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Spin Density Waves in an Electron Gas
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Q, is shown rigorously that the paramagnetic state of an electron gas is never the Hartree-Pock ground
state, even in the high-density —or weak-interaction —limit. The paramagnetic state is always unstable
with respect to formation of a static spin density wave. The instability occurs for spin-density waves having
a wave vector Q=2ktr, the diameter of the Fermi sphere. It follows that the (Hartree-Fock) spin suscepti-
bility of the paramagnetic state is not a monotonic decreasing function with increasing Q, but rather a func-
tion with a singularity near Q=2kr. Rather convincing experimental evidence that the antiferromagnetic
ground state of chromium is a large-amplitude spin density wave state is summarized. A number of conse-
quences of such states are discussed, including the problem of detecting them by neutron diBraction.

I. INTRODUCTION

idealized electron gas—namely, lV electrons

~

~

conined to a box of volume V and having a uni-
form, rigid background of positive charge to guarantee
electrical neutrality —has been the subject of much
theoretical study during the past thirty years. The
elementary theory is the Hartree-Fock (HF) approxi-
mation, which defines the best S-electron wave func-
tions that can be written as a single Slater determinant
of one-electron wave functions. HF states have almost
always been employed as the E-electron basis functions
for further reinements of the theory. In any event, the
nature of the HF ground state is of some interest.

Traditionally, the belief has been that an electron gas
can have either a paramagnetic or ferromagnetic HF
ground state, depending on the electron density,
N=E/V. The paramagnetic sta, te is a Slater determi-
nant of plane waves, having occupied all one-electron
states with wave vector k lying within a Fermi sphere
of radius k&, for both spin states. The HF energy per
electron of the paramagnetic state is

(8'/N) „=(3tssk p'/10ttt) —(3e'kt /4tr),

the sum of the kinetic energy and the exchange energy.
The relation between e and kg is

rt=kps/3m .
The ferromagnetic state for an electron gas of identical
density is a Slater determinant having all electron states
within a sphere of radius 2'"kp occupied, but only for
spin up, say. The HF energy per electron of the ferro-
magnetic state is

(W/Ã) t =2" (3s'kttpts/10rtt) —2"'(3e' kr/4'). (3)

A comparison of Eqs. (1) and (3) indicates that the
ferromagnetic state has lower energy than the para-
magnetic state when

kt. &5trte'/(2"+1)2trA'=0 66X10s cm. ' (4)

Consequently, a high-density electron gas would be
paramagnetic and a low-density one would be ferro-
magnetic. This criterion was erst derived by Bloch. The

' F. Bloch, Z. Physik. 57, 545 (1929).

ferromagnetic state considered above is completely
polarized. Partially polarized states must also be com-
pared, but one can easily show that they always have
higher energy than the smaller of (1) and (3). If the
electron density is extremely low, signer' has shown
that a HF state with electrons localized near lattice
positions would have lower en.ergy than (3). The
system, then, could no longer be described as an
electron gas.

In Sec. III it will be shown, contrary to general
belief, that the paramagnetic state is never the HF
ground state. Specifically, the paramagnetic state is
always unstable with respect to formation of a static
spin. -density wave (SDW). In fact, the instability is
suQiciently great that a general proof valid even in the
high-density —or wea¹interaction —limit can be con-
structed. A low-density electron gas will still be ferro-
magnetic (in the HF approximation), but the critical
density will be smaller than that corresponding to (4).
It seems safe to presume that the HF ground state is
indeed a SDW state (except for the low-density
ferromagnetic range) although, strictly speaking, all
that has been proved is that is has lower energy than the
historical HF "ground state. "

The SD% instability of an electron gas in the HF
approximation has been pointed out earlier' by the
writer, although the demonstration given there was, for
the sake of simplicity, limited to a one-dimensional gas.
The original surmise had arisen from a study of a three-
dimensional electron gas, similar to that presented here
in Sec. III. Several authors4' have suggested that such
HF instabilities cannot occur in the three-dimensional
case, either generally or for weak interactions. However,
their arguments have neglected the wave-vector de-
pendence of exchange interactions characteristic of
Coulomb forces. It is true that SDW instabilities are
less general in three dimensions that in one, e.g., they
are never ground states for 5-function interactions in
three dimensions. ' So considerable care is required to

' E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938).' A. W. Overhauser, Phys. Rev. Letters 4, 462 (1960).
4 W. Kohn and S. J. Nettel, Phys. Rev. Letters 5, 8 (1960).
s A. Yoshimori, Phys. Rev. 124, 326 (1961).
'This question has been investigated partially by Yoshimori

(see reference 5) who studied the instability resulting from tt-func-
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establish the nature of the ground state in any particular
case. It is necessary to emphasize that a consideration
of only small deviations from the paramagnetic state is
not suQicient for establishing the stability of that state.
For example, the critical electron density corresponding
to (4) is 35% larger than the critical density that would
have been obtained if only small ferromagnetic devia-
tions from the paramagnetic state were tested.

Of course, the ultimate question of physical interest is
the nature of the true ground state of an electron gas.
Until methods are developed which do not depend on a
prejudgment of the final outcome, recourse to experi-
mental behavior can serve as a guide, even though real
metals do not conform to the idealized model. Correla-
tion corrections will tend to suppress SDW's just as they
tend to suppress ferromagnetism. Therefore it is not
surprising that almost all metals appear to have
paramagnetic ground states. But there are some excep-
tions. Considerable experimental evidence indicates that
the antiferromagnetic ground state of chromium is just
a large amplitude SDW state. This is discussed in Sec.
VIII. The recently discovered anomalies in the magnetic
susceptibilities of vanadium and molybdenum' may
also arise from a SDW transition. The susceptibility
maximum observed near 100'K in palladium' is another
candidate. A SDW of small amplitude would have very
minor physical manifestation, so the (remote) possi-
bility of a more frequent occurrence cannot be easily
ruled out on the basis of existing experimental evidence.

In the following section the nature of a SDW in the
HF approximation will be elaborated. It will be assumed
that the reader is familiar with HF theory. The usual
derivation of the HF equations does not require that
the one-electron functions be separable into products of
pure space and pure spin functions, although such a
factorization has almost always been imposed. This
unnecessary constraint must be dropped in order to
allow a treatment of spiral SDW's.

II. NATURE OF A SPIN DENSITY WAVE

Exchange interactions arising from repulsive forces
always favor the parallel alignment of spins. Partial or
complete ferromagnetic polarization of an electron gas
increases the magnitude of the exchange energy. How-

ever the cost, in terms of increased kinetic energy, is

very high. Ferromagnetic polarization introduces a long-

range parallelism of spins as well as a short range, but

tion interactions, but without allowance for the repopulation of
k space or large SDW deformations. The present writer has
extended this study by evaluating the HF energy for both large
and small SDW's, with k space always repopulated in such a way
that the Fermi surface is a surface of constant HF (one-electron)
energy. A similar study has been carried out independently by
Conyers Herring (private communication). SDW ground states do
not occur for 8-function interactions, whatever their strength.

7 J.Burger and M. A. Taylor, Phys. Rev. Letters 6, 185 (1961).
8 H. Kojima, R. S. Tebble and D. E. G. Williams, Proc. Roy.

Soc. (London) A260, 237 (1961).' F. K. Hoare and J. C. Matthews, Proc. Roy. Soc. (London)
A212, 157 (1952).

-Q/2

FIG. 1. Single-particle energy level spectrum for a spiral spin
density wave. The spin-down branch has been displaced Q to the
left of the spin-up branch in order that the unperturbed states
coupled by the SDW exchange potential have the same abscissa.
Only lower branch states will be occupied in a SDW ground state.

it is the latter that is more important with respect to
the exchange energy. It is not unreasonable, then, to
consider states of an electron gas which have a net frac-
tional spin polarization P(r) at every point, but with
the direction of P varying continuously with position.
A spiral SDW is the simplest example:

P=P(x cosQs+y sinQz). (5)
The axis Q of the SDW, taken here to be the z direction,
need not be perpendicular to the plane of polarization
defined by the unit vectors x and y. No generality is lost,
however, by considering this special case. It should be
noted that (5) describes a static polarization, the phase
and amplitude of the wave being independent of time.

As will be shown below, a spin polarization of the
form (5) leads to an oG-diagonal contribution A" to the
one electron exchange potential A —=A'+A",

A =A' —ge (x cosQs+y sinQs), (6)
where o is the Pauli spin operator. A' is the diagonal
part (in the pure plane-wave representation) of the one-
electron exchange energy. The amplitude g of the off-
diagonal contribution will, in general, be dependent on
the wave vector of the electron considered. If the spin
operators are substituted explicitly,

The operator A" connects plane-wave states in pairs:
k, n~+ (k+Q), p, where n and p are the spin-up
and spin-down spin functions. Consequently, the HF
equation,

P(P2/2m)+A gp= Ep, (g)

can be solved formally. The eigenvalues are those of a
two-dimensional secular equation:

2 (e&+e&+Q)+L4 (2& e2 Q)2+g2)ll2 (9)
The one-electron energy e& is the free electron energy
plus the diagonal part A' of the one-electron exchange
energy; see (15a,b). The two branches of the eigenvalue
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spectrum are shown in Fig. 4. The exact wave functions
for the lower branch are

The algebraic signs have been de6ned so that 0&8&-,'m.

The wave functions for the upper branch can be
obtained from (10) by replacing 8 with 8+2~. However,
states of the upper branch will not be occupied in the
ground state. They are, of course, orthogonal to the
lower branch. They become occupied at 6nite tempera-
tures, and cause a decrease in the SDW amplitude.

The square modulus of (10) is a constant, 1/V, be-
cause the two terms have orthogonal spin functions.
Therefore a charge density wave does not accompany a
SD%. That is why a Coulomb potential term need not
appear in the HF equation (S).

The exchange operator 2 that arises in the HF
scheme is defined by the following operator equation,
valid for any two-component wave function f(r).

AP(ri) = —P (e'/ri~) p~t(r2)f(r2)d'r2 p~(ri). (12)

For the present problem the y~ are the occupied states
(10).The matrix elements of A between the pure plane
wave states, k', a and (k'+Q), P, can be evaluated
explicitly. By definition they are,

—g(k') =—V—' nt expL —ik' rjA

q~
——(n cos8 exp(ik. r)

+P sin8 expLi(k+Q) rj}/V"', (10)
where

cos8(k) —=g/(g'+ (ez —E~)'j"'.

to a solution of the coupled integral equations (14) and
(15), together with the algebraic relations (9) and (11).
Needless to say, explicit nontrivial solutions cannot be
written down easily, although it follows from the
demonstration of this paper that such solutions always
exist.

The expectation value lV of the Hamiltonian for a
single Slater determinant of the functions (10) can be
evaluated in a straightforward manner:

8"

V 2m

d'k
(k' cos'8+

~
k+Q ~' sin'8)

Sm'

fk' —kf'

d'k d'k'
cos'(8' —8) . (16)

Sx' Sm

The first term is the kinetic energy and the second is the
exchange energy. The only difference between the
exchange integral for two pure plane-wave states and
two states such as (10) is the additional factor
cos'(8' —8) for the latter. (Of course, the pure plane-
wave case has a similar factor, which is either 1 or 0,
depending on whether the pair has parallel or anti-
parallel spin. ) If 8'= 8, the two spins will be parallel at
every point, even though their direction of polarization
varies from point to point. This direction lies on the
surface of a cone having semivertical angle 28. The
azimuthal angle of the polarization is Qz. The latter
component is responsible for the net local spin polariza-
tion of the entire electron gas, as given by (5). The
fractional amplitude P is readily found to be

)&P exp'(k'+Q) r]d'r. (13) sin28(d'k/See). (17)

The indicated coordinate integrations of (12) and (13)
can be carried out, and there remains only the integra-
tions in k space for the occupied states &p~.

gk'=
/k' —k/'

d'k
sin8 cos8

Sm'
(14)

2m

4me' d'k
cos'8

(k' —k(2 s~3
(15a)

and for a spin-down plane wave,

a2ik'+Q
i

2 4me' d'k
sin'8 —. (15b)

S~'

An exact solution of the HF equations reduces therefore

This is an integral equation for g(k) since 8(k) is a func-
tion of g(k), as given by (11).Actually, the dependence
is quite intricate since 8 also depends through ei, on the
diagonal elements A' of the exchange operator (12).
For a spin-up plane wave,

The energy (16) is a functional of the parameter 8(k),
and the problem at hand is to find that 8(k) which
minimizes W. The integral equation (14) defines the
solution of this variational problem. The region in
k space which is taken to be occupied can also be varied,
provided its total volume is Sm'n. Of course, each choice
requires a separate variational calculation.

The paramagnetic state of an electron gas is a trivial
solution of (14) although, as will be shown in Sec. III,
it is a saddle point of S" rather than an absolute
minimum. The occupied region of k space for the
paramagnetic state (according to the convention of
Fig. 1) is two spheres of radius k~, one centered at
k, =0 and the other at k,= —2k+. (They touch at the
point k,= —kp, k =k„=0.) The solution is 8=0 for
states in the sphere centered at k,=0, and 8= ~x for
states in the other sphere, as illustrated by the dashed
curve of Fig. 2. A nonzero, conical spin polarization
arises whenever 8 takes on values between 0 and 2x. The
qualitative behavior of 8(k) for a SDW state is indicated
by the continuous curve in Fig. 2.
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does not imply that the HF ground state has that
character. For it is possible that the energy of repopula-
tion associated with the achievement of a 6nite area
of intersection is larger than the subsequent energy
decrease resulting from the SDW deformation. Such is
the case for short-range interactions in the weak-
coupling limit. " But it is not the case for Coulomb
interactions. No matter how weak the coupling nor how
high the density, the paramagnetic state of an electron
gas is unstable in the HF approximation.

Fzc. 2. Variation of the parameter tI with k, for the low energy
branch of Fig. 1.The SDW wave vector Q is taken equal to the
diameter 2k@ of the Fermi sphere.

The integral equation can be solved easily if the wave-

vector dependence of the exchange integral is neglected.
This is not only an instructive exercise but the result
will be used in the general proof of the following section.
I.et 4s.e'/~k' —k~' be replaced by the constant p. The
k' dependence vanishes from the right-hand side of (14),
so g is then a constant, independent of k. Using (9) and
(11) one finds that (14) can be written,

where

g=7
2$lis(k +1Q)2+grj1/2 8s.s

(—tie i /—c)k*)s,=fq.

g = Iil/2 sinhp,

P =8s'p/yR'.

(20)

(21)

The only other solution of (18) is the trivial one, g=0.
The quantity of major interest is the energy difference

between the solution (20) and the trivial one. This can
be evaluated directly from (16), after replacing the
exchange integral by y, as before.

The volume of integration must now be selected. For
reasons that will become clear later, it will be taken to be
a circular cylinder of radius R and length l., centered in
the space of Fig. 1 at k, = —rsQ, and with the clyinder
axis parallel to the s axis. The integration in (18) can
now be carried out and the resulting equation solved
explicitly for g.

III. GENERAL PROOF OF THE SOW
INSTABILITY

The method employed will be dependent on the mell-

known variational theorem. It will be shown that an
X-electron determinantal wave function having SDW
character and lower energy than the paramagnetic state
can always be constructed. The wave function will by
no means be close to the optimum one energetically, but
it will provide a brief, yet rigorous demonstration of the
existence of the instability.

I.et the Fermi surface be truncated, as shown in
Fig. 3, so that the circular interface Z has radius R,
assumed small compared to kF. The wave vector Q of
the SDW that will arise will be slightly smaller than
2k+ o

Q = 2ks —(R'/k p), (23)

d 2'/V= (itis/96n ftskp)R'. (24)

The E.' dependence arises because the number of dis-

placed electrons is proportional to E4, and their energy
increase to E'.

I R
I

to the lowest power in E.The radius of each sphere must
also be increased slightly to make up for the volume,
s.R'/2k', of the two truncated spherical segments. This
repopulation requires a kinetic energy increase hT
given, to the lowest power of R, by

aW/V= —(l L,'R /32~') (cothp —1). (22)

This result is negative definite, so that the SDK
solution always has lower energy than the trivial solu-
tion. It must be appreciated, of course, that (22) is the
SDK energy relative to that of a pure plane wave state
for which the occupied region in k space is a cylinder,
and not the pair of touching spheres that would mini-
mize the kinetic energy. The foregoing calculation can
be employed to show that SDW sta, tes exist whenever
the occupied region of k space (as defined by Fig. 1) has
a finite area of intersection with the plane k, =--,'Q.
This conclusion means that exact solutions of the HF
equations having SDW character always exist, but it

s,

Fxe. 3.Truncated spheres, S~ and S2, for spin-up and spin-down
electrons, respectively. Ss is displaced Q to the left of S&, as in
Fig. 1, so that the truncated faces Z coincide. Electron states
allowed to participate in a SDW deformation, during proof of the
instability theorem, lie within the circular cylinder of length L and
radius R.

' This can be shown, for example, by the argument of Kohn and
Nettel (see reference 4), which is not valid, it must be pointed out,
for Coulomb interactions. This result may be surmised easily
from the R dependence of Eqs. (21), (22), and (24).
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A'(k) =—e'kp kp' —k' kp+k
1+ ln

2kpk kp —k

The foregoing repopulation also causes an increase in
the exchange energy of the electron gas. The exchange
potential A' of an electron, arising from its interaction
with all the others, is

Consequently, the remainder D is positive for all other
pairs.

The one-electron wave functions for the states
inside the cylinder vrill be taken to be those defined by
the solution (20) of the preceding section, with y given
by (32). The parameter P becomes essentially inde-
pendent of E. if we 6x the shape of the cylinder as
follows:

which can be derived by evaluating the integral in (15),
employing the paramagnetic state solution for 8. The
maximum exchange energy increase for a single electron
involved in the repopulation is, for small R,

L,=XR,

where X is a constant. Then,

p = 2xlj,/e' f (h').

(33)

(34)

6J ——7 2kF e'R'
+ln

12 E 96m'kp'
(27)

which is about a factor of 6 smaller than the product
of (26) and the number of displaced electrons per unit
volume.

Consider now those states lying within a circular
cylinder of radius R and length I., as shown in Fig. 3.
The cylinder lies entirely vrithin the truncated spheres
S and S'. Those states outside the cylinder vrill be kept
undeformed, whereas those inside vrill be allowed to
generate a SDW, as described in the preceding section.
States having the same k, will be taken to have equal
deformations, 8. Therefore, when the interaction be-
tween two groups of states located at k, and k, ' is
computed, it vrill be useful to know the average value
M of the exchange integral:

M= (one'/
)
k' —k)') (2g)

The average is over all k' and k lying, respectively, on
tvro circular planes inside the cylinder, separated by
f=k.'—k.. Only elementary integrations enter the
computation of this average. The result is

M= (4n.e'/R') f(u),

where u= f'2/R' and

f(u) =2»[(u+ (u'+4 )"')/2uj
+-,'[(u'+4u)'~' —u]—1. (30)

This is a monotonic decreasing function with increasing
u, varying as ln(1/u) for small u and as 1/u for large u.
The average (29) will now be written as the sum of two
contributions,

(31)
vr here

y = (4xe'/R') f(L'/R') (32)

The constant y is the smallest average interaction
betvreen tvro circular planes of the cylinder, correspond-
ing to the average for the two faces at opposite ends.

(hA') = (e'R'/xk p) ln(2k p/R). (26)

A simple integration determines dJ, the total exchange
energy increase resulting from the repopulation:

It follows from (22) that the SDW lowers the energy by
a term proportional to R4, whereas the repopulation
energy, (24)+(27), increases it by a term essentially
proportional to E.'. Since the value of R is at our dis-
posal, the net energy change can always be made
negative.

The foregoing argument indicates the basic strategy
of the proof, but two dificult points remain. The energy
(22) includes, to be sure, the entire kinetic-energy
increase arising from the deformation, but only the
exchange-energy decrease arising from the constant
term y of (31).Naturally, the total energy (16) includes
as well the exchange-energy difference AJ& arising from
the remainder D in (31),summed over all pairs of states
within the cylinder. Furthermore, the entire exchange
interaction between states inside the cylinder and those
outside has yet to be considered. The latter contribution
is the more troublesome one.

The contribution 6JD is readily shown to be negative
by considering an infinite sequence of steps by which
the trivial solution in the cylinder is changed to the
nontrivial one. One begins, say, by changing the 8 values
for k,)—2Q from 8=0 to their final ones for each
infinitesimal interval (lN, ), in sequence, beginning at
the interface Z. Each resulting energy increment is a
change in an energy lV; which involves a sum of inter-
actions of the interval i with intervals i+p and i p, —
equally spaced on opposite sides of the interval i:

W;= —
~ P„[cos'(8,—0)+cos'(8,—8; „)]D~. (35)

The interval i+p (to the right of i) still has its 8=0.
The important point to note is that the function in
square brackets has its minimum magnitude as a func-
tion of 8; at 8;=0 and 8;=8; „&-,m. Therefore, since
8(k,) is a monotonic decreasing function of k„ the
change in 8; from 0 to its final value —intermediate be-
tween 0 and. 8; „—must increase the magnitude of the
exchange interaction. D„, in (35), is the interaction
between the interval i and i&p and is positive, being
just the product of D(t ) by the numbers of states for
the two intervals of each pair. If the interval i+p lies
outside of the cylinder, the first term of (35) must be
omitted, leaving the increase of the second. term com-
pletely —instead of only partially —uncancelled. A
similar sequence of steps must be carried. out for



A. W. OVE RHAUS E R

k, &—~rQ, and by a corresponding argument each step
increases the magnitude of the exchange interaction.
Therefore,

(36)
spl
Up

spin
4p

gg @4+(4)f') (41)

Consequently, the remainder D of the exchange inter-
action (31), summed throughout the cylinder, neces-
sarily enhances the instability under consideration.

Finally, the exchange interaction between states
inside the cylinder and those outside must be accounted
for. This should be done at the outset by including an
exchange potential 2'(k) in the single-particle energy
ek. The parameter that enters the theory in this regard
is p, de6ned, in (19):

p= (O'Q/2m)+ ( BA—'/Bk, )s, ,o=. (37)

A' differs from A', given by (25), in that the contribu-
tion of the half-cylinder inside the truncated sphere
must not be included in the integration of (15). When
this contribution is subtracted from (25), the well-

known singular slope of the potential at the Fermi
surface is removed for electron states on the interface Z.
This subtraction is accomplished most directly by
employing (29) and (30) in the integrations, which then
yield a value for p, appropriately averaged over the
circular cross section of the cylinder:

p=h'Q/2'+ (e'/7r) ln(4kF/L). (38)

Actually, the magnitude of the slope at the interface Z
is a trifle smaller than (38). However, employment of
the value (38) will prevent the exchange potential from
being underestimated anywhere in the cylinder. Direct
verification of this result is straight forward, but tedious.
It can be seen intuitively rather easily, since ~L times
the second term of (38) is equal to the difference in A'
for states at the interface 2 and states —,'L nearer the
center of the sphere. (The contribution of the half-
cylinder to this energy difference is zero, by symmetry.
And the curvature of A' is such that the average energy
difference A'(k, )—A'( —rsQ) is smaller in magnitude
than ~k,+-', Q~ times the second term of (38), for all
states inside the cylinder. )

Substitution of (38) into (34) together with the use
of (33) determines the parameter p,

P= (xh'Q/me'f)+(2/f) In(4k'/XR). (39)

The deformation energy (22) with p and p given by (38)
and (39) now includes adequately the exchange inter-
actions under consideration. Since p depends slightly on
R, (22) no longer varies precisely as R'. The proof of the
instability requires only that AW be proportional to a
smaller power than R' for small R. When R ~ 0, P be-
comes large, and

(cothP —1)—+ 2e—'&

The deformation energy 68' then varies essentially a,s
follows:

I spin
down

spiral 80%
(a)

linear SDN

(b)

FIG. 4. Occupied regions of k space (a) for a right-handed spiral
SDW, and (b) for a linear SDW. A right-handed spiral exchange
potential perturbs strongly the electron states near S and S',
whereas a left-handed spiral perturbs the states near T and T'.

in the small R limit. Since j'P.') can be chosen arbitrarily
large by selecting X=I./R sufFiciently small, the
exponent appearing in (41) is easily made smaller than
six. For example, a cylindrical shape corresponding to
X=0.2, for which f=2.6, is adequate.

The validity of the foregoing demonstration does not
depend on the magnitude of e' or kp. Consequently, the
SDW instability exists in the HF approximation even
in the weak-coupling or high-density limit. "To be sure,
the magnitude of the instability and the optimum value
of R become very small in this limit. The HF ground
state would then not correspond to a single SDW, but
would probably contain a large number, (kp/R)', of
SDW's, having Q's appropriately oriented throughout
the available solid angle. The total instability would
thereby be increased by a similar numerical factor.

The magnitude of the instability derived above is, of
course, only a lower limit. Allowing the exchange
potential to perturb states outside the cylinder will

lower the energy of the SD% state even more, and will

increase the amplitude of the exchange potential,
thereby causing still larger deformations, etc. A further
enhancement will arise when k space is repopulated so
that the Fermi surface is a surface of constant energy
E~. Numerical calculations that include such features
are planned, and should provide a smaller upper bound
than heretofore for the energy of the HF ground state.

IV. LINEAR SPIN DENSITY WAVES

The occupied region of k space for a right-handed
spiral SDW, corresponding to (5), is illustrated in

Fig. 4(a), where the spin;up and spin-down distributions
are indicated separately. The states that are most
strongly perturbed by the SDW exchange potential (7)
are those located near S and S' of Fig. 4, for spin-up
and spin-down electrons, respectively. The energy gap

'~The instability of an electron gas has also been studied
recently by F. Iwamoto and K. Sawada, Phys. Rev. 126, 887
(1962).They succeeded in finding only a low-density instability.
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occurs at the plane k, = —sg for spin-up electrons and
at. the plane k.=-,'Q for spin. -down electrons. If the
self-consistent amplitude g of the SDW exchange
potential is comparable to the Fermi energy, all of the
occupied states will be strongly perturbed, and the
fractional spin polarization P will be large. In this
circumstance one would not anticipate further insta-
bilities from additional SDW formation since most of
the available exchange energy decrease has been
achieved. A second SDW would necessarily "interfere"
with the first one.

However, if the amplitude of the first SDW is small
compared to the Fermi energy, the states near T and T'
of Fig. 4 will hardly be perturbed at all, and can
participate fully in a left-handed spiral SDW instability,
say:

P= P(x cosQs —y sings). (42)

Consequently, the energy decrease resulting from SDW
formation will be almost doubled. There will be some
interference, since the contribution of states near T' and
T' to the right-handed spiral will be reduced, and the
contribution of states near S and S' to the left-handed
spiral will be similarly moderated. The occupied region
of k space for two colinear spirals is illustrated in
Fig. 4(b). The total polarization is the sum of (5)
and (42).

Pt.~
——Pss cosgs, (43)

where Po= 2P. A polarization wave of this form will be
referred to as a linear SDW. It should be remembered
that the theory of a SDW is insensitive to the direction
of spin polarization, so that the unit vector e of (43)
can have any orientation with respect to Q. (For the
particular example employed above, it would have been
the x direction. ) Of course, in a real metal dipolar inter-
action, spin-orbit coupling, and other possible mecha-
nisms could operate to select say a transverse or longi-
tudinal polarization preferentially.

The orientation of Q is arbitrary for an idealized,
isotropic electron gas. Very likely, in a real metal one
or more symmetry directions would be selected. From
(21) and (22) it can be seen that a high density of states
at the Fermi surface is the most important factor
inQuencing the magnitude of a SDW instability. There-
fore, one would anticipate that the Q directions would
intersect the Fermi surface where the local density of
states is a maximum. For example, if a portion of the
Fermi surface makes a close approach to a Brillouin zone
boundary, the local density of states will be large. A
SDW instability with Q parallel to, but somewhat
smaller, say, than the reciprocal lattice vector associated
with the zone boundary might be anticipated. The
Fermi surface would then be truncated by a SDW
energy gap lying inside of the zone boundary. Topo-
logically, the Fermi surface would be equivalent to one
slightly larger in enclosed volume and intersecting
instead the zone boundary.
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Fzo. 5. Schematic illustration of the wave-vector-dependent
spin susceptibility. The solid curve is that of a noninteracting
electron gas, with intercept yp, at g =0,being the well-known static
Pauli susceptibility. The dashed curve is that of an electron gas,
with Coulomb interactions, in the Hartree-Fock approximation.

The multiple SDW instability that permits a linear
SDW (which can usually be regarded as two colinear
spirals) may also allow the simultaneous existence of
several linear SDW's. The amplitude of each could not
be too large, of course, For example, the ground state
of a cubic metal could contain three linear SDW's with
Q's parallel to each of the three cubic axes, or possibly
four linear SDW's with Q's parallel to each of the four
L111jaxes, etc. It must be emphasized that the direc-
tion of the polarization vector e of each linear SDW can
be different. This is possible because each SDW arises
essentially from a different group of electron states in
k space. For example, each linear SDW couM be
longitudinally polarized. To illustrate the point, the
total spin polarization density for the case of a three
linear SDW ground state could be

P=Ps(x cosgx+y cosgy+z cosQs). (44)

A cyclic permutation of the polarization vectors in (44)
would correspond to three linear SDW's, each having
transverse polarization. The antiferromagnetic ground
state of chromium is similar to that given by (44), as
will be discussed in Sec. VIII.

V. SPIN SUSCEPTIBILITY OF THE
PARAMAGNETIC STATE

The wave-vector-dependent spin susceptibility of a
noninteracting electron gas is

1 4k'' —q' 2kp+q
x(V) =x~ -+» (45)

2 8k@'g 2kp —
g

where x&=—x(0) is the well-known Pauli susceptibility.
Equation (45) is a monotonic decreasing function with
increasing q, as shown schematically by the solid curve
in Fig. 5. The spin susceptibility of an interacting
electron gas has been studied by WolG, "who found that

"P.A. WolfF, Phys. Rev. 120, 814 (1960).
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the HF spin susceptibility remained a monotonic de-
creasing function of q in an approximate treatment
employing 5-function interactions. However, the SDK
instability derived in Sec. III shows that the HF spin
susceptibility of the paramagnetic state cannot be a
monotonic function for the case of Coulomb inter-
actions. The existence of the instability requires that
x(q) have a singularity near q= 2k+, as shown schemati-
cally by the dashed curve of Fig. 5. Whether or not there
is a susceptibility minimum between the intercept,

g(0) =xpal —(me'/~h'k )$-', (46)

and the singularity near 2k+ very likely depends on the
electron density.

The spin susceptibility (for qW 0) is ordinarily
evaluated by perturbation theory'" without allowing
for the repopulation of k space that will occur as a
consequence of the self-consistent potential. This omis-
sion is justified because the repopulated volume is
proportional to the square of the potential and cannot
contribute a first order term to the spin polarization. It
will have been noted, however, that the proof of the
instability given in Sec. III employed a repopulation
of k space. The question arises, then, whether the
instability would have occurred without including re-
population. The answer is yes. The repopulated volume
occuring in the proof is proportional to E4, and from
(20) and (33) the exchange potential is proportional
essentially to R. Therefore, if the repopulated volume
were depleted, at most an additional energy term of
order R' would be needed. But by an appropriate choice
of )b., Eq. (33), the SDW deformation energy can be
made to vary with a power of R less than five, as shown
in (41). Consequently, the instability would still have
occurred, despite a neglect of repopulation, but it would
have been less severe.

It would seem to be purely academic to discuss the
spin susceptibility of an unstable state. The motivation
is, of course, the fact that the HF instability discussed
here is probably not indicative of the character of the
true ground state for most metals. That would require
the true susceptibility peak, as in Fig. 5, to have at most
a finite height for typical metals. The important point
remains, though, that a susceptibility maximum near
q= 2k+ is a likely consequence of Coulomb interactions,
and has not been pointed out previously. The occurrence
of such a maximum has interesting implications with
regard to the magnetic properties of metals and alloys,
as is discussed brieQy below.

The present paper is concerned primarily with the
possible existence of the SDW ground states. These may
indeed be rare; but the existence of SDW excited states

'~ The reader should appreciate that the Hartree-I"ock pertur-
bation theory (with exchange) is required. This formalism has
been given by H. W. Peng, Proc. Roy. Soc. (London) A178, 499
(1941),and has been used explicitly by C. Herring, Phys. Rev. 85,
1003 (1952); 87, 60 (1952) in a collective electron treatment of a
ferromagnetic Bloch wall.

is more general. One may select an arbitrary wave
vector q, and then repopulate k space so that the Fermi
surface has a finite area in common with the planes,
k=+rsq. It follows that the repopulated plane wave
state is unstable with respect to SDW deformations,
for any repulsive interaction, however weak. (The
proof is essentially equivalent to the one-dimensional
case. ') Therefore, exact SDW solutions of the HF equa, —

tions always exist. And they encompass a continuous
range of SDW polarization amplitudes, 0&8&1,for all
wave vectors q) 0. The HF equations of a SDK excited
state should of course include appropriately the effective
potential of any interactions that stabilize the excita-
tion, when such are present.

SDW excited states have been employed previously"
by the writer to explain the apparent antiferromagnetic
properties of paramagnetic alloys. The HF theory of a
SDW was formulated there within the framework of
perturbation theory, which does not adequately ap-
proximate the exact HF formulation given here in Sec.
II.However, the associated treatment of the interaction
of localized spins with SDW excited states, and the
long-range antiferromagnetic order that can occur at
low temperature remains essentially unaffected. A
possible misgiving with regard to such an antiferromag-
netic mechanism might arise from the incorrect view
that x(q) is a monotonic decreasing function of q. The
excitation energy of a SDW state, with a given fractional
polarization P, is inversely proportional to x(q). The
lowest energy excitation (for a fixed P) would then
correspond to q=0, and would favor ferromagnetism
rather than antiferromagnetism. This argument is
incomplete, as pointed out below, since energy con-
tributions from SDW excitations having wave vectors
diGering from q by a reciprocal lattice vector must also
be included. In. any case, the observation that y(q) need
not have its maximum at q=0 obviates even the
plausibility of such a misgiving.

The effective exchange interaction between a localized
spin S, and, say, a linear SDW such as (43) would be

Hj= —G(q)S''ePp cos(q R,), (47)

W (q) =n'p'Pss/4g (q), (48)

"A. W. Overhauser, J. Phys. Chem. Solids 13, 71 (1960).The
reader should note that an alternative explanation that ignores the
possibility of long-range order, proposed by W. Marshall, Phys.
Rev. 118, 1519 (1961),when evaluated quantitatively, does not
in fact account for the experimental heat capacity of Cu-Mn alloys
at the observed Mn concentrations.

where R; is the position of the localized spin S;, and G(q)
is an appropriate exchange interaction constant between
the spin and a SDW of wave vector q. G(q) will depend
on q, since the exchange interaction should have a
"form factor, " associated of course with the finite size
of the localized orbital. It is the interaction energy (47),
depending linearly on I'0, which can overcome the SDW
excitation energy:
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where ir is the Bohr magneton, W(q) is the excitation
energy per unit volume of a linear SDW with maximum
fractional polarization Ps, x(q) is the spin susceptibility
per unit volume. At O'K all spins S; will be oriented by
the interaction (47), causing a net energy decrease per
cc arising from the sum of (47) and (48):

AW= —(2SX„/xnan)'G'(q)x(q), (49)

"C. P. Bean and J. D. Livingston, J. Appi. Phys. 30, 120S
(1959).

'5 J.E.Zimmerman and F.E.Hoare, J.Phys. Chem. Solids 17,
52 (1960);L.T. Crane and J.E.Zimmerman, ibQ'. 21, 310 (1961),' L. T. Crane and J. E. Zimmerman, Phys. Rev. 123, 113
(1961).

'r M. A. Ruderman and C. Kittei, Phys. Rev. 96, 99 (1954);
K. Yosida, ibid. 106, 893 (1957). These calculations cannot be
considered quantitative until they are carried out with a self-
consistent field method including exchange interactions, and untB
appropriate form factors G(q) are also incorporated.

where E„is the concentration of localized spins. Ignore,
now, for the sake of simplicity all other SDW excita-
tions. The wave vector of the long-range order would
then be expected to be that value of q which maximizes
6'x. If this occurs for qNO, antiferromagnetic order is
possible. If the maximum occurs at q=0, a ferromag-
netic or, possibly, a superparamagnetic" state may
result. The striking diQerence between the properties
of dilute Cu-Mn alloys" and dilute Cu-Co alloys" may
possibly be explained on this basis—the result of signi6-
cantly different form factors G(q) for the two species of
paramagnetic solute.

A considerable amount of additional eGort is needed
to explore details of SDW mechanisms in magnetic
ordering. The foregoing remarks are intended only to
illustrate the elementary physical basis of the method.
The point of view is that the natural coordinates for
elaborating the theory are the spin directions S; and
the amplitudes P, of the SDK excitations for all q. To
order P' the latter coordinates can be eliminated, their
physical eGect replaced. by equivalent interactions
between all pairs of spins. " But the temptation to
truncate such indirect interactions for pragmatic reasons—considering say only pairs that are relatively near —is
always present and can lead to spurious conclusions.
Indeed, for an ordered ground state described by a wave
vector Q (including the ferromagnetic case, Q=O), the
amplitudes I'» are identically zero for all tl excepting Q
itself and those which differ from Q by a reciprocal
lattice vector (times 2s.).This result can be recovered in
the indirect interaction mod. el only if the interactions
are summed exactly for all pairs, regardless of range. In
the SDW description just one—or at most a few—
SDW's play a role in an ordered ground state, or in
ordered thermally excited states treated by a molecular
6eld or random phase approximation.

Errors that are more di%cult to avoid when the
indirect interaction model is employed occur in cases
when a single SDW is highly excited —e.g., the helical
spin structures occurring in the rare earth metals. Terms

of higher order than I and the repopulation of k space,
for example, become important and will play perhaps a
crucial role in such phenomena as order-order transi-
tions, the temperature variation of the helical pitch,
resistivity anomalies, etc. Such nonlinear phenomena
arise naturally in the theory of an individual SDW.
Consequently, this approach is the appropriate and
generally valid one.

VL DETECTION OF SDW'S BY NEUTRON
DIFFRACTION

Direct observation of the Fourier components of
magnetization density by neutron diGraction is the
standard technique for determining antiferromagnetic
order. Detection of SDW ground states in metals, when
present, may nevertheless be quite dificult. Very likely
the fractional polarization of a SDW is of the order of
one percent, so that scattering amplitudes would be a
hundred times smaller than typical. A further diKculty
is that the wave vector Q of a SDW is determined by
the diameter of the Fermi surface, not by the lattice
parameter. Consequently, the neutron-scattering vector
K will generally be unpredictable and will correspond
to an unknown point in reciprocal space, both in
magnitude and direction.

Consider 6rst the case of a spiral SDW in an ideal
electron gas, with the circle of polarization perpen-
dicular to Q, as in (5). The allowed scattering vectors
are,

(SO)

It has been pointed out that if the incident neutrons
are unpolarized, each of the two scattered beams will be
completely polarized, ' provided the diGraction sample
contains only right-handed (or left-handed) spirals.
Since there is no magnetostatic energy tending to cause
domain formation in an antiferromagnet, and since
SDW's are a conduction electron phenomenon with
consequent long range coherence, it is likely that sub-
division into domains will not occur in good specimens.
This possibility requires that particular caution must
be used in searching for SDW rejections. For suppose
there is a single SDW in, for example, an otherwise
cubic crystal. All equivalent directions in reciprocal
space must be scanned since Q would be parallel to just
one of them.

Consider next a linear SDW in an ideal electron gas,
such as (43). The allowed reflections will be the two
given by (50), but only if the polarization vector e has
a component perpendicular to K. For if e and K are
parallel, the magnetic induction 0 will be identically
zero, and there will be no magnetic interaction with
neutrons. A longitudinally polarized linear SD%' in an
ideal electron gas is invisible to neutrons.

In real metals the wave functions of conduction
electrons have, of course, a periodic modulation within

's A. W. Overhauser, Bull. Am. Phys. Soc. 7, 241 (1962).
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each unit cell of the crystal, e.g. ,

P~ ——u~(r)e'~ ". (5&)

K= 2+6' Q. (55)

In other words, there will be two magnetic reRections
associated with each reciprocal lattice vector 6, and
we shall refer to them as the satellites of G. The satellites
of a particular 6 might lie closer to another 6 since Q
can be large, but it should be easy to make the proper
identi6cation. Such assignments would be clear from
relative intensity measurements, since from (53) and
(54), the relative intensity is determined by fo, the
form factor of G rather than the form factor of the
scattering vector K.

The form factor of valence electrons ordinarily
decreases rapidly in magnitude with increasing wave
vector. Consequently, the only intense reQections from a
conduction electron SDW will be the satellites of the
origin (G=O). The other satellites should be present
in principle, but one would expect them to be extremely
weak. A longitudinally polarized linear SDW in a
conduction band should not be completely invisible.
The satellites of the origin would have zero intensity for
the same reason given previously. But the weak satel-
lites of the other reciprocal points, for which a is not
parallel to K, would theoretically be present.

The foregoing model was based on a "Qexible spin"
hypothesis, in which it was assumed that the spin
polarization density conforms smoothly to the phase of
the SDW within each unit cell. This model is probably

If we neglect the k dependence of the Bloch periodic
part, N~(r), the one-electron functions for a SDW
deformation will be,

q„=m(r)(u cos8exp(ik r)

+P sin8 exp| i(k+Q) r$), (52)

which is a slight generalization of the wave function
(&0).The conjecture that has been made here is that the
spin polarization within a unit cell follows the phase of
the SDW, as in the empty lattice case, but that the
amplitude is modulated by the additional multiplicative
factor ~m(r) ~'. For a linear SDW the magnetization
density M(r) would be,

M(r)=spam(r) ~'zoo cos(Q r), (53)

with N(r) normalized in a unit volume. The conduction
electron density of a unit cell can be Fourier analyzed
in the usual way:

l~(r) I'=Zo f«xp(2~&6 r) (54)

where (6) are the reciprocal lattice vectors and ffo)
are the Fourier coefficients, or form factors. It follows
from (53) and (54) that the Fourier components of the
magnetization density, and therefore the allowed
scattering vectors, are

an adequate one for SDW's arising entirely from con-
duction electrons. We must now consider the other
extreme; a rigid spin hypothesis —in which it is assumed
that the cellular part of the wave function is so com-
pletely centralized by the ion core potential that the
direction and amplitude of the spin polarization density
within a unit cell is determined by the phase of the SDW
at the center of the cell. Undoubtedly the "truth" will

always be somewhere between the two extremes. But
the latter extreme may be an appropriate model for a
d-band SDW, or for a SDK in which oriented. localized
moments (as in the rare-earth metals) are the major
contribution to the magnetization density.

Let N (s) be redefined so that it is nonzero only in the
unit cell centered at the origin of coordinate space. In
the rigid-spin model, the magnetization density of a
linear SDW will be given by

M (r) =pd', P i
N (r—L)

i

' cos (Q L), (56)

where {L) are the lattice sites. If f» is the Fourier
transform of ~u(s) ~', then the Fourier coefficient M»
of M(r) is,

M» psEof» g ——exp(2~iK L) cos(Q L). (57)

The sum over L is nonzero only if K+Q is a reciprocal
lattice vector. Consequently, the Fourier components
of (56) are those given previously by (55), but the
amplitudes are proportional to f», the form factor of
the scattering vector, rather than the form factor of the
reciprocal lattice vector of which K is a satellite. For the
rigid-spin model experimental determination of the
wave vector Q is ambiguous to within any reciprocal
lattice vector. However, a slight admixture of the
Rexible-spin model, which is required if M(r) is to be a
continuous function, together with reasonable assump-
tions about the shape of f» should allow Q to be
determined uniquely. This will be illustrated in Sec. VIII
for the case of chromium, which approximates the
rigid-spin model.

It is evident that a systematic search for SDW
neutron rejections would be extremely tedious, even
with neutron beams of the highest available Aux. Such
experiments, however, would be of signi6cant interest,
at least for metals where weak antiferromagnetism is

suspected. A search should not be confined to scans of
lines in reciprocal space that pass through the origin.
This would allow longitudinally polarized linear SDW's
to go undetected. It is necessary to scan also lines in

reciprocal space that pass through (nonzero) reciprocal
lattice points. Furthermore, the experiments must, in

general, be carried out at low temperatures since SDW
amplitudes will approach zero at a critical temperature
T, (and remain zero at higher temperatures) as dis-

cussed, in the following section.
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Inelastic neutron (or x-ray diffuse) scattering may
reveal indirectly the presence of SDW states. The
phonon spectrum will be altered as a result of the
energy gaps in the electron energy level spectrum caused
by the periodic SDW exchange potential. Changes in the
phonon frequencies are expected, of course, because the
adiabatic readjustment of the electron gas during a
lattice vibration plays an important role in determining
its frequency. Kohn" has pointed out how such effects
may be expected to leave an image of the Fermi surface
in the phonon spectrum, solely from the sharpness of the
Fermi surface in the paramagnetic state. Energy gaps
across planes tangent to the Fermi surface would be ex-
pected to alter appreciably the frequencies of the modes
with wave vector approximately equal (in magnitude and
direction) to the wave vectors of the SDW's present,
give or take a reciprocal lattice vector. The effect may
show up as an additional kink or cusp (or both) in the
phonon frequency spectrum. This phenomenon should
differ from the one proposed by Kohn in that it is
restricted to speciic wave vector directions and should
disappear abruptly at the critical temperature. A search
for this effect by, say, temperature diffuse x-ray scat-
tering in single crystal chromium is of considerable
interest.

VII. TEMPERATURE DEPENDENCE OF
SOW PARAMETERS

The formulation of the HF theory of a static SDW
given in Sec. II is for an electron gas at O'K, since it was
tacitly assumed that the states in k space were either
occupied or empty depending on their location with
respect to the Fermi surface. At finite temperature
occupation of higher energy one-electron levels by
thermal excitation will occur, so the integral equation
(14) must be appropriately generalized. The details of
such a generalization are obvious, and it is our intention
here to discuss only the important features that will
result.

Occupation of one-electron levels of the upper energy
branch of Fig. 1, together with a corresponding deple-
tion of the lower branch, will cause the amplitude of a
SDW to be smaller than its O'K value. This arises from
the fact that the spin polarization of a state of the upper
branch is opposite (at every position) to the correspond-
ing state of the lower branch. Consequently, the polari-
zation contribution of upper branch states will tend
to cancel that arising from the remaining lower branch
electrons. Moreover, the exchange potential will be
similarly reduced, so that the fractional polarization
component of each state will be smaller, thereby causing
a further reduction of the SDW amplitude, etc. Such
effects will be greater the higher the temperature.
The SDW amplitude P (T) will therefore be a monotonic
decreasing function with increasing T. It is reasonable
to conjecture that I' will approach zero continuously,

"W.Kohn, Phys. Rev. Letters 2, 393 (1959).

Fro. 6. Single-par-
ticle energy level
spectrum, (a) on the
plane in k space coin-
cident with the SDW
energy gap, and (h)
the occupied region
in k space near the
plane of the gap. Ob-
serve the neck in the
Fermi surface caused
by the SDW ez-
change potential.

2g,
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giving rise to a second order transition at a critical
temperature T,. Above T, a nontrivial solution of the
generalized integral equation will not exist.

It is an interesting coincidence that the structure of
the integral equation (14) is similar to the integral
equation that occurs in the Bardeen, Cooper, and
Schrieffer (BCS) theory of superconductivity. " The
similarity is perceived readily by comparing the integral
equations that result in both theories when the relevant
interactions are replaced by constants; compare (18)
with Eq. (2.38) of reference 20. They are essentially
identical, differing only in the shape of the integration
volume. This similarity will also prevail with the
generalized equations for 6nite T. On the basis of this
analogy, one might guess that the SDW amplitude
P(T), as well as the SDW energy gap 2g, will vary with
27/T, in a manner quite similar to the superconducting
energy gap. Indeed, Swihart has shown" that the tem-
perature variation of such parameters in the theory of
superconductivity is quite insensitive to the form and
strength of the interaction that appears in the kernel of
the integral equation. Consequently, the similarity may
be semiquantitative as well as qualitative. This con-
clusion is of course tentative since the SDW theory is
complicated by several features not present in the
superconductivity case. Nevertheless, the comparison
for the case of Cr is quite satisfactory, as is shown in
Sec. VIII.

One may anticipate on the basis of the foregoing
analogy that the SDW energy gap 2g at O'K is 3 or 4
times kT„as it is in superconductors. It is probable
that the ratio should be somewhat larger for SDW's
since 2g is not the minimum energy gap, as shown in
Fig. 6(a), but the energy difference between states on
opposite sides of the gap, whose wave vectors have
identical projections in the plane of the gap. The true
thermal energy gap is the energy difference between
points A and B of Fig. 6, and is necessarily smaller
than 2g. This minimum thermal gap may indeed be
quite small because a SDW instability can be greater
the smaller the magnitude of Q, provided that the

'0 J.Bardeen, L. N. Cooper, and J.R. Schrieffer, Phys. Rev. 108,
&&75 (&957).' J. C. Swihart, IBM J. Research Develop. 6, |4 (1962);Phys.
Rev. 116, 346 (1959).
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states above the gap (near A) remain unoccupied. This
feature can be seen from the deformation energy (22),
which depends exponentially on p, , the gradient of e& at
the Fermi surface. Therefore, in an electron gas for
which p is an increasing function of e& the SDK energy
gaps will tend to "clamp down" tightly on the Fermi
surface. On the other hand, if the Fermi surface lies
beyond an inQection point in ~&, this tendency to clamp
down would not be so great.

The magnitude Q of the SDW wave vector will also
be a function of temperature, as can be seen easily.
%hen the energy gap decreases with increasing T, the
periodic potential will be less able to sustain the
repopulation of k space, which takes place predomi-
nantly near the gap at points such as B in Fig. 6. As a
consequence the energy gaps will move apart with
increasing T in order to accommodate the constant
total number of electrons while keeping the fraction
above the gap at a minimum. Also, the clamp-down
eGect discussed above will diminish with decreasing
SDV7 amplitude, causing a further change in the re-
population and an additional increase of Q with T.
Consequently, a detailed calculation should predict that
Q will increase monotonically with increasing T. The
fractional change of Q between O'K and T, will of
course be larger the larger the fractional polarization
I' of the SD% at O'K.

At T, the magnitude of Q should equal the diameter
of the Fermi surface (in the direction of Q) that obtains
for the paramagnetic state. This conclusion depends
however on an assumption that only one un611ed energy
band is participating appreciably in the SDW deforma-
tion. For if more than one band plays a significant role,
it is diflicult to anticipate the value of Q for which

g(Q, T) would first become singular as T is lowered
through T,. The reason that the Fermi surface diameter
is the critical value for a single band is associated with
the fact that the maximum in the Fourier transform,
V„of the Coulomb interaction occurs at q= 0. (And one
expects this feature to remain even after correlation
screening is appropriately accounted for.) Therefore,
instabilities are maximized by keeping the highly
deformed states as close together in k space as possible.
This is almost self-evident from the structure of the
integral equation (14).If Q is made smaller, states above
the gap must be occupied, and their eGect would cancel
out the enhanced part of the exchange interaction
between pairs of states just below the gap. The burden
for enhancing exchange interactions would then fall
upon pairs of states that have a larger average separa-
tion in k space, with a consequently smaller average
value of V,. In particular, for Q=O (a ferromagnetic
deformation), V, must be averaged equally over all

pairs of points around the entire Fermi surface, and this
would lead to a relatively small average value. The
foregoing considerations are, of course, qualitative in
nature. A delicate instability might require a quantita-

tive account of all factors before Q(T,) could be pre-
dicted reliably.

VIII. ANTIFERROMAGNETISM OF CHROMIUM

The antiferromagnetic state of chromium metal has
recently received extensive study by single-crystal
neutron diGraction techniques. "" The wave vectors
of the magnetization waves are parallel to the L100]
directions of the bcc lattice. The wavelength is in-

commensurate with the lattice constant and varies
continuously with temperature, as expected for a SDK
state. The magnitude of the magnetization wave(s) is

about a half Bohr magneton per atom. Several inter-
pretations of this structure have been discussed)" ""
assuming that Cr atoms have a localized moment (with
a spin degree of freedom) in the metal. It is now

apparent, however, that localized moments do not
occur in Cr.

The excess entropy near the antiferromagnetic transi-
tion temperature (T,=311'K) would be about —',R ln2
=0.7 cal/deg, if the magnetization arose from localized
moments. Such a large anomaly would be easily ob-
served. Its apparent absence" had previously indicated
that a collective electron mechanism is operating. ""
The heat capacity anomaly associated with the transi-
tion has now been observed" and the integrated
(molar) entropy is

AS= 0.0044 cal/deg.

This very small value can be satisfactorily explained on
the basis of a SDK mechanism.

The absence of localized moments has also been
confirmed by the nonoccurrence of paramagnetic neu-

tron scattering above the critical temperature. " The
only sources of entropy, then, are the phonons and the
electron gas. Changes in both contributions occur at the
transition, but we shall consider only the latter one since
the phenomenon is primarily electronic. The Sommer-
feld constant y has been measured" for Cr. Con-

"L.M. Corliss, J. M. Hastings, and R. J; Weiss, Phys. Rev.
Letters 3, 211 (1959).

"V.N. Bykov, V. S. Golovkin, N. V. Ageev, and V. A. Levdik,
Doklady Akad. Nauk S.S.S.R. 128, 1153 (1959); )translation:
Soviet Phys. —Doklady 4, 1070 (1960)]."G. E. Bacon, Acta Cryst. 14, 823 (1961).

'5 G. Shirane and W. J.Takei, Proceedings of the International
Conference on Magnetism and Crystallography, Kyoto, Japan,
September, 1961 g. Phys. Soc.Japan 17, Suppl. B III, 35 (1962)g.

T. A. Kaplan, Phys. Rev. 116, 888 (1959).
'7 A. W. Overhauser and A. Arrott, Phys. Rev. Letters 4, 226

(1960).The experiment proposed in this paper was based on the
presumed existence of localized moments, which are now known
not to occur in Cr. A 6eld cooling eGect is not anticipated on the
basis of the current interpretation.

J. E. Goldman, Revs. Modern Phys. 25, 113 (1953).
"C.J. Gorter, Revs. Modern Phys. 25, 113 (1953).
"A. B. Lidiard, Proc. Phys. Soc. (London) A66, 1188 (1953);

J. C. Sister and G. P. Koster, Phys. Rev. 94, 1498 (1954).
3' R. H. Beaumont, H. Chihara, and J.A. Morrison, Phil. Nag.

5, 188 (196O).
"M. K. Wilkinson (to be published)."J.A. Rayne and W. R. G. Kemp, Phil. Mag. 1, 918 (1956).
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sequently, the electronic entropy at the transition
temperature is,

yT(dT/T) =0.10 cal/deg. (59)

Therefore, the entropy (58) associated with the anti-
ferromagnetic transition is only 4% of the total
Sommerfeld entropy at T,. On the basis of the SDW
model the entropy loss that occurs as a result of lowering
the temperature below T, arises from the truncation of
the Fermi surface by the energy gaps of the SDK
exchange potential. (Electron states adjacent to the
gap will, for the most part, be completely occupied or
completely empty and therefore will not contribute
significantly to the entropy. ) From the experimental
data one would conclude that about 4% of the Fermi
surface of Cr is truncated by energy gaps of magnetic
origin in the antiferromagnetic state.

Now, the fraction of the Fermi surface that is
truncated by energy gaps can be estimated inde-
pendently in several ways. That portion of the Fermi
surface truncated by energy gaps will not contribute to
the electrical conductivity, since the normal component
of electron velocity at an energy gap is zero. Therefore,
SDW energy gaps should cause an abrupt resistivity
increase as a result of the decrease in the effective
number of current carriers. This conclusion assumes that
the phase of the SDW(s) is locked to the lattice —a
phenomenon that could result from paramagnetic
impurities, inhomogeneous strains, etc. The electrical
resistivity of Cr does indeed undergo an abrupt in-
crease" below T„and the magnitude of the increaseis
about 5%. This estimate of the fractional truncation is
in satisfactory agreement with the heat-capacity result.
The comparison should be only semiquantitative, since
truncation of the Fermi surface will tend to reduce the
density of Anal states available to electron scattering
processes. Consequently, the resistivity increase may be
partly cancelled by decreased scattering rates. But
changes in phonon frequencies, which do occur, "will
enhance the thermal scattering. An accurate comparison
would have to include all such eBects, including the
phonon contribution to the heat-capacity anomaly as
well as another contribution from spin-wave excitations
of the "giant" SDYV.

A more interesting estimate of the fractional trunca-
tion derives from the coincidental mathematical simi-

larity, discussed in Sec. VII, between the BCS theory
and SDK theory. The temperature dependence of the
fractional polarization P should compare with the
energy gap parameter of the BCS theory. That it does
so very well is shown in Fig. 7, for which the relative
values of P were determined from the neutron diGrac-

"H. Pursey, J. inst. Metals 86, 362 (1958); S. Arajs, R. V.
Colvin, and M. J. Marcinkowski, J. Less-Common Metals 4, 46
t,'1962); M. J. Marcinkowski and H. A. Lipsitt, J. Appl. Phys. 32,
1238 (1961).

l
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FIG. 7. Temperature dependence of the SDW amplitude I' for
a chromium single crystal. The experimental points are taken
from Shirane and Takei (see reference 24). The small break near
T/T, =0.4 occurs at the spin-ihp transition. The solid curve is
the theoretical temperature dependence of the superconducting
energy gap, after the BCS theory.

tion intensity measurements of Shirane and Takei. 25

Therefore, it is reasonable to suppose that the ratio of
energy gap to kT, is about 3.5 for Cr. This would imply
an energy gap of about 0.1 eV.

The largest possible area of each truncated face can
now be estimated by setting the energy difference
between points A and 8 of Fig. 6 to zero. H Ro is the
radius of the truncated face,

js'Rss/2m*= 0.1 eV, (60)

where m* is the effective mass. The fractional area of
the Fermi surface truncated by energy gaps is

t =PRs'/4k p', (61)

where p is the number of truncated faces. The diameter
2k& of the Fermi surface is determined directly from
the neutron diffraction scattering vector Q, according
to the argument given in Sec. VII. The observations
indicate that for the L1007 directions,

hz=1.1X10' cm '. (62)

The eGective mass can be estimated from the measured
electronic heat capacity, but one must erst know the
total area of the Fermi surface. We have already
assumed it to be spherical in writing (60) and (61).How-
ever, calculations by Lomer35 indicate that the shape
is somewhat Quted, and that the energy bands are
essentially of d character. His estimate of the Fermi
surface radius in the L1007 directions is in agreement
with (62). But he also finds that the relevant d band is
doubly degenerate in that direction. There is an electron
band and a hole band of approximately equal size, and
their Fermi surfaces touch where they intersect the
t1007 axes. Taking both surfaces into account, one
obtains from the Sommerfeld constant y,

(63)
"W.M. Lomer, Proc. Phys. Soc. (London) 80, 489 (1962).The

writer is very grateful to Dr. Lomer for an extensive discussion of
his work prior to publication. This work is based to a large extent
on the calculations of J. H. Wood, Phys. Rev. 126, 517 (1962).
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1=5%%uo. (65)

This estimate is in excellent agreement with those
derived from the entropy argument and theresistivity
argument.

The SDW energy gaps will cause necks, Fig. 6(b), in
the Fermi surface, and these should give rise to de
Haas-van Alphen oscillations, magnetoacoustic oscilla-
tions, etc. Two de Haas-van Alphen periods have been
observed" with orbits in (100) planes, confirming both
the double degeneracy in the L100] directions pointed
out by Lomer and the estimated size (64) of the necks.

Chromium undergoes an order-order transition at
low temperature, which has been reported at about
155'K by some workers" " and near 110'K by
others. """Below this critical temperature the neutron
reflections located on the cubic axes disappear, proving"
that the magnetization waves are longitudinally polar-
ized in the low temperature phase. Intensity studies" "
of the satellites of the (110) reciprocal lattice points
indicate that the order-order transition is merely a
change from longitudinal to transverse polarization of
the linear SDW's. The absence of third harmonics" of
the magnetization waves indicates that the magnetiza-
tion density follows a cosine modulation, in conformity
with the SDK model.

The polarization density given by (44), which
describes qualitatively the magnetic ground state of Cr,
would be reasonably accurate if the flexible-spin model
were a good approximation here. However, the neutron-
di8raction intensities that obtain in Cr can be inter-
preted only if the rigid-spin model is the appropriate
approximation, as discussed below. This conclusion
indicates that the electron energy bands which con-
tribute to the polarization are d bands, as would be
anticipated from I.orner's work on the location of the
Fermi surface.

The neutron reflections that lie on the $100j axis in
reciprocal space have approximately the coordinates,

Qi= (0.96,0,0),

Qs = (1.04,0,0).
(66)

One of them is the satellite of the origin (0,0,0) and the
other is the satellite of the (2,0,0) reciprocal lattice

'~ D. Shoenberg (private communication).
'"J. M. Hastings, Bull. Am. Phys. Soc. 5, 455 (1960}.' M. K. Wilkinson, E.0.Wollan, and W. C. Koehler, Bull. Am.

Phys. Soc. 5, 456 (1960).

The maximum radius of each truncated face, from (60),
is therefore

0=0.2X10' cm '. (64)

The number p of truncated faces is presumably six,
since the linear SDW instabilities in each of the (100j
directions are equal by symmetry. The polarization
density that would result is given (crudely) by (44).
From (61) the maximum fraction truncated by energy
gaps is

point. If the flexible-spin model applies, one of them
would have an intensity corresponding to the form
factor for zero scattering angle, as discussed in Sec. VI.
The other would have an intensity corresponding to the
form factor (squared) of a (2,0,0) scattering angle.
Consequently, the intensities would differ by an order
of magnitude or more. Actually, the intensity of Qi is
only about 30%%uz larger than the intensity of Q2.""
Therefore, one is forced to conclude that the rigid-spin
model is the better approximation in Cr. And one should
compare the observed intensities with that, expected,
say, for d-electron form factors in the rigid-spin approxi-
mation. The form factors for Mn~ d electrons have
been measureda' and, if applicable here, could account
for only a 10% intensity difference between Qi and Qs.
In view of the fact that a slight admixture of the
fiexible-spin model is necessary in order that the
magnetization density be a continuous function of
position, which would add appreciable scattering inten-
sity only to the satellites of the origin, the larger
intensity diAerence observed can be easily interpreted.
One would surmise, then, that the SDK wave vector
Q is to be identified with Qi and not Qs. (This conclusion
is not absolutely certain, since a less centralized
d-electron density distribution in the atomic cell, calling
for a more rapidly falling form factor vs scattering angle,
could reverse the assignment, assuming that loss in
centralization is possible without compromising the
rigid-spin hypothesis. )

The Cr" nuclear resonance in Cr metal has recently
been observed" above the critical temperature T,. The
resonance line broadens as the temperature is reduced
near T, and disappears gradually below T,. This
behavior is explained by the fact that the SDK wave
length is incommensurate with the lattice. Consequently,
the hyperfine fields at the nuclei arising from the mag-
netization density take on a wide, continuous spectrum
of values. This type of behavior need not be character-
istic of all SDK antiferromagnets, however, A small
amplitude SDK state may have very low energy spin
wave excitations, which would allow the hyperhne field
direction to change rapidly at finite temperatures.
Observation of the nuclear resonance in this case would
be impaired only if the nuclear relaxation rate were
comparable to or greater than the spin wave excitation
frequencies. Otherwise the eGect of the hyperhne fields
would tend to a null time-averaged value.

Magnetomechanical damping at low frequencies ( 1
cps) has been observed" in polycrystalline Cr wire by
the torsion technique. The damping increases markedly
with decreasing temperature below T„but the measure-
ments were not extended below 200'K. A possible
mechanism for this damping, suggested by de Morton, '

39L. Corliss, N. Elliot, and J. Hastings, Phys. Rev. 104, 924
(1956).

40 R. G. Barnes and T. P. Graham, Phys. Rev. Letters 8, 248
(1962).

4' M. E. de Morton, Phil. Nag. 6, 825 (1961).
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is antiferromagnetic domain wall motion. An alter-
native mechanism arises from the transverse polariza-
tion of the linear SDW's. Since each of the three SDW's
can have two transverse polarization directions, there
are eight energetically equivalent states which can
become inequivalent as a result of elastic strain, and so
give rise to anelastic transitions. (The wide variation
of the spin-Qip transition temperature from sample to
sample, cited previously, indicates that there is a
significant interaction between the SDW polarization
modes and crystal imperfections, e.g. , elastic strains. )
This suggested mechanism can easily be subjected to
experimental test. Below the spin-flip transition tem-
perature there is just one magnetic state, since the
SDW s are then longitudinally polarized. Therefore, it is
of considerable interest to determine whether or not the
large magnetomechanical damping found by de Morton
disappears below the spin-fIip transition temperature.

SDW theory provides a consistent and satisfactory
interpretation of the magnetic phenomena in Cr. On
the other hand it is not at all clear, from an a priori
basis, why Cr should be unique in possessing large
amplitude SDW's. The rapid variation of the transition
temperature with small concentrations of alloying
elements'4 suggests that it may be associated with a
fortuitously favorable band configuration.

IX. ACCIDENTAL FERRIMAGNETISM

Metals with a SDW ground state are multiply
periodic structures. There is no pure translation opera-
tion which leaves the system invariant, provided the
SDW wave vectors are incommensurate with the
reciprocal lattice vectors (times 2z). In the absence of
magnetocrystalline interactions of sufhcient strength,
a commensurate relationship between the two types of
wave vector wouM be accidental. Such a coincidence,
however, could cause a bulk magnetization of the
material to occur, analogous to that in ferrimagnetic
materials.

A SDW is commensurate with the lattice if its wave
vector Q satisfies

Q = 2z.Go/p, (67)

for some reciprocal lattice vector G and integer p. We
shall take Go to be the smallest vector satisfying this
relation. Suppose for the sake of simplicity that p= 1,
and that the rigid-spin model applies. Then the moments
in each primitive unit cell will all have the same phase,
as defined by the SDW. Consequently, a net moment
will arise. (Of course, if there are several identical
atoms per primitive cell, the moment would be zero if
Gp is a reciprocal lattice vector having zero x-ray
structure factor. Also the moment could be zero for a
monatomic Bravais lattice if each lattice site were at
the node of a linear SDW. But such a situation seems
unlikely energetically. ) It is relatively easy to see that
similar situations can prevail for p)1, especially if

p is prime. For example, in thulium, 4' which has
localized moments oriented by a linear SDW, P=7.
Alternately, four hexagonal layers are polarized up and
three down. It is not our purpose, here, to envision all
conceivable structures and special requirements, but
rather to cite a few examples and to discuss qualitatively
some of the relevant features.

One would not, in general, anticipate a SDW in-
stability in an electron gas with Q=2z.G, since the
periodic potential of the lattice will cause energy gaps
in the conduction electron spectrum across the same
planes in k space as the exchange potential of the
commensurate SDW. It should be recalled that the
SDW instability arises as a result of the approximate
degeneracy between filled levels on one side and empty
levels on the other side of the Fermi distribution. This
near degeneracy would be destroyed by the periodic
crystal potential, excepting the chance situation where
the latter potential is very small. This might occur at a
superlattice G of an ordered alloy, if the two species of
atoms are, say, of equal valence. A different magnetic
response of the two species could then cause a net
moment per superlattice cell.

The remarkable ferromagnetism of ordered Sc-In
alloys4' near the Sc3In composition may be an example
of the foregoing phenomenon. The ferromagnetic state is
observed only for In concentrations between 23.8 and
24.2 at .%.This very narrow range is hard to understand
if the ferromagnetic mechanism is an ordinary align-
ment of local moments depending, though, on long-
range lattice order, expecially since it does not occur at
the stoichiometric composition. The proposed SDW
mechanism would require that the ordered alloys are
antiferromagnetic over a wide composition range, but
that the wave vector Q happens to be coincident with
the superlattice G only at 24% indium (presuming that
the Fermi surface location varies with composition).
This suggestion can, in principle, be checked by neutron
diffraction. A somewhat similar phenomenon has been
observed in ZrZn~. 43 4'

Magnetocrystalline interactions that could force
commensurateness of a SDW for Q near to, but not quite
satisfying (67) is, of course, possible. It is perhaps
surprising that Cr, with large amplitude linear SDW's,
appears insensitive to the nearness of the (1,0,0) point
in reciprocal space, even though Q is short of that point
by only four percent. Similarly, the wave vectors of the
spiral spin configurations in dysprosium and holmium, 4'

which have a significant temperature variation, show
no evidence of locking when they pass through sub-

4' W. C. Koehler, J.W. Cable, E.0.Wollan, and M. K. Wilkin-
son, J. Appl. Phys. 88, 1124 (1962)."B.T.Matthias, A. M. Clogston, H. J.Williams, E.Corenzwit,
and R. C. Sherwood, Phys. Rev. Letters 7, 7 (1961).

443. T. Matthias and R. M. Bozorth, Phys. Rev. 109, 604
(1958).

4' M. K. Wilkinson, W. C. Koehler, E. O. Wollan, and J. W.
Cable, J. Appl. Phys. 32, 20S, 48S (1961}.
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multiples of the reciprocal lattice vectors. Locking does
occur for the linear spin wave configurations in erbium"
and thulium. 4' For both cases, p= 7. But the energetic
cause is easy to understand in these two cases. The
magnetic interaction responsible for the ordered state is
the s—f exchange interaction between a linear SDW in
the conduction electrons and the localized f electrons.
This interaction is negligible for atoms at nodes of the
linear SDW; and there will always be a significant
fraction of lattice sites at or very near such nodes for an
incommensurate linear SDW. This loss of interaction
energy is avoided by a commensurate SDW wave vector.
The phase of the SDW can adjust so that no lattice site

'~ J.W. Cable, E.O. Wollan, W. C. Koehler, and M. K. Wilkin-
son, J. Appl. Phys. 32, 49S (1961).

is near a node. Consequently, a locking mechanism is
provided. This cannot occur for a spiral spin wave
configuration, since a spiral SDW has no nodes. It is
interesting that the locking in erbium stops when a
spiral component appears, as might be anticipated, since
the (perpendicular) spiral component eliminates the
nodes, even though the linear component remains.

ACKNOWLEDGMENT

Throughout the course of this research the author has
received stimulation, enlightenment, and encourage-
ment from Dr. Anthony Arrott. It is a pleasure to
acknowledge his contributions and to thank him for his
continued interest.

P HYSICAL REVIEW VOLUME 128, NUM BER 3 NOVEMBER 1, 1962
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The lowest order electromagnetic corrections to i8 and p decay have been calculated in an intermediate
vector-boson theory. Assuming universal coupling, the p lifetime agrees with the experimental value if the
boson's mass is chosen to be that of a E meson. The results are relatively insensitive to the value chosen
for the cutoff.

I. INTRODUCTION

'HE lowest order radiative corrections to decays
through a (V—A) Fermi interaction have been

calculated by Kinoshita and Sirlin and by Berman. ' In
a universal coupling theory these corrections affect the
lifetime of the muon in two ways: in the contributions
to the p, decay itself and in the contributions to the 0"
decay. The latter decay determines the coupling con-
stant to be used in all weak interactions. For universal
coupling, the most recent experimental data indicate a
significant discrepancy between the predicted and
observed p, lifetimes. '

It has been suggested that decay processes be
described not by a Fermi interaction but by two
Vukawa-type interactions mediated by a vector boson. '
The intermediate vector-boson. (IVB) description re-
duces to the Fermi theory for infinite boson mass. We
calculate below the lowest order electromagnetic correc-
tions to tt and P decay in an IVB theory. We then deter-
mine the p lifetime for universal coupling and compare
it with the experimental value.

* Supported in part by National Science Foundation.' S. M. Herman, Phys. Rev. 112, 267 (1958);T. Kinoshita and
A. Sirlin, ibid 113, 1652 (1959). .' J.W. Butler and R. O. Bondelid, Phys. Rev. 121, 1770 (1961}.' See, e.g., T. D. Lee an& C. N. Yang, Phys. Rev. 119, 141.0
(1960).

II. INTERACTION LAGRANGIAN AND
CUTOFF DEPENDENCE

Consider the following type of interaction Lagrangian
as a basis for all weak processes4:

(1+'7)
Lr igPxy„—— frets&"'+H. c.,

where tbr destroys a positively charged fermion F', g&

creates a positively charged IVB, 8+, and the fermion
X is neutral. g is a real, semiweak coupling constant. The
electromagnetic field is introduced by replacing B„U*in
the free Lagrangian by (cl„+ieA„)U*. Here U* is a
charged field operator, and A„ is the electromagnetic
vector potential. Additional interactions corresponding
to anomalous magnetic moments will not be considered
here. The interaction Lagrangian is now of the form

L=L, i@q„PA" ie(—A „y„*B"y" —A„y„"8'p"—
—c)"cb *A $"+Bg *A"P")

—e'(A„A op„*y —A„A go*@„), (2)

where e is positive, and f destroys a negatively charged
fei I111on.

4 We follow the notation of J.M. Jauch and F. Rohrlich, Theory
of Photons and Electrons (Addison-Wesley Publishing Company,
inc. , Reading, Massachusetts, 1955).


