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We calculate the total cross section to order e' for annihilation of an electron-positron pair into photons.
Comparison with experiments at CERN is discussed and some consideration about the behavior of cross
section for electrodynamical processes at high energy is outlined. Some details of calculation are sketched in
the Appendix.

I. INTRODUCTION

I the last ten years, since the introduction of the
~ - renormalization techniques in the S-matrix theory,
calculations of scattering cross sections for electro-
dynamical processes to orders higher than e4 have been
carried out by many authors. As is well known, in these
calculations some trouble can be given by the zero mass
of the photon that causes the appearance of the so-called
infrared divergences. In order to remove them, the con-
sideration is made that a scattering process (in a broad
sense) can never be considered as purely elastic. In
fact, there is always an inelastic contribution due to the
emission of some supplementary real photons of low

energy (a single photon in the e' approximation con-
sidered). From an experimental point of view these
photons are not detected if their energy is less than a
certain critical value hE, the resolving power of the
experiment. However, this collateral process must not
be omitted, even if not experimentally distinguishable
from the elastic process. So we add to the virtual photon
corrections the cross section of the process corresponding
to the additive emission of a real photon whose energy
is under the threshold of detection DE. This makes
possible the complete elimination of the infrared
divergences.

Usually, the procedure followed in the calculation is
to consider the inelastic contribution to a scattering
process from real soft photons, with energy less than a
given quantity mA«m (in a particular reference frame).
This condition implies an isotropic photon emission,
leading to a great simplification in the work. But, while
this statement is sufFicient to avoid the infrared diver-
gence, it is quite unrealistic. In fact, we cannot arrange
an experiment where only soft photons contribute to
the inelastic part because the resolving power dE of
the experimental device does not ful611 the condition
DE&&no and generally has an angular dependence.

In this way, in order to compare the theoretical calcu-
lations with the experimental results one ought to have
taken into account the contribution of the real photons
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(ideally not detected) whose energies range from mA«m
to AK These are usually called "hard" photons. A very
instructive example on the way to perform these calcu-
lations, concerning soft and hard real photons, has been
given by Tsai for some electron-electron scattering
experiments arranged at Stanford. ' A result independent
of any experimental arrangement would be achieved,
in that case, by allowing the photons' energies to reach
the maximum value given by the conservation laws.
This leads to the differential cross section for e e
scattering with and without emission of a photon.

A further step can be represented by the knowledge
of the integrated correction, which eliminates problems
of angular dependence. This is not possible for processes
like e e and e+e scattering owing to the long range
of the Coulomb 6eld, but it can be accomplished for
Compton scattering and for annihilation of the e+e

pair into a different pair of particles, for instance a p+p,

pair or two quanta (or more). In the present paper we
are concerned with the calculation of the corrections to
the annihilation into two photons due to the virtual pho-
tons and to the annihilation into three photons, whose
energy is not limited by experimental considerations.

It is necessary to underline the precise meaning of the
total correction we have calculated. By "radiative cor-
rections" to a process one usually means the higher-
order contributions due to the virtual photons inserted
in the "skeleton" graphs of the process. Moreover we
must add, owing to the infrared divergence, the cross
section for emission of another real photon. If the range
of the energy of the supplementary photon attains its
maximum value, the inelastic part contribution be-
comes very large, of the same order of the radiative
corrections or greater, as we will discuss in the 6nal
part. In so doing the usual distinction between the
radiative corrections due to virtual photons and the
related inelastic part is lost. In the following we will

mean by total correction the sum of these two contribu-
tions (it is a radiative correction in a broader sense). In

' Yung Su Tsai, Phys. Rev. 120, 269 (1960).
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the same frame of ideas, a corresponding experiment of
this type is a bad measure of the radiative corrections
(in the usual meaning) because there is no sharp dis-
tinction between Anal states with two or three photons.

Our work permits a knowledge of the high-energy
behavior of the over-all radiative correction (in the
broadest sense), integrated over all the variables, to the
total cross section for the process considered. In other
words, we would like to study what are the suggestions
that an e' perturbative calculation gffers on the asymp-
totic behavior of the total cross section for the e+e
annihilation into photons and possibly for other electro-
dynamical processes (where a total cross section can be
defined). Practically it is to determine the power, first
or second, of in(E/m) in the expansion in o. of the cor-
rection. In addition, our calculation allows, in the
laboratory system energy range from 1 up to 10 BeV, a
comparison between the e' predictions of the standard
theory and the results of the high-energy experiment of
pair annihilation, recently performed at CERN. '

This process has the advantage of being very favor-
able for a lowering of the limits of validity of quantum
electrodynamics (Q.E.D.) at small distances, as pointed
out by Andreassi, Budini, and Reina; furthermore, it
is free from any natural breakdown4 of Q.E.D., as long
as one does not take into account graphs of higher
orders in n (e.g., to order es we could have vacuum-
polarization loops of strongly interacting particles).
Another process whose 6nal products are three photons
is, to order e, e+e —+ x p.' In the laboratory system
the threshold of the process is about 70 Gev.

We explain now the scheme of the calculation: We
start with the differential cross section for three pho-
tons annihilation of a free pair and perform the 6vefold
integration over the 6ve independent variables. ~ This
expression diverges in the limit of low energy of the
photons. To avoid it, we assume a small rest mass A.

for the photon, and the final result has the expression

~h) =~sh)+fr(V)»(A/m).

LNote the relativistic invariance of Eq. (1.1) because
of the invariant meaning of A.$

In order to avoid considerable trouble in the calcula-
tions, we have proceeded in the following way: We have
divided the emitted photons into hard and soft, by
denoting as "hard" or "soft" the photons with energies
larger or smaller than tish, (in the laboratory system).

We then get

~, (~, &a)=Z, (~)+f, ln2a,

os(y, &6)=Ss(7)+fs ln(A/2m'). (1.1")

The recombination of Eqs. (1.1') and (1.1") leads
back to Eq. (1.1).Subsequently, we attribute the same
photon mass h. to the virtual photons for the radiative
correction to a pair annihilation, leading to a divergence
at low energies. The cross section for two quanta
annihilation, corrected by virtual photons only, has the
expression:

os Ss(y)——+fs in(A/m). (1.2)

It is verified that fs= fs, so—that we can combine
Eqs. (1.2) and (1.1")

os(y, &6) =~n+Zs(y) fs ln2A—. (1.2')

0.0 is the Born approximation result. In this way we are
left with the A dependence only (in the laboratory
system). Some physical meaning could be attributed to
Eq. (1.1') and (1.2') separately (in the laboratory
system). In order to obtain a A-independent, Lorentz-
invariant expression, we have to add Eqs. (1.2') and
(1.1'), with the result

This 6nal expression is physically meaningful and repre-
sents, as already discussed, the total cross section for
annihilation of the e+e pair into two and three photons,
taking into account the virtual photons corrections up
to order es. No meaning can be attributed to Zs(y) and

Zs(y) separately.

2. TOTAL CROSS SECTION FOR THREE
QUANTUM ANNIHILATION

The diagrams for this process, as is well known, are
of the general type shown in Fig. 1, and the other Ave

are obtained from this by taking all the other permuta-
tions of the three photons. We see that when the energy
of one of the photons inserted in an external electron
line of each graph is allowed to go to zero (which is
possible for the kinematics: see Appendix I) the electron

F. Fabiani, M. Fidecaro, G. Finocchiaro, G. Giacomelli,
D. Harting, N. H. Lipman, and G. Torelli (to be published).

G. Andreassi, P. Budini, and I. Reina, Nuovo cimento 12,
488 (1959).

4%e mean by natural breakdown the involvement of electro-
magnetically interacting particles other than photons, electrons,
and p, mesons.' G. Furlan, Nuovo cimento 19, 840 (1961).' N. Cabibbo and R. Gatto, Phys. Rev. 124, 1577 (1961).

7 J. M. Jauch and F. Rohrlich, The Theory of I'hotons and Elec-
trons (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1955), pp. 272-273. Fxe. 1.Standard Feynman graph for three-quantum annihilation.
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propagator originating (or terminating) in its vertex is
divergent. This kind of divergence, the so-called infrared
divergence, will be removed later. For the present we
shall avoid it by forbidding the energies of all photons
to reach values smaller than a fixed minimum mA.

The cross section is'

nr(P b4(kg+k, +k,—p —
q)—Xd'kid'k2d'ka, (2.1)

167l ((pq) m ]'CdyGD2Ã3

where ki, k2, ka, coi, co2, co3 are the four-momenta and the
energies, respectively, of the photons, p and q are
electron and positron four-momenta, respectively; X
is the absolute square of the matrix element summed
over the polarizations of the photons, and averaged
over the electron and positron spins. (Note the complete
symmetry in k&, k2, k3.) The quantity X can be obtained
from the trace for double Compton eGect, ' by applying
the substitution law and changing the sign because of
the replacement of the projection operator for the
outgoing electron in the Compton case with the pro-
jection operator for the ingoing positron.

The result, can be expressed through the invariants
defined by

and reads

m2xg ———(pkg),

m'x2 ———(pk2),

m'x3 ———(pk3),

m'x&' ———(qk&),

m2xm' ———(qk2),

m'xa' ———(qk3),

(2.2)

a=+,(1/x;),
x=P, x,,

A =Xgg2gg, 8 XQ X2X3
/ / /

c=P;(1/x, x,'),
/

2t Q gags

c =2'( '/-' '+" '/ )

By integrating over the 8 function, we can re(IUce t»e
differential

to
d'kid'k2d'k3

d'k&d&, t »'d~2/d (~&+~&+~3)],

where d02 is the element of solid angle relative to
photon k2. Performing the differentiation and substitut-
ing in Eq. (2.1), we obtain

—X=2(ab —c)((a+b) (x+2)—(ab —c)—g]
—2x(a'+b') —Sc+4(x/AB)((A+B) (x+1)
—(aA+bB) L2+s (1—x)/x]+x'(1 —s)+2s}

—2pI ab+c(1—x)], (2.3)
where

0 =O~O2
X(vie) 2') i dQg d02

mL(pq)' —m']&Ly+(1 —p+ cos82)+y (1—p cos82') —(»/m) (1—cos8i2) 4~ 4~

where dQi is the solid angle of photon ki. Thus, we are
left with five variables of integration. Here, y+, y are
the energies of the positron and electron, respectively;
p+, p are the corresponding velocities.

For the angular part, we have

~&d~2 sine&d| &dq $ sin~2d~2d+2,

where the angles refer to the polar system of coordinates
in which the angles 0; are the angles between the direc-
tions of the positron and the photon k;, and the angle y;
is the azimuth of the photon k;, reckoned from the
plane p, q. We have also introduced the angle 8;; be-
tween the direction of the photons k; and k, . We will
perform our calculation in the laboratory system in
which

P =o v-=1,-P+=P, v+=v,
x;=(o,/m, P, co;=m(y+1),

and the cross section simplifies to

XCO yM 2lSCO]

(1 1 1
+ + d (1,2,3) with

ikp k22 kp

3—d (1,2,3).
k2

In this way, choosing the simplest terms, we not only
obtain a great reduction of terms, but can also avoid
the most complicated integrations. We choose the fol-
lowing terms:

Solving for a, b, etc., in (2.3) we see that we have to
integrate a very large number of terms. This number,
however, can be considerably reduced with the follow-

ing observations:
Ke are concerned with the total cross section. Now it

is obvious that as long as only the total cross section is
required, functions which are obtained by interchanging
k&, k2, k3, on account of the indistinguishability of the
three photons, will yield, upon integration, the same
contribution. For instance, it is clear that we can
replace

0 =At'p
Pym'L1+y(1 Pcos82) —(a i/m) (—1 cos8i2) 5—

dQj d02
X

4x 4x

4i=
g] X2

44=
/ /g] X2X2

4a=
X]X2X2

A=
glg2 '

$3=
Xi X2X3

4s=
/ /

X'1X2 X;i

Here, of course, the expression for X is also simplified.

F. Mandl and T. H. R. Skyrme, Proc. Roy. Soc. (I ondon)
A215, 497 (1952).

4&=
g],X2

48=
Xg Xg

4s=
/ /

X],g], gggp
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$16

1
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fl
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$19
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$20
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Z = /if id)&2& g — g pdg2 )$23
g2"

@22 )
g2$2

Pv
CPS01$=g

g
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The result is (1—P cos&i)
&

d$1d CPS»

,1dcosg2 "&2—dp)
E

g d(p 81
0

(2.8)

2 (y 3x+i)~W6(W +W,) 42rWs —sr

( +2)W6 —22rxg(4 (x—1)~W6 4

, 1)Z,+2(zs+Zo)
sw R2(g —~i) d&+1 g CpS82

R+&fs 0

snges )loin 5 to / Pes from 0 to ~ )
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g(Z +
)(y +.p')

Z„+8Z

Z.+(*-3~')("+'"
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~
'=

(1 2~)(~+1)+"
~=

(1 2~)(~+»+2"+x(yis+ V22)) &
(2.6)

where
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1

g1~
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fit
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f, (g—xl) t
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figit
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The total contribution to the Z integrals is given only by do and 8&. There is no infrared contribution from the V's.
We obtain

ur' 2 f 1 1 2P q 2P—
I v+ —»[v(1+P)3~2 I

—(v+2)v(1—&)&21—
v+1 ~v 1+Pi 1—P

1
(v'+v 2)—»—[v(1+P)l+2v'+v+r+Pv(2v+ ) &2( v+—Pv)+(2v+ )v( +&)

1 1 2
&«(1—v —&v) —I

——1— —»'[v(1+8)j+ (v'+3v —1) ln'[v(1+0) j
2 vq-1 Pv ~v(v+1)

1 (3 22 1 10 ~ 2
X»[2(v+1)]——

I
-v'+ —v+-+

I

—v+s-
Pv(2 3 2 3(v+1)) v+1

»'[v(1+0)j

3y 143— lny1 ln 2y 1 2y 1y1 2y 23 lny1 1n 7—y 1
v+1

4 m'
4~2+ (v2+v 2) ln[v (1+P)) + I

2+ ln2[(v+1)]
3 (v+1) 6Pv

m'- v —1 v(1—P) 1 2 16——2+2 + +—+ + +2+
(v+1)' & 2e 3ev- 3(v+1)

+1

Py (0y) d co soy

1 2v'+7v+1—v+4+- -»'I v(1+~)l+
P(v+1) v P 'y

lnL'y(1+P)j —tt(p+3)) ln25 =Z~(y)+f, (y) ln26

(2.10)
(terms going to zero in the limit d, —+ 0 are omitted), where

8 - 2(v+1)u
Pg(eg)= —z, 1—

(1+~)'—
v v 1 v —v

1 1 qi 2Pv 2Pv~——v+ I+ (in~) [in(Pv —v+~) —»(4+v —~)3
Pv v+1& ~ Pv v+~ —v(1+P)~ »—

8=v(1—P cosHx)

(all the variables are evaluated in the laboratory sys- the order (1/V') ln'(2v) (or smaller) the cross section
tern), and we define the Spence function 22(x) as takes the form:

z, (x) =—
g dl

t

nro
0 ~Ea—— {3ln'2v —7 ln'2v+ (4—-'m') ln2v —n'+6)

27

Equation (2.10) in the nonrelativistic (NR) limit
gives the result:

oaNa s- (nr './P) ——(vr' —9) (2.11)

in accord with that evaluated directly by Ore and
Powell. 9 (Note the disappearance of the ink terms. )

Of greater interest, in view of future considerations,
is the possibility of obtaining a closed expression for the
extreme relativistic (ER) limit. If we neglect terms of

' A. Ore and J.L. Powell, Phys. Rev. ?5, 1696 (1949).

[ln22v —2 1n2v+1)4 ln2b, . (2.12)
27

(In both the ER and NR limits the integral J' ~+'F~(0~)
)&d cos8~ does not contribute. )

Formula (2.10) can be interpreted as the total cross
section for annihilation of a pair into three photons,
each of energy greater than vnA, when 6 can be neg-
lected compared to 1.Moreover, b, has to assume values
that, however small, shall guarantee the emission of
photons still really observable and not too soft.
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3. TOTAL CROSS SECTION FOR TWO-PHOTON
ANNIHILATION TO ORDER ee

We evaluate now the total cross section for two-
quantum annihilation to order e~. This process is de-
scribed to this order by the Feynman graphs shown in
I ig. 2. The corresponding differential cross section has
been calculated by Brown and Harris. "It contains the
physically meaningless photon mass h. that is eliminated

by adding to it the diGerential cross section for the

annihilation of a pair into three photons, one of which

is soft, and whose greatest energy is assumed to be
co „«tn (i.e., 6«1). Because this condition is not
covariant, all the calculations are understood to be
carried out in the laboratory system (for details we

refer to the quoted article by Brown and Harrism).

We are interested in the total cross section. The inte-
gration of the diGerential cross section can be performed
exactly except for two terms of the same type as the
ones we have met in Eq. (2.10). The 6nal result is

Ofp 1 4
os+os soft=op)+ —2 3v'+7v —6+ —Llnv(1+P)] —2v+1+

2Pv Pv v+1 Pv v+1
~ (v+Pv+1)

+s (v+s-
2

I- »I-v(1+P)]—v —2+
v+»P v+1-

1 2
&2(1 v —Pv)—+- 3(v+1)—

2 v+1

8 6
ln't-v(1+P)] ——Sv'+11v —10+

v+1& Pv v+1-
»'I v(1+P)]»2I (v+1)]

+—v'+2v —2+
Pv v+1

1
»'I v(1+P)] l L(v+Pv+1)]—4v+9-

2 v+1 2v+1 (2v+1)'

1 s 1 1——5v'+13v —2+
~

ln'(v(1+P)]+ 2v+10-
Pv v+1) v+»v+1 (2v+1)'-

4 1 1
~in/2(v+1)] —2v —2— + + 1nv)(1+P)] lnL(v+Pv+1)]

v+1 2v+1 (2v+1)-

»Lv(1+P)]

1 4——
I v+1——v'+~v —2+ ~+7v+2-

Pv v+1 ~ 2(2v+1)

4 1
l b(1+P)] +I1-

v+1 2v+1

1 1( 2(v+3) +'
&&lnt-2(v+1)]+—1+ 12v+9 + F2(t4)d cos~~

v+1 Pv& v+1 — v+1

4 1 2v'+7v+1—v+4+- —l"Lv(1+P)]+ 'Lvo+s) j sh+s)))~ss- '

P(v+1) vP 7
= n+&2(v) —f (v)»»,

where 0~ is the well-known Dirac cross section and

3
F2(et) = 2(v+3) —4v+6-

1+a v+1 a

2(v+1)
X&2

1 8

system):
tX

~3(soft, finite) &D 1 lnv(1+P)

+- l L (1+6)]——.'1 'L (1+0)]+—

+z, (1 v Pv) ~—(1+—v+P—v)o.s,„ft consists of a divergent part (in ln2~) as well

as a finite part; the latter includes the finite terms aris-
ing from integration over the energy of the soft photon In the NR limit (3.1) takes the form
(() &a&&m~), which has not been taken into account
for o.3 (see Appendix I). It reads (in the laboratory ÃCY G

~NR ~ NR 1+
P ~ 4"I.Harris and L. M, 3rown, Phys. Rev. 105, 1656 (1957}.

(3.2)
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TABLE I. Theoretical corrections for several values of the
energy bz'*'" and Bp & are total corrections; for G2 and G3 see
Eqs. (5.1).

FIG. 2. Standard Feynman graphs for two-quantum
annihilation to order e .

2
20

2X10'
2X10'
2X 104

106
108

1.225
3.24

10
31.6
102

7.07X10'
7.07X 103

g+exacf,

0.0219—0.0011
0.0136
0.0286
0.0457
0.0832
0.1424

0.0264
0.0291
0.0457
0.0832
0.1424

G2

0.0140—0.0185—0.0761—0.1672—0.2916—0.5783—1.0377

0.0079
0.0174
0.897
0.1958
0.3373
0.6615
1.1801

———2+4/in'2y —2 ln2y+1j ln26 . (3.3)
2

We see that the divergent part in Eqs. (3.1) or (3.3)
differs from the divergent part of Eqs. (2.10) or (2.12)
only by the over-all sign. So the total contribution to
order o.' turns out to be independent of A.

4. TOTAL CORRECTION

Now we are in a position to give a quite general ex-
pression that leads to the total cross section for a pair
annihilation into photons to the order e, i.e., into two
and three photons. This is accomplished by adding
os(e') and os(e'). In fact, in this sum the 6-dependent
terms which are related in some way to the particular
experimental procedure cancel each other.

We now wish to obtain the amount by which this
sum exceeds the Dirac cross section 0~. If we write

ot t hm(oD+&2c+&3) &D(1+~) ose &2(o ) oD

the total correction reads

os+os
b=lim

Q-+Q
(4.1)

In the NR limit the correction is

n (19

p ~&12 )' (42)

The sn/P divergent term could be avoided if we
defined instead of the correction to o~, that to 0„ i.e.,

Also in this expression, ln26 terms do not contribute.
In addition, there is a divergent term that following
Brown and Harris' could be eliminated by taking
exactly into account the Coulomb interaction at low

energy.
With the same approximation as for 0.3 we derive the

ER limit for 02,. here, however, the situation is more
complicated because now the integral of Fp(8~) is not
zero in this limit (the explicit calculations are reported
in Appendix II).

o.r()' 8 13
os Ea =on+ ——ln'2y+ —ln'2y+ (s'—6) ln2y

27 3 3

to the cross section to e4 order corrected for the Coulomb
interaction between the initial particles at low
momenta. '

The closed expression for the ER limit is very
interesting:

CX 5z' —11
b = 2 ln'2y —ln2y+ (4pr' —13)— (4 3)

12m ln2y —1

where, as the ER limit for the Dirac cross section, we
have taken

o.g)
Ea =prr p'(1/y) (ln2y —1).

5. NUMERICAL RESULTS

We give now some numerical results and discuss them
in the light of the recent experiment performed at
Geneva. ' In Table I we give the total correction for
some values of the energy in a range from 1 4iJ.eV up to
5&104 BeV. More precisely, columns III and IV con-
tain the values of 8z calculated from the exact, complete
formula (4.1) and from the ER formula (4.3) respec-
tively. As is seen, the agreement is very good for high
energies while the di6'erence begins to be sensitive at
~10' MeV. The most important terms left out in
calculating Eq. (4.3) are of the type e ~ (1/y) in'2y.
With n 1.4 it is possible to lower the range of validity
of our ER expression down to y~200. A'Ioreover we
have considered in columns V and VI the quantities

Their values are purely indicative and physically mean-
ingless because only o & and op are observable LZs(p)+o ~,
Zs(p) may possibly coincide with o.s and op for the
specilc value 6= ~~mj. We want merely to show how
the large compensation between Gs (contribution of
hard real photons) and Gs (contribution of virtual and
soft real photons) gives a reasonable value of the total
correction. (It is to be pointed out again that Gs and
G3, as well as 02 and 03, are not invariant quantities and
the reported values refer to our laboratory system calcu-
lation. ) We see that Gs is always positive and increases
with the energy more quickly than G2, which is negative
(but at very low energies), so that 8& passes through
zero (at about 12 MeV) becomes positive and increases
with the energy as ln'(2y) (y=E/m). To clarify this
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from the local theory depends essentially on two form
factors. Another approach could be the use of the inter-
mediate auxiliary 6elds. We do not pursue this matter
here; it is sufhcient to report that, in the most favorable
case, the distance tested by the experiment of Fabiani
et al. seems to be of the order of (0.2-0.4)X 10 "cm.

6. CONCLUDING REMARKS

1 2
I

20
I

2sl 0
I I

2&10 ?AO
I

'IO I'0

FIG. 3. Total correction as a function of ln(2'r). The solid
curve refers to the exact formula; the dashed one to the ER
limit.

point we plot in Fig. 3 the total correction as a, function
of ln(2y).

Now for the Geneva experiment's results. As already
discussed, in this experiment one measures at energies
in the range from 2 up to 10 BeV, the total cross section
for the annihilation of the e+e pair into photons (two,
three, and possibly more).

In Table II we report the experimental values of the
total cross section r, „'the Dirac cross section 0~, and
the cross section with radiative corrections rqI„„Fig-
ure 4 shows a comparison between otl, epr (dashed curve),
o D (solid curve) and o,„n (after reference 2).

Experimental data available until now do not allow

any distinction between the Dirac cross section and the
cross section with the erst radiative correction because
both fall within the experimental errors. So such an
experiment is not a good measure of the radiative cor-
rections. On the other hand, the correspondence be-
tween the predictions of the local Q.E.D. and the ex-
periment makes possible a lowering of the present
limits of validity of the theory. It has been observed'
that the distance reached with such an annihilation
experiment is strongly dependent on the modi6cation
used for the electron propagator. In fact, some care is
to be taken in introducing a minimal length in the
electron propagator, in order not to destroy the gauge
invariance of the theory. " The simplest (non-gauge-
invariant) approach of DrelP' has as a consequence
that by using different "gauges, " e.g., in the sum over
the photons'polarizations, different results are obtained.
The current procedure requires a simultaneous modi-
6cation of the electron propagator and of the vertex
function (Ward identity), so that the over-all deviation

"P. Budini and T. Weber, Nuovo cimento 22, 1321 (1961)."S.D. Drell, Ann. Phys. (New York) 4, 73 (1958).

The main results of our work are represented by the
total cross section os(p, )6), Eqs. (2.10) or (2.12),
and by the total correction 8&, Eqs. (4.1) or (4.3),
whose meaning has been discussed in the text.

It is possible to use os(7, )6) independently and
not solely as an intermediate step in arriving at 8&. Its
expression, which is dependent on 6, has been obtained
for 6&&1, but, owing to the rather slow variation of the
logarithm, it can be taken valid up to 6 values &-,', if
someone is interested in an evaluation of orders of mag-
nitude. Moreover Eq. (4.3) holds in the laboratory
system only, although its expression can be also ob-
tained in the c.m. system, as we will explain in the
following.

Let us discuss the total (Lorentz-invariant) correc-
tion bz The rea.lly interesting point is the ln (2y) high-
energy dependence. In order to fully analyze the mean-
ing of such a result it is convenient to summarize the
conclusions contained in the previous work on the high-
eoergy behavior of the radiative corrections. In this
connection, a rather important theorem has been
established by Eriksson and Petermann. ' ' They con-
sidered the behavior of the radiative corrections to the
diGerential cross section, for large values of the mo-
mentum transfer (i.e., q'))m') in the c.rn. system, by
taking into account soft photons only. Then they suc-
ceeded in showing that under these conditions, the
correction behaves as (cr/s. ) 1n(q'/m'), or better still,
that the series of the radiative corrections, in the usual
sense, is an expansion in terms of a parameter (u/s. )
Xln(q'/m'). Actually, their result must be understood
in the sense that, for q'&&m' in c.m. , the correction to
the order e' can be put in the form:

g6=—ct ln ln—+ca ln —+cs
AE nP m'

(6.1)

GQV

1.94
5.80
7.71
9.64

0,522+0.015
0.197&0.06
0.156~0.06
0.127&0.07

0.523
0.199
0.154
0.126

&theor

0.538
0.206
0.160
0.131

"K. E. Eriksson and A. Petermann, Phys. Rev. Letters 5, 446
(1960).

'4 K. E. Eriksson, Nuovo cimento 19, 1044 (1961).

TABLE II. Experimental total cross section 0, ~, Dirac cross
section 0.~, and theoretical total cross section o.~h„„ to order g6.
Cross sections are measured in mb.
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FIG. 4. A comparison between the experimental points and
the Dirac cross section (soiid curve) and the corrected one
(dashed curve).

where c&, c2, c3 are numerical, possibly angle-dependent,
constants. This result (which practically gives the
classical Schwinger's expression of the correction for
the elastic scattering in an external field) seem." to be
confirmed by current calculations for di6'erent processes
in the c.m. system. The subsequent addition of the con-
tribution of hard photons does not change this conclu-
sion. (Possibly terms like 1n'(E/hE) can appear, but
taking into account the fact that for the high-energy
experiments hE/E is several units, these quantities are
not too important. ) This situation holds, without any
doubt, also for the e++e —+ 2y differential cross sec-
tion. To arrive at our 8z, one has to take into account
all the hard photons and then to integrate over the
angles. At first sight, from the Eriksson and Petermann
theorem, one could expect that the total correction also
contains a first power of ln2y, so that our expression
(4.3) for 8r can seem to be rather surprising. The
appearance of the ln'2p terms can be completely under-
stood by following the discussion given in a recent paper
by Andreassi, Budini, and Furlan. "The point is, that
to get the total cross section, we need the expression
for the radiative corrections (in the usual sense, i.e.,
with soft photons only) also for small values of the
momentum transfer (q'&m'). Now it is possible to
show that in this region, where the Eriksson and Peter-
mann theorem does not hold, the correction cannot be
put in the form of Eq. (6.1), and more precisely that
(in the c.m. system):

8= (n/m)Ldi in(E/hE) In2y+ds in'2y+ds$. (6.2)

In addition, the ln'2y terms can be very clearly ascribed
to the contribution of soft photons to the correction.
(For the e++e ~2y process considered, this soft-
photon contribution is isotropic). Thus, the ln 2y term
remains present. Also after the angular integration and
following reference 15 it is easily seen that, in the ER
limit, the cross section corrected for virtual and soft

This formula, makes clear the continued presence of
the ln'2y term (in the c.m. system).

Analogously we can calculate the cross section (1.1')
in the c.m. system. The result is

os(y, &h)=oui —2(2 ln2y —1) ln(y/6)

9—2x'—2 In2y+1+ (6 4)
6(2 ln2y —1)

This part does not contain ln'2y terms (as expected),
so that by adding it to Eq. (6.3) to obtain the total cor-
rection, the high-energy behavior of (T2, is not changed.
These considerations are sufEcient to explain the In'2y
term and to ascribe it to the soft inelastic part a,t small
angles, where there is no compensation between the
virtual and soft photon contribution.

Looking now at the numerical results, one sees that,
except at very high energies (y &10'), the correction is
rather small. However, at energies higher than this, it
is not reasonable to continue to neglect the 0,' terms of
the correction, coming from the higher approximation. '
It is better to specify, at this point, that these next
higher contributions which we should take into account,
introduce with increasing n an increasing number of
photons in the Gnal state because there are no threshold
problems. (That is, at the order es we ought to add the
four-quantum annihilation and the virtual photon cor-
rections for the two- and three-quantum annihilations. )
This is so because the object of our calculation is a
total cross section for annihilation into photons whose
maximum number depends on the approximation used
(that is, not only the integral cross section for annihila-
tion into a fixed number of photons). In this way the
total correction bp, as defined by us, can also be thought
of as an expansion into virtual and real photon numbers
(obviously in a figurative sense)

Radiative corrections, in the usual meaning, to the
integral cross section for the e++e ~ 2y process in-
volve rather virtual photons and real soft photons (not
detected). However, the point to be stressed (see refer-
ence 15) is that the asymptotic behavior both of the
integrated radiative correction and of our total correc-
tion is, in the c.m. system, completely determined by
the soft-photon part, as we have discussed above, Eqs.

'5 G. Andreassi, P. Budini, and G. Furlan, Phys. Rev. Letters
8, 184 (1962).

16 Ef we assume, as an indication, that the next term is like
(0,/7i-)2 ln42p, it could be of the order of several percent at y & 106.
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(6.3) and (6.4), in order to explain the in22y appearance.
Therefore we conclude that, whatever the distribution
of the hard photons (in the c.m. system), their contribu-
tion has no inQuence on the more representative power
of the logarithm. Our considerations are based on the
knowledge of the terms up to e', but they are probably
true at every order in n (in the c.m. system). In fact
the Eriksson and Petermann theorem says that for
every term of the perturbation series, there will be the
compensation at large angles between the elastic (vir-
tual photons) correction and the inelastic one (soft real
photons); in the same way, if this compensation does
not occur at small angles, after angular integrations the
appearance of the (n/s. )"1n'"2y terms will be allowed.
Taking into account the hard photons, no matter how
one does this, will successively modify the lower powers
of the logarithm.
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APPENDIX I
Et is easily seen from the kinematics that the ranges

of integration of our variables are

0&PI&~, 0&g,&g, 0& P~&2m, 0& P2&2m,

concerned with the states for which all three photons
have energies &A. To obtain these states, we shall
proceed as it follows. Let us 6x a value for k~. For a
generic value of x~ between 6 and k~, we have

cog+~g= const= E—~~,

so that the point C moves on an ellipsoid of revolution
around the PQ axis and with foci P and Q (see Fig. 5).

The range AP (QB), which represents the minimum
value for co~ (co&), is decreasing as x~ increases to k~
(in particular it is zero for x~ ——k~). For xq greater than
a certain value, co2 (co3) becomes smaller than A. Now
we determine this value. Clearly,

PQ= (q'+~P —2
~ q (co& cos8&)"'.

We see that ~2, q is minimum (or maximum) when
C—=A (or C=8). In thi—s situation, we have

Now we impose the conditions:

co2;„&d, (i.e., AP&h),

cog;„&6 (i.e., BQ &6).

It is clear that A P approaches zero as x~ approaches
its maximum value allowed by kinematics.

From the above inequality we have

E N j—(q'+~g' —2
~ q j ~g cos8g)"' &2A.

The upper limit for x& is obtained by equating the
two members in the above equation.

The result is

0&x~&k~ ——

1—Dlv/(y+1) j cos8& where:
k(h) =1(/p+r cos8)~,

It is well known, however, that if we allow x~ to
approach the value 0, the so-called infrared divergence
occurs. In order to avoid this fact, we increase the lower
limit for x& by an arbitrary quantity 6 (satisfying the
condition D«1; that is, 0 «a&;„«m). In the following
considerations we put, for simplicity, m=1, x;=or;.

We will now show that if we are to take into account
the symmetry between the three photons, i.e., if we are
to prevent photons x2 and x3 from reaching values &6,
we must also decrease the upper limit for x~. We are

PzG. 5. Kinematical situation for kq, t~ axed.

LA11 states with x~ &k(A) and then having co2, co3&6
are to be taken into account. ] However, not all the
states falling in the range Lk(h), k~7 are to be dis-
carded, since also for x~)k(h) we have states with
c02) 073+6.

In fact, when C falls outside of the intersection of the
ellipsoid with the spheres of radii 6 and centers E and
Q, respectively, we have coa&A and aoa)h, i.e., such
states are to be taken into account.

When kq ranges between k (6) and k~ it turns out to
be convenient to perform a change of the angular
variables determining the direction of k~. We choose as
as the colatitude, the angle n between k2 and PQ and
as the azimuth f, the angle between the planes (k2, PQ)
and (PQ, k~). One lnds

cosy = (cosn sinr+sina cosr cosf)/sin82,

cos8u= cosu cosr+ sinn sinr cosiP,
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The domain of integration is shown in Fig. 7.Here the
variables of integration are all energies and, therefore,
the situation is simpler. In order to satisfy the condition
that the energy of the three photons does not become
smaller than mA we can cut the domain of integration
as in Fig. '/(b) (which corresponds to the cutoff in the
general case), but in so doing we destroy the symmetry
of the domain and, therefore, we do not treat all vari-
ables on the same footing. This is matched mathe-
matically with the fact that a finite contribution from
some functions diverging in the discarded area is lost
in the limit 6 —+ 0. The symmetry is accomplished by
adding the contribution from the shaded area in Fig.
7(c), which also contains allowed states.

The same problem would arise for the lower limit of
integration for 6 —+0. We would have to take into
account a Qnite contribution from integration over
(0,6) just as we had from integration over k(h), k~.
However, these finite terms will be regained in the
evaluation of the soft-photon part in the correction to
the cross section for two-quantum annihilation (see
Sec. 3); therefore, we will not consider them now.

APPENDIX II

Types of Integrals

We examine now the types of integrals which occur
most frequently in the course of the calculations.

Integration over dx~ of the 8"'s is straightforward; it
leads tointegralsind cos0& of the type J'Dn(a cos0t+b)/
(ccos8t+d))d cos8t whose primitive is expressed in
terms of the function 22[j(cos8t)); see Mitchell. "
More laborious are the integrations concerning the Z's;
if we look at l, the integration over dp is

Z2 (cos8t)
d cosOy)

(cos0&)"

22(cos0t)
d cos8y~

(a cos8t+b)"

the integration cannot be performed analytically when
s= 1.

In the evaluation of the ER limit for the ov(e') it is
necessary to calculate the contribution of the integralJ' t+'F2(cos8t)d cos0, which happens not to be zero. For
this purpose, changing the variable of integration a
into v with the substitution v=2x/(1+a), we split this
integral into other of the type f22(av+b)dv/v.

This can be reduced to the transcendental function
Z3(x) defined as Z3(x) = JO*Z~(t)dt/t, as follows:

dx
Z~(ax+b)

=1n[x/ 1n/ax+b/ in [1—ax—bf ——,
' ln[b/ ln'f x]

+in)1 —a*—b[ Z, (1—ax—b)+in(x[

ax b —1
X Z2(ax+b)+Z2 —— +ln a+

b x

(of cos8t and xt) of the form

g(x~ cos8t) ln~ 1.—xt& (M+x~'+Ext cos0t)'"~

(HE+ xt2+1Vxt cos0&) &

here g is an algebraic function. This last integral in dx~
reduces to a simpler form after rationalization of the
root and gives, in addition to the usual functions,
F(cos8t)22(f(cos0t)), where f and F are algebraic func-
tions; the integration over d cos9& is not always possible.
In particular, for the types

a+b cosy
(a) b)

b 1 — b 1—
X Z, +1 —Z, b +b

i

—Z, ,( ax/b)—
ax ax

where a, b are functions of cos8~, cos82, and x~. This
integration results in a function of cos82 of the form
(c4 cos82+8 cos0p+C) 't' (obviously A, J3, and C are
functions of cos0& and x&), whose subsequent integra-
tion over d cos02 leads to a rather complicated function

"K.Mitchell, Phil. Mag. 40, 351 {1949),p. 301, Eq. {12).

b 1~ —t' b 1—
2(1 s~ b) Zs— +—1 ~—+as—

l
b +b);

ax i & ax

here a, b, and x are real numbers.
Properties analogous to those holding for Z~(x) can

be easily obtained for 23(x).'e

' See reference 14, pp. 366, 367.


