ V(s,r) which
depends parametrically on the complex quantity s.
Likewise, the Hamiltonian which determines the
partial-wave amplitudes:

depends parametrically on /, where / is now allowed to
take on arbitrary complex values. Exactly the same
methods used to determine the analyticity in s of
(s II) ' may be us—ed to study the analyticity in l of
(s—II&) ', whether or not the potential V is energy
dependent. One has a united approach to the analytic-
ity of scattering amplitudes, based on the Green's
function method, in both s and /. It is shown that, for
absorptive potentials which satisfy conditions (a) and
(c), the qualitative behavior of the Regge trajectories is
the same as for the energy-independent case, whereas
for emissive potentia, ls $1mV(s,r))0] one can expect
strange, unphysical behavior of the trajectories. These
general considerations are illustrated by the exactly
soluble case of the Coulomb potential with complex
strength ll )12

II. PROPERTIES OF ENERGY-DEPENDENT
INELASTIC POTENTIALS

An energy-dependent (inelastic) potential in the
Schrodinger equation is equivalent to the introduction

"The real, energy-independent Coulomb potential has been
studied by V. Singh (to be published)."R.Oehme, Nuovo cimento 25, 183 (1962).

of an interaction which is nonlocal in time, so that the
scattered wave at a point is not necessarily emitted at
the instant the incident wave arrives. The causality
condition insists that the scattered wave is never
emitted before the arrival of the incident wave.

The Schrodinger equation,

is equivalent to

with

and
4'(r t)=4'(r)e "'

1
U(r, t) =— dr V(r,s)e"".

2x
(6)

if s 'V(r, s) —+ 0 as s ~ ~.
Condition (c), the condition of absorptivity, follows

readily from the consideration that the total particle
Aux cannot increase. Since the solution to (4) is assumed
stationary, we have

(9)

From the Schrodinger equation (4), one finds that (9)
can be written

(10)
where

is the usual expression for the particle fiux. The in-
tegrated Aux through the sphere at inanity is then

2 d'r ImV(r, s)
~
y(r)

~

'.

The condition of microscopic time-causality requires
that P(r, t) at time t depend only on its past hist:ory,
and not on its future. This means that U(r, t—t')
vanishes for t') t or

U(r, t) =0, t:0.
Since V is the Fourier transform of U we have the
result that V(r,s) is regular in the lower half s-plane,
Ims(0. If we assume that ImV(r, s) =0 for s less than
some positive tllreshold sp, it follows by the principle
of reflection, V~(r, s) = V(r,s*), that V can be continued
analytically everywhere in the upper half s plane. Then
V(r, s) is analytic everywhere in the s plane cut from so
to infinity, which is condition (a). We can use Cauchy s

formula to represent V by an integral,

ImV (r,s')
V(r, s) =— ds' +Vo(r),

s —s—ze
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The integrated Aux consists of two parts: the incoming
wave and the outgoing wave. When inelastic processes
complete with elastic processes, fewer particles leave
the scattering region than enter it, because some are
absorbed. It follows that the net integrated fIux is
negative, which implies that. ImV(r, s) 0. This is the
absorptivity condition. It should be noted that this
condition is to be interpreted as holding on the upper
side of the branch cut in V(r,s), since one supposes
that a small positive imaginary pa, rt is added to s to
insure outgoing scattered waves.

The plein-Gordon equation can also always be cast
into the form of Eq. (3) with s=~' —p,'= k', so that as
long as s is the square of the incident momentum the
subsequent discussion is valid for the scattering of
relativistic or nonrelativistic particles by spatially
fixed potentials of the form of Eq. (1).

The interaction in (4) is nonlocal only in time. One
might wish to consider also interactions which are
nonlocal in space as well as in time. It is probably
unnecessary to achieve such generality, according to
the work of Chew and Frautschi, ' which is considered
later; nevertheless, we can show that the dispersion
relations hold for certain kinds of spatially nonlocal
potentials. That. it is possible to do this follows from
the fact that a class of spatially nonlocal interactions
can be replaced by local energy-dependent potentials
which give the same wave functions. "We consider, for
example, a retarded interaction of the form

1
E(x,y) =— ds k(x,s)e*'&.

2'
(13)

The interaction becomes

Hrg= dt' d'r'E(x, t t' ix—x'i—)

&&/( xt') x—x'
~

'. (12)

We assume that E(x,y) behaves like an ordinary
potential in x for every y; it is well behaved at the
origin and vanishes su%ciently fast at infinity.

Suppose E(x,y)=0 for y&0. As before, P( tx') is
taken to be a stationary solution, with energy s. Let

III. PROOF OF THE DISPERSION RELATIONS

A. Absorptivity Condition in the Entire
Complex Plane

We have seen. that the potential" V(s) is an analytic
function in the cut s plane, and that in this cut plane it
obeys U*(s)= V(s*). We decompose V(s) into its real
and imaginary parts

V(s) =Q(si)ss)+tw(si)ss)) (2o)

where s= s,+i sr. The absorptivity condition states that

We determine a function U(x,s), such that

P"+s]ib(x) = V(x,s)P(x),

which leads at once to the equation

V(x,s) = —47rk(x, s)(V(x,s) —s+s')] '. (18)

We can solve for the potential explicitly:

V(x,s) = -,' (s—s') —L-,' (s—s')' —4rrk (x,s)]"'. (19)

The negative sign in front of the square root is chosen
so that V(x,s) goes to zero like k(x,s) as g —+ Go. For
each "causual" V(x,s) in Eq. (19) we obtain a retarded
k(x,s). The converse is not so a,utomatic. Now suppose
that k(x,s) is such that the square root in. the effective
potential never vanishes (thus avoiding branch points
in s whose location depends on x), and that k(x,s) is
analytic in the entire s plane cut from so to infinity.
This potential is automatically absorptive, if the
principal branch of the square root is chosen. Then
V(x,s) likewise has a branch point at ss. If k(x,s) is
sufficiently well behaved in x, V(x,s) can be approx-
imated as closely as is desired by a sum of Yukawa
potentials, and the proof to be given of the Mandelstam
representation holds for a wide class of retarded
interactions. Actually, the generalization to nonlocal
interactions does not lead to much physical insight,
since one does not know what to choose for the interac-
tions; further, if the Mandelstam representation is
sufFicient, only local energy-dependent Yukawa poten-
tials need be considered for the description of scattering
on the energy shell.

Hrg= d'x' k(x,s)e "~* *'hP(x') ~x—x'~ '. (14)

We can write symbolically ib(x')=e's &* *'ib(x), where
q= —iV, and find

lim w(sr, ss) ~0 for all si.
~2~0

We presume that V(s) vanishes at infinity

lim N(si, ss), w(si, ss) =0.
]s/~ o

(21)

(22)

Hrg= 4mk (x,s) (7'+s') Q(x).

The Schrodinger equation now reads

(15)

f—gs —s—4~k (x,s) (q'+s') —']it (x) =0. (16)

Now both I and m are harmonic functions of si, s2 in
the upper half plane. The boundary of this half plane
is the real axis plus the contour at infinity, and every-
where on this boundary we have w(s&, s&) ~0. Since a
harmonic function never takes on its maximum value

's W. E. Frahn, Nuovo cimento 4, 313 (1956); 5, 393 (1957); '4 We suppress the dependence of V(s,r) on r when convenient
W. E. Frahn and R. H. Lemmer, ibid 5, 523, 1564 (1957.). in this section.
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in the interior of its domain of harmonicity, it follows
that III(SI,S2) ~0 everwhere in the upper half plane.

The condition V(s*)= V*(s) implies

N(sI&sp) =Q(si, sp),

W(SI)SP) = '18(SI) —SP).
(23)

and thus on the boundary of the lower half plane,
w(si, sp) 0. But w is harmonic in this plane, and since a
harmonic function never takes on its minimum value
in the interior of its domain of harmonicity, w(si, sp) 0
everywhere in the lower half plane. The two results
found so far may be combined into the single statement,

sgnw(s) = sgn ImV(s) = —sgn. Ims, (24)

true everywhere in the cut s plane. This is the condition
of absorptivity generalized in the entire s plane.

It is convenient to translate our results into the k

plane, where k= s"' (the principal brancy of the square
root is to be taken). Let k=x+iy. Then the potential
as a function of k obeys

V(s) = V(k') =I(x'—y', 2xy)+ no (xi —y', 2xy)
=—U(x,y) + iW (x,y)

and (23) becomes

U(x,y)= U(—x, y),

W(x,y) =—W(—x, y),
or more simply

V*(k') = V[(—k*)'j.

B. Analyticity of the Green's Function

Ke define the Green's operator by

(23)

G(s) = [s Hp V(s)j—'— — (26)

in the s plane cut from 0 to infinity; the physical
Green's operator is defined as the limit of G(s) as
sp ~ +0. The Green's function is defined as the matrix
elements of G(s) in a coordinate representation:

G(r, r', s) = (r
~
G(s)

~

r'). (27)

Those points where G(s) fails to exist, or is an un-
bounded operator, are known as the spectrum of
H(s) =Hp+V(s). The points where G(s) does not exist
comprise the point spectrum and correspond physically
to bound states, if they occur on the first s sheet (upper
half k plane). The points where G(s) is unbounded, or
the continuous spectrum (there is no residual spectrum),
correspond to scattering states. Suppose for a moment
that V, and hence H, were independent of s. It is then
a well-known result" that the matrix elements of G(s)

"M. H. Stone, Iinear Transformations in Gilbert Space and
Their A pplication to Analysis (American Mathematical Society,
New York, 1932), pp. 138/142.

It follows from (21), (22) that on the lower side of the
real axis that

11II1B) (si)sp) —0)
s2~—0

are analytic functions of s, except for s in the spectrum
of H. We shall show that, when B and V depend on s,
a very simple modification of this result is true; the
matrix elements of G(s) are analytic functions of s in
the resolvent set, except for the singularities of the
matrix elements of V(s). (The complement of the
spectrum is known as the resolvent set. )

Our first task is to locate the spectrum of H(s). We
can indicate the importance of the absorptivity condi-
tion (24) by simple considerations which serve to
locate the bound states. Suppose there exists a square-
integrable solution f(x; s) of the Schrodinger equation:

[—V'+V(x;s) —sjf(x;s) =0.
Then also

[—V'+ V*(x;s)—s*)f*(x;s)=0.

(28)

(29)

Multiply (28) by f*, (29) by f, subtract the two
resulting equations, and integrate over all space to get

d'x
~
f(x; s)

~

'[w (x; s) —Ims j=0. (30)

[H(s) sjf= f', —
[H(s) s/g =f', —
[H (s)—s]k=0.

(31)

The last of Eqs. (31) corresponds to (28), and one
carries out simple manipulations in Hilbert space to
arrive at an equation corresponding to (30). The
Hilbert-spa, ce operator responding to w(x; s) is

Ip (s)—= (2i)—'[V (s)—Vt (s)$. (32)

The continuous spectrum is located by a simple
modification of the procedure which shows that the
continuous spectrum of a Hermitian operator lies on
the real axis."We assume that G(s) exists—i.e., s is
not in the point spectrum —and 6nd those s for which

G(s) is a bounded operator. We may also assume
without. loss of generality that w(s) is bounded —tha, t

For any s with Ims/0, (30) is an untrue equation,
~ since the quantity in brackets can never vanish, by

virtue of the generalized absorptivity condition (24).
It follows that bound states can occur only for Ims=0,
III(x; s) =0. The bound states are, therefore, just where

they are if V were real and energy independent —on the
negative real s axis.

These considerations unfortunately cannot be used
to locate the continuous spectrum, since the wave
functions f(x; s) are then non-normalizable, and one
cannot perform the steps leading to (30). We therefore
turn to a Hilbert space analysis of the spectrum,
following Stone." The equations referring to Hilbert
space which locate the bound states are a direct trans-
cription of Eqs. (28)—(30). H(s) s fails to hav—e an
inverse if and only if there exist vectors f, f', g, k
such that, with f g=h, —
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to And

A '(3 B)B '—=8'— (33)

G(s) —G+(s) = —2z(G+(s) I w(s) —Ims]G(s) }. (34)

Then for any vector g,

(g, LG(s) —G'(s)lg) = (g,G(s)g) —(G(s)g,g)
= —2z(G(s)g, w (s)G(s)g)+2i ImsllG(s)gll' (35)

We take the absolute value of both sides of (33) and
use Schwarz's inequality,

1(G(s)g,g), I (g,G(s)g)
I

~ IIG(s)gll llgil,

to come to

IImsIIG(s)gll' —(G(s)g w(w)G(s)g) I =IIG(s)glf Ilgll (36)

Because of the assumed boundedness of w(s), there
exists a number w, (g) which, in general, depends on
the vector G(s)g, such that

(»)
with lw, (g)l ~w, and

w„(g) ~0 for Ims) 0

w, (g)) 0 for Ims(0.

Then (36) becomes

(38)

IIG(s)gll llg I I
Ims —w,. (g) I-. (39)

G(s) is therefore a bounded operator except for those
s's for which the denominator of (39) can vanish. Here
the condition of absorptivity becomes important, for
by (38) it is assumed that the denominator can never
vanish for Ims/0. We note the analogy between (3)
and (39): in both equations, w(s) —Ims appears, and
in both equations the nonvanishing of that quantity
insures that s is in the resolvent set. Because of the
absorptivity condition, we have for any g, s

It follows that

I
Ims —w, (g) I

—'&
I

Ims
I

—'. (40)

is, for any vector g, I (g,w (s)g) I

~w, (g,g)
—=w, llgll'. For

those vectors g needed to construct the scattering
amplitude, w(s) is indeed bounded. In any case, if
w(s) is unbounded, so that the number w, can become
arbitrarily large, this only improves the boundedness
of G(s), as will be seen. The condition of absorptivity
means that w(s) is non-negative-definite in the lower
half plane, non-positive-definite in the upper half plane.

Ke use the identity

is exactly that which one 6nds for Hermitian operators, "
and it is now guaranteed that the continuous spectrum
of H(s) lies on the real s axis.

We define the domain D as the resolvent set of G(s)
minus the singular points of V(s). We can now easily
prove that the matrix elements of G(s) are analytic in
D. First, G(s) has matrix elements continuous and
single valued in D, since G(s) is the bounded inverse
of an operator H(s) which has continuous and single-
valued matrix elements in D. If G(s) were not bounded,
we could not draw this conclusion. Secondly, we may
calculate the first derivative of G(s) by a simple
application of the identity (33), because G(s) is bounded
and continuous in D. We have

BG(s) G (s+As) —G (s)= lim
As~0 As

8 V(s)= —G'(s)+G(s) G(s), (42)
8$

s—s Sgg
—s

where the sii are the (negative) bound-state energies,
and pii(r) are the bound-state wave functions, chosen
to be real. The integral over the continuous spectrum
exists for almost all r, r'.

It should be noted that G(r, r', s) is really a function
of k=s&, just as the free-particle Green's function is. It
is for this reason that there is a branch cut along the
real s axis. We therefore write G(r, r', k) for the Green's
function. Because of (25), one has

G*(r r' k)=G(r'r k"'). —

C. The Klein-Zemach Method

To 6nish the proof of the energy dispersion relations,
one simply uses the known results of Klein and Zemach, "
which for the sake of completeness, we sketch here.
Let the potential be

which is evidently single valued in D, since V(s) is
analytic in D. Then the matrix elements of G(s) are
bounded and single valued, and have single valued
derivatives everywhere in D, and are therefore analytic
functions of s in D. In the present case, G(r, r'; s) is
analytic in the s plane cut from 0 to infinity, with the
exception of the bound-state poles on the negative
real axis. We may write

[p(r, r', s)] y~(r)ya(r')
G(r, r'; s) = ds' +g (43)

IIG(s)gll~llgll IImsl ', (4&)

and hence that G(s) is bounded everywhere except on
the real s axis. We can now see that the assumption of
the boundedness of w(s) is actually unnecessary, for,
if w, (g) is allowed to increase without limit for a
sequence of vectors g, the inequalities (39), (4) are
fulfilled more ancl more strongly. The condit, ion (41)

U(r s) = —— dm' po(nz')e m"r '
tn0'

p, (s',m')
ds'dm' -e 'r '

s —s
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The matrix elements of V are:

(kI V(s) Ik')=—— d'r e'&"-"'—'V r, s
4m

p, (t') 1 p, (s', t')
dt' —— dt'ds'

t' —t m2 (t' —t) (s' —s)

—= —V (s,t) = —Vp(t)+ V, (s,t), (46)

X U(r', s)G(r', r; k) U(r, s)e'~'. (47

G~, q44q and the invariance of the Green sBecause of (25~, i, ~, an

, r' —& —r —r', we havefunction to r, r —& —,—',

F*(k,t)=F(—k*, t)(t real) (48)

~ ~

We may isolate t e oun-h b d-state pole terms explicitly,
by using ( g 0~43&~f r the Green's function:

F(k, t) = V(s, t) d—'r—d'r'ds' e'~"'—" ' '

4x

V(r', s)p(r, r'; s') V(r, s)

s —s

Z(s s ) 'LR(»lt)s) R(»)t)») j—

= —
I
k—k'

I

'= —2s(1—cos0) a,ndwhere, as usual)
f r the scattering amplitudes=k' One may then write or e

(with t 4—rN p')

1
s, t) =—P (k, t) = V(s, t) —— d'rd'r' e ""

of (49) through

F (k t) = d'rd'r' (r'
I T(k, t)

I r)

R(si), t,st) = d'rd'r' (r'I R(sa, t,si))
I
r).

We can write t e oh f llowing dispersion relation:

,( 'I ( ', ) I )

k"—k +Q, 52
Sg—S

our F includes the real k axis and the
finit in the upper a p ane.y

52 over r, r' we wou ave a
cat

' l't de provided that wegscatterin amp i u e,
h the order of integration. e uscan exc ange e

t. Thenthat t is is egil 'timate for the moment.

k'dk' . (53)
P(k', t)

F(k, t) =P
k"—k'Sg—$ X'Z „ i

ehaves well enough, the onlyIf the Green's function ehave, nl
tion from the semicircle at infinity is

f the otential has droppedr -de endent part o t e po e
out of sight, but this is no an icap
dispersion relations.

'
n 48 we come to theFinally, by using the relation, we c

usual dispersion relation

R(sr), t,se)
F(k,t)= f(s,t)=g V, t

where

+P (s—si)) R(sii)t)st))—1 49) 1 Imf(s', t)
+— ds'

3 3 ~ i(k r—k -r)/ tR(se, t,s)= —— d rd r e'
47I-

XV(...)y ()y ( ')U(",.). (50)

in (49) contains any poles,
and that, since V(r,s) is real for s 0, R se, t,se is rea .

The exponentials in (47) may be written

~t I/2k r—k' r'= —-'x (r+r')+n (r—r)(s——,t

n= (k'+k)
I
k'+k

I

—'. For t fixed andwhere 4=k' —k, n=

p t
iforml in k for real un erconverges uniform y

'

on: 0)t) —4m02. Furt er, t e inh h integrand in'
hlfk l p f() y pp ~ p

d-state oles on the imaginary axis, w ic
in (49). D fi th int randshave been separated off in . e n

a inar art is an identity, since Vo andg' yp

e e — of the otential vanishes as
I sI ~ ~, and is not repeated here.

D. The Momentum Transfer Dispersion
Relations

ofotential (45) is a combina, tion o
h ( )i alYukawa potent' ials one can prove t a s,

h the exception ofite t lane for fixed s, wit e
cut h l t is whose locationpoles and branch cut hcuts on the rea axis,

ial '—' Blanken-

Klein' has given a proof base on a s u
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IV. COMPLEX POTENTIALS AND UNITARITY

In the absence of inelastic scattering the potential to
be used in the Schrodinger equation and that derived
from field theory or from the Mandelstam representa-
tion are identical. Inelasticity and the consequent use
of complex potentials gives rise to diGerences in the
definition of the potential which depend upon its use.
The relationship of the imaginary part of the potential
to the unitarity condition is significantly different for
the Schrodinger equation potential and that suggested
by Chew and Frautschi' from the point of view of the
Mandelstam representation. For the Schrodinger
equation we insert the exact eigenefunction p(r) which
satisfies

&(y) &z& r+y is+rf(s t)— (56)

into Eq. (10) and integrate over all space to find

Imf(s, 0) = k(4zr) ' dQ'
~ f(s,t') ~

z

1
dr ImV(s, y)

~
z ~

r
~

'. (57)
47r

The second term on the right involves the exact wave
function y(r) over all space. The field theoretic-
dispersion relation potential gives rise to a different
and simpler relation. There are two conventional ways
of constructing such an effective potential: via the Low
equation in field theory; and via the full Mandelstam
representation. ' The two prescriptions give the same
result.

We consider first the problem of defining the potential
from the viewpoint of conventional field theory. Let

series for f(s,t). These methods do not allow one to
discuss the behavior of f(s,t) as t~ ~. Regge and
co-workers' ' have been able to show that there are no
essential singularities at infinity in the t plane for a
wide class of potentials, by using the very interesting
method of complex angular momenta. These proofs
are not repeated here (the Regge work will be discussed
in Sec. V); we only point out that it is evident that the
dependence of the potential on s cannot effect the
analyticity of f(s,t) in t. The final result is that one
comes to a double-dispersion formula for f(s,t);

a~(t) 1 p(s', t')
f(s,t) = Vo(t)+g +— ds'dt . (55)

B sB s &2 (s' —s) (t' —t)

We do not consider the question of subtractions. The
residues gzz(t) are polynomials in t of deg tz, where lzz is
the angular momentum of the bound state. Again,
notice that the potential Vi (s,t) is not explicitly
exhibited, but, by (46), Vi(s, t) can be expressed as a
double integral of the type occurring in (55) and
hence may be explicitly exhibited if desired.

there be two types of point interactions (i.e., potentials)
in the theory. One is, say, a four-point elastic potential
V". Also there are interactions which are inelastic,
i.e., vertices which involve particles other than those
in the elastic channel. Such vertices we denote by V'".
The elastic scattering process consists of all processes
which have the same two final particles as initial
particles. This includes, of course, other processes than
those in which U" alone occurs. We wish to decide on
a modification of V" which allows us to discuss the
elastic problem as if there were no inelastic channels.
To do this, we separate the full T matrix, which
describes all channels, into four submatrices:

+21 T'22

where 1 refers to the elastic channel, 2 to the inelastic
channels. Because of time-reversal invariance, T is
symmetric in the indices 1, 2. We now wish to formulate
our problem in terms of a new potential V' which is in
general a complex, energy-dependent operator, and the
elements T".To do so, we use the equation,

T= V+TGOTZ, (58)

It is evident that this equation is equivalent to a purely
elastic Low equation with a modified potential:

where

11T 11t

T.,= V'~b+Q
S—Sg+Zb

T 12T 21t

V'.b= V.b'+Q
S $()+ZZ

(60)

(61)

Since V" is Hermitian,

V, b V'~q"= —2—Zrz pd 5(s sd) T„d"Tdb"Z-
2i Im V', b. (62)—

It is evident from (62) that ImV' is a negative-definite
Hermitian operator, and is therefore automatically
absorptive.

It is the spirit of the 5-matrix theory that only those
relations which involve matrix elements on the physical
shell are to be introduced. In that sense, Eqs. (58)—(61)
are suspect. But (62), which gives the imaginary part
of the potential, is a legitimate relation. If one now
assumes that the potential is an analytic function of the
energy s on the basis of the causality arguments given
above, one can express the entire potential V' in terms
of on-the-physical-shell quantities only, by using the

where Go ——(s Hb+ie) —' and take matrix elements of
this equation between elastic states:

11T' 1lt T' 12T 21$

ii V el++ +P (59)
S—Sr+ZZ ~ S Sg+Ze
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Cauchy formula:

1 ImV', s(s')
V' s(s)= V,s"+— ds

I or physical $,

pt(s', t')
ds'dt'

(s' —s) (f—t)

1 pr(s, t')
Im V'(s, t) =+— dt'
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withone can therefore deal with the behavior of f(s,t) as

~

t
~

—+ ~ by knowing something about the locations of
the poles, since Pt„L—1—(t/2s)j tae™for large t,
fixed s.

Let us suppose for the moment that f(l,s) has the
following properties: f(l,s) is analytic in Ims&0 for all
real l with Rel& —1/2; for all s, f(l,s) is analytic in
Rel& —1/2, except for a finite number of simple poles.
LThe affixes of the poles in l move with s; there is some
relation l= l„(s), where l„(s) is analytic in s, which gives
the affixes of the poles. ) Also assume that f(l,s) —+ 0
along any ray in Rel & —1/2. Then the Mandelstam
representation can be proved from (73) for potentials of
the type Vp(r) in (45).' The essence of the proof (which
we shall not give in detail here) is that the integral in
(73) converges and defines an analytic function of
cos8=1+t/2s with the exception at most of the cut
Re8=0, or cos8 real and &1. This assertion follows
from the asymptotic behavior

—d' —1/4
H(s) = — +V (r,s), I.= , —n=(+1/2)'.

dr r r2'

The parameter cx may now tat.e on all complex values.
There is an obvious analogy between this problem and
the energy-dependent potential problem; in both cases,
we are studying operators which depend on a parameter.

We denote the (outgoing) Green's function for (74) by

(r'~ A '(n, s) ) r) = (r'~ G(n, s)
~
r) =G(r', r; n, s). (75)

The Green's function is a function of l=n"' —1/2, just
as it is a function of k=si, so we also write G(r,r'; l,k)
for the Green's function. Those values of /, 4 for which
the Green's operator is bounded from the resolvent
set 5. First, we write down the scattering amplitude
f (l,s) —=P (l,k) in terms of G(r,r'; l,k), and show that the
only singularities of F(l,k) come from the singularities
of the Green's function, if l, k are constrained to the
region Rel& —1/2, RekWO. Then we study the singular-
ities of the Green's function.

-wave amplitude is

P~(—cosg)(sim. l) ' e n"'

as ~Iml~ —+ oo with Rel= —1/2. On the other hand, The partial
f(s, t) is known to be analytic in the Lehmann ellipse, '
which intersects the real cosi7 axis at cos8=1+mps/2s, f(lP):P(i»)
and hence f(s, t) has a cut in

or

1+ms'/2s(cosg( ~

mo'(/( ~.

dr r'j &'(kr) U(r, s) — drdr' rr'j t (kr) U(r, s)

0&G(r,r'; l,k)V(r', s)j t(kr'). (76)

The bound-state poles occur when l (sa)=mii ma a
non-negative integer, for some s~&0. The bound-state
poles may be explicitly exhibited, and yield —V(l,s) = —(2s) ' dm' pp (m') Qt (1+m'/2s)

where

R (s~)P s(1+t/2slr) (2ma+1)

l '(se) (s—se)
pt(s, m )+ dm'ds' Qt(1+m'/2, )

s —s
(77)

where the Qt's are Legendre functions of the 'second
kind.

As a function of l, V(l,s) is regular in Rel& —1/2, and
has poles at t= —1, —2, . . . . These poles are not of
interest to us. As a function of s, there is the usual
left-hand branch cut beginning at s= —mp'/4 for
integral /; otherwise, there is a branch point in s at the
origin. To study the analytic properties of the second
integral in (76), the following facts about the j&(kr)
are useful: The jE's are entire functions of l, with branch
points in the argument kr at kr =0 for nonintegral /. For
Rel & —1/2"

l„'(se) =—l„(s)
dS s=sg

We study the domain of analyticity of f(l,s) by the
Green's function method. This domain has already been
deduced by Regge, ' ' and we have nothing new to say
about real energy-independent potentials (although the
Green's function method may give an intuitively clearer
picture than the original ground-breaking Regge work)
The motivation of the present work is twofold: erst to
put the analyticity in l of f(l,s) on the same basis as
the analyticity in s, and secondly, to provide a trans-
parent means of studying the qualitative inhuence of
complex energy-dependent potentials on Regge pole
trajectories.

tA'e wish to study the Green's function of the operator

7 (s) I
(G

[
s

[
itele( lmz[ (78)

(Better bounds than this exist, but we shall not need
them. ) If l, k are in 5, the Green's function is bounded,
which means that we can replace the Green's function

' G. N. Watson, Theory of Bessel Funcbi ons (Cambridge
University Press, New York, 1952), 2nd ed. , p. 49.

d' n —1/4
+ +V (r,s) s= H(s) s+nl. =A—( s—), (n74)— —

dr r
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in (76) by a constant, for purposes of determining
whether or not the integral converges. Since the
potential behaves like e o", the inequality (78) implies
that the integrals in (76) formally converge only for
IImkl &'mo, or Res) —mo'. We can, however, use a
modification of a trick of Bottino, I.ongoni, and Regge
to define (76) outside this range. Suppose that, in (74),
we let r be complex. The potential V(r, s) is analytic in
r and vanishes exponentially at infinity if Rer)0. By
Fuch's theorem, " the solutions to (74) are regular in
Rer)0, and hence the Green's function G(r,r'; l,k) is
analytic in Rer)0, Rer')0. The Bessel functions and
the potential are likewise regular in this region; hence
it follows that the paths of integration in (76) may be
ta,ken along any rays r= lrle", r'= Ir'le'", with Isl,
I
s'I & -', m., for those values of k for which the integrand

vanishes sufficiently fast at infinity. From (78), one
easily finds that permissible values of k satisfy

IImke"I «mo cosa, lal - —,'m. (79)

1(g Ig) I
«Allgll'

I (g,«(s)g) I
««'llgll' (8o)

for any vector g. It follows from (76) and (78) that 1.,
«(s) are in fact bounded for those vectors g needed to
construct the scattering amplitude.
We may then write

(g,Lg) =~(g) llgll',

(g,«(s)g) =«(g)llg I'

(81)

' E. Y. Copson, Tlseory of Fzcnctions of a Comp/ex VuriaMe
(Oxford University Press, New York, 1935), p. 234.

In particular, those k are allowed for which Imke"=0
which, as s ranges from ——,'~+e to -', m —e includes the
entire k plane except for the imaginary axis. One also
finds that (79) is satisfied with k= &ilk, if Ikl &'mo.

Let the set D contain the points Rel) —1/2, and the
entire k plane cut from imp to ~, and from —imp to
—~. We conclude that the integrals in (76) converge
uniformly in k, l and absolutely in the intersection of D
with the resolvent set S. If l is integral, and l, k are in

5, it follows that the second integral in (76) defines an
analytic function of s in the s plane cut from —mp' to
—~. This shows, incidentally, that the entire discon-
tinuity on the left-hand cut in the region —mp' s(—~mp' is given by the first Born approximation, Of
course, if l is nonintegral, there is a branch point at
the origin of s, coming from the Bessel functions.

We have proved that the only singularities in f(l,s)
for l, s in D are those arising from the singularities of
the Green's function, aside from the branch points in
k for nonintegral l. Therefore, what remains is to study
the singularities of the Green's function. As was the
the case for the complex potential, we may assume
without loss of generality that both 1. and «(s) are
bounded, that is, there exist numbers A, m, such that

with
0&~(g) «A,

0««, (g) ««„ Ims 0;
0&«, (g) ~ —«„ Ims) 0.

(82)

The last line is an expression of the absorptivity condi-
tion. We may now carry out the steps which led to
(39) and find

IIG(~,s)gll = llgll I
Ims —1m~A(g) —«(g) I

'.

Now the term Ims —«,, (g) always has the sign of Ims,
by (82). Because A(g)&0, we come to the conclusion
that G(n, s) is bounded in

Ims) 0, Imn) 0; and Ims 0, Imn &0. (84)

We may then conclude, as in the case of the energy-
dependent potential, that G(r,r';n, s) is an analytic
function of both n and s in the region given by (84).
This is not the largest region of analyticity in (a,s);
the domain of ho1omorphy can be found by a process of
analytic completion under certain circumstances, ' e.g. ,
the highest angular momentum for which there is a
bound state is known. The domain of holomorphy is, in
general, the largest region in which f(l,s) is regular
This domain is exactly that which is found for real
energy-independent potentials, ' which fact depends in
an essential manner on the absorptivity condition. If
«, (g) were to have signs opposite to those stated in (82),
no general conclusion could be drawn at all.

It is interesting to specialize the parameters in (83).
Let us take s real, s -so, so that Ims, «, (g) vanish
identically. Then, from (83), G(o.,s) is bounded and
analytic whenever Imo. /0, that is, everywhere in the
o. plane except for the real o. axis. This confirms the
results of Regge" that f(l,s) can have poles in the l

plane for real s since the entire l plane corresponds to
two sheets of the n plane, and G(n, s) may well be
analytic on one sheet and have poles on the other,
Analyticity on a full sheet of the a plane implies that
there are no singularities in one or the other half planes
in the l plane. As mentioned before, G(o, ,s) is really a
function of a"', and shouM therefore have a branch cut
along the positive n axis. The unboundedness of
G(n, s) along the real axis simply reflects the existence
of this cut. The poles for real s are physically connected
with resonances'' and should lie in the upper half l
plane. Therefore, we conclude that the lower half l
plane (at least for Rel) —1/2) is free of singularities,
for real s sp.

Now let us suppose that s is real, but s)sp. The
denominator of (83) becomes

I
Im~~(g)+«. .r(g) I

=
I
2 «(~+ 1/2) Im»(g)+«(g) I.

We have Re()+1/2)&0, and «, (g) «0, A(g))0, so
this denominator can vanish only for Iml) 0—exactly
as for the real potential. It is interesting to notice that,
if one crosses the inelastic branch cut, so that «, (g)
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Fro. 1. Regge trajectories for emissive (E), absorptive (A),
and real (R) Coulomb potentials. sp is the threshold for inelastic
processes.

changes sign, singularities may occur for Iml) 0,
Rel (—1/2.

So far, the qualitative behavior of Regge poles is the
same for energy-dependent absorptive potentials as for
real potentials. There is one further aspect which is

worthy of note, and which points out the significance
of the absorptivity condition. We study the Regge
trajectories for real s with the soluble example of an
energy-dependent absorptive Coulomb potential.

The Coulomb potential is perhaps not such a good
illustration, because of its long range, but it is exactly
soluble. Singh" and Ohme" have studied the Regge
trajectories for real Coulomb potentials.

First we must understand the presumed path of pole
trajectories for real potentials. ' 4 In the l plane, the pole
begins on the negative real axis at s= —~, and moves
to the right as s increases, staying on the real axis for
s&0. If there are bound states, the trajectory stays on
the real axis for a while in the physical region (Rel 0),
but, when s becomes positive, the trajectory curves into
Im/&0. Finally, as s increases, the trajectory crosses
the line Re/= —1/2 again at some positive value of Im/.

Let us consider the potential

U(r, s) =g(s)/r,

where g(s) is analytic in the s plane cut from sp to
the well-known solution to the Coulomb problem"
allows us to write the S matrix easily:

e"'= I'(/+1+ig(s) (2k)
—')/I'(l+1 —ig(s) (2k)

—'). (86)

Now I'(s) is analytic for all s except for poles at x=0,
—1, —2, . . . so the poles of the 5 matrix occur at

l= —e—1 ig(—s)(2k)—'; +=0, 1, 2, . . . (87)

since I'(s) never vanishes. Let us suppose Reg(s) 0,
s sp. (This is automatically true for the energy-
dependent part of absorptive potentials. ) Then for
all negative s (k=i

~
0

~ ), The poles begin at l= e —1, —
and stay on the real 1 axis, giving an inhnite number of
bound states for /=0, 1, 2, . . . , and leaving the real
axis at l=+ ~ for s= —0. It then jumps discontin-
uously, so that at s=+0, l= rl, 1+i. A—s s—increases,
the trajectory can behave three different ways, depend-
ing on whether Img(s) is less than, greater than, or equal
to zero. Figure 1 shows the possible paths. The path
labeled R corresponds to g(s) real and constant; the
path 2 corresponds to an absorptive potential $1mg(s)
(0]; and the path E corresponds to an emissive
potential )Img(s)) Oj. The path E may intrude into
the physical region; absorptive potentials, however,
display no such unphysical behavior.

In summary, the qualitative behavior of Regge
poles for complex absorptive potentials in the physical
regions of / and s is perfectly acceptable, while emissive
potentials may behave anomalously. This is to be
expected, in view of the fact that a Mandelstam
representation exists for absorptive potentials, but not
necessarily for emissive potentials. It is possible that
absorptive potentials may give rise to additional
singularities in unphysical regions, e.g. , Rel( —1/2, or
on the unphysical s sheet.
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