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Here 8(ki+ks —k") is supposed to be a Dirac delta
function of energy and a Kronecker delta function of
momentum. On comparing Eqs. (63) and (53), we find

g2 5 (ki+ k2 —k")
p (—k"')= , (68)

(/lf'2+ko2)2+@2/lII2 21 22 sk

where this equation is valid for —k"' 3P. The right-~ ~( ~™&'&~ '& ""')~ ( '+ ' )' ( ) hand side maybe evaluated in the standard way,kg, km

The matrix element in this equation has been considered
previously, from the point of view of perturbation
theory and of S-matrix methods. ' For example, accord-
ing to the ideas of perturbation theory, we would write

(SkiQk2Q) (ki k2o t i $ (Qi i 0)
g/btr( (ki+ks) )~( (ki+ks) )i (65)

where g is the renormalized 3fpIJ, coupling constant, d p

is the renormalized propagator for the unstable particle,
and V is the renormalized Mpp vertex function. For
—(ki+ks)' M2, we have V 1 and

AP( —(ki+k2)') —1/P(ki+ks)2+&2 —il'Mg, (66)

where F is the decay rate,

P—(g2/1 6~)L (/lI12 4~2) 1/2/I)II2$

Using Eqs. (65) and (66), Eq. (64) becomes

' M. Gell-Mann and F.Zachariasen, Phys. Rev. 124, 953 (1961),

g2 (Jf2 4~2) 1/2

pM( kns)~
16r2 M (~2+k+2) 2+@2/12

ref

sr (&2+k"')2+1'23P
(69)

where the second line follows from Eq. (67). This is

Eq. (56).
In this section the state vector for a system which at

some given time consists of a single unstable particle
has been constructed by the method used in the previous
sections for the case of stable particles. It has been
shown that the system decays with time if the weight
function for the unstable particle field has no delta
function singularities, and that if the weight function
exhibits a resonance behavior at the energy of the
unstable particle, the system decays according to the
ordinary decay law. It was remarked that the required
behavior of the weight function is indicated by the
ideas of perturbation theory, as well as more genera1
arguments.
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Following Mandelstam's suggestion, we consider a potential which can be expanded in a power series in r,
beginning with 1/r. Then at large energy (positive or negative) there will be Regge poles at all negative
integral values of l. If the 1/r term is absent in the expansion of the potential, the pole at l= —1 will be
absent. Generally, if r'" ' is the Grst nonvanishing oN power term in the potential expansion, the poles at—1, —2, -,—e are absent. H the potential expansion contains only even non-negative powers of r, there
will be no Regge poles at finite negative l in the limit of large energy. If the potential behaves as —a/r' at
small r, the scattering amplitude has a cut in the l plane from —$-a'/2 to ——2'+a'/2, and the Regge poles are
no longer located at negative integers at large energy. For 6nite energy, it is shown that a pole at a positive
integer or half-integer / implies another pole at —/ —1 but that the residues at these poles are, in general,
diBerent from each other.

HE behavior of Regge poles in an ordinary, non-
relativistic potential has attracted considerable

interest. ' In particular, their behavior for large energy,
positive or negative, may be important because of the

~ Supported ln part by the joint program of the 0$,ce of Naval
Research and the U. S. Atomic Energy Commission.

' T. Regge, Nuovo cimento 14, 951 (1959); 18, 947 (1960);
A. Bottino, A. M. Longoni, and T. Regge, ibid. 25, 954 (1962).

possible analogy with the scattering problem for highly
relativistic particles. ' Mandelstam' has given a simp1i-
fied theory of Regge poles in an orcHnary potential
which we shall use as a starting point of our calculations.

~ G. F. Chew, 5. C. Frautschi, and S. Mandelstam, Phys, Rev.
126, 1202 (1962); S. C. Frautschi, M. Gell-Mann, and F. Zacha-
riasen, jbjd. 126, 2204 (1962),' S. Mandelstam, University of Birmingham, 1962 (to be
published).
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Our purpose is to clarify arid, in some respects, modify
some of Mandelstam's conclusions.

We consider the Schrodinger equation for large tsega-
Ii~e energy 8=k'= —p2.

0"(~)—(v'+l(l+1)/r')0 ( ) = V( )0( ) (1)

With Mandelstam, we assume that the power series ex-
pansion of the potential

V(~) = —Ao/» —Ai —Ay— (2)

converges for all r, and that r V is bounded for r —+ +~ .
A superposition of Yukawa potentials, of exponentials,
or of Gaussians may satisfy these criteria, but a poten-
tial like (r+a) ' does not because its power series does
not converge for r&a. Discontinuous potentials like a
square well are also excluded.

We want to emphasize here that the assumption (2)
is indeed a very severe restriction on the potential V(r).
I'or instance, a superposition of Yukawa potentials,

(3)

satisfies (2) only if

dp, '0 (p')p"( ~ for all non-negative integer e. (4)

This equation can be satis6ed for v= —1 only if s is
equal to l+1 or l.—If we treat l as a variable, one case
may be obtained from the other by analytic continua-
tion. For convenience, let us choose s= l+1 in (9) where
l may be positive or negative. Then we obtain the re-
cursion formula for the c„:

(i+1)(p+2l+2)c„+i (p—+—l+1)c„P—a c„„. (10)

This equation can be solved successively for c&, c2,
insofar as v+2l+2/0. Thus, each c, is obviously
meromorphic in the entire l-plane. Since the series (8)
converges uniformly, the wave function P is mero-
morphic in l.'

If the power series (8) terminates, a Regge pole will

certainly exist, because then P will behave as e &" for
large r, which is the condition for a Regge pole. In
general, however, we shall find that the series does not
exactly terminate. Nevertheless we can, by proper
choice of l, make the higher coefficients as small as we
like, such that they decrease much faster than 1/v!.'
This is su%cient for a Regge pole. It is also necessary
because, for a general l, the recursion formula (10)
shows that c„behaves as 1/i! so that p tends to e'&" and
no bound solution is obtained.

where

d'p dp l (l+1)

Jx Js s
(6)

This is why Mandelstam is able to prove more far-
reaching results than Regge' and Froissart4 who take a
more general approach.

Once (2) is assumed, we may solve (1) by the time-
honored polynomial method. We first separate out the
asymptotic behavior

P(r) = c 74 (r),
-

and, setting x=2yr, obtain

For large energy —y', discussion of (10) is greatly
facilitated by the fact that the coeScients a„of the
potential are small of order p " ', as is seen from (7).
In this section, we assume that ao/0, i.e., that the
potential has a 1/r singularity. Setting co= 1 and using
the recursion formula (10), we find that all c„with
v& —l—1 are of the order of magnitude 1.' But then,
for v approximately equal to —l—1, the right-hand
side of (10) becomes very small for large 7. Calling m
the non-negative integer nearest to —l—1, we find the
right-hand side for v=m proportional to

i+m+1 ao P(c„—„/c—„)a„.
n=1

a =A (2y) " '.

Assuming that P can be expanded as

y=g c,x~',

we obtain the recursion formula

L(&+1+s) (v+s) —l(l+1))c„~i—(v+s)c,

(8)

Since the ratios c „/c are all of order unity, the sum
over n is of order y ' according to (7).Thus, if we choose
l such that.

l= —m —1+ao+O(y '), (»)
we find that (11),and hence c +i, is of order 7—' or less.

I.et us next consider the recursion formula for c +~'.

(m+2) (m+2l+3)c~+2
= (m+i+2 —uo)c +i—aic —. . (13)

Since a» y ' and c 1, we find that c +2 is of order

+P a„c„„=0. (9)

M. I'roissart, Princeton University, 1962 (to be published).

~ The asymptotic behavior of @ in l may be examined using the
generalized WEB method of reference 1.' Under normal circumstances, c„behaves as 1/u I. In this paper,
c, will thus be considered as large or small according as v~c„&1
or ((1.
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y '. All subsequent c„up to v= 2m, will then also be of
order y '. Applying (10) to v=2m, we get

i+2m+1 —ap
C2~i= c2m,

(2m+1) 2 (i+m+1)

+terms of relative order y '. (14)

This has the small denominator 1+m+1= —ap=0(y ').
Since we have shown that cs„,——0(y '), we find that
et~i ——0(y '). All subsequent terms of the series
will also be of this order. Denoting Q„=p c„t:"+'+',
Qm+i2™c,x"+'+', and Qt~+&" c.x'+'+' by Pi, ps, and $s,
respectively, we may summarize the above result as
follows:

It=0(1), A=O(&l —ap) =0(y '),
y, =o((~1 a,)/~1)—=0(~ '), -(»)

where hi=1+m+1=0(y '). Thus, provided. ap&0, all

c, for v)m are made arbitrarily small in the limit of
large y. Since the series (8) is thus effectively termi-
nated, we may conclude that there is a Regge pole in
the p s neighborhood of l= —m —1+Gp.

We can improve this argument as follows: By making
the expression (11) equal to a suitable multiple of ai,
we can cancel the first two terms on the right-hand
side of (13), and make c ~s of order y ' rather than

, which will then make c2»+i of order y . This
leaves the statement (12) unchanged. By successive
consideration of the recursion formula for v=m+2,
m+3, etc. , and appropriate adjustment of l, we can
make the coefficients c, for large v small of order y "
with arbitrarily large e. In this manner we can show
that there is a value of l for which the function P will

not contain an exponentially increasing component,
i.e. , there is a Regge pole near l= —m —1+ap.

For y —& ~, the Regge poles will be at the negative
integers. For finite but large y, their position is given
by (12).' The poles are thus determined by the 1/r
part of the potential, as stated by Mandelstam, and
are equally spaced to order y '.

The situation is somewhat diferent if u0=0, i.e., if
the potential is regular at the origin. Then choosing l to
satisfy (12) will ma, ke 1+m+1=0(p '). As a con-

sequence, (14) yields cs„+iof order 1, since cs ——0(p ').
This is also seen from the behavior of Ps in (15). Thus,
the argument of Sec. II does not make the high v terms
of the series small and a more accurate discussion is
needed. That this can be a serious change is shown by
considering the case m=0, i.e., the Regge pole near
/= —1. I.et us 6rst note that the recursion formula
(10) gives, for ap ——0 and v=0,

ci——
t (1+1)/(21+2)]cp——-', cp

——0(1), (16)

r Actually, the correction term in (14) is oi order & ' as can be
grown by an argument; simiJ. @r fo &hag of $cc, III,

independent of the potential and of /. Since l is assumed
to be near —1, there is no value of v&0 for which the
right-hand side of (10) could vanish approximately
for large y. Therefore, the series will continue with
large coefficients to arbitrarily large v, and f will

behave as e+~", hence, we do not get a Regge pole at —1.
If m/0, we still can get a Regge pole. We must

apply the recursion relation (10) for several values of v

near m, to make the high c„suKciently small. It turns
out that we must consider (10) for v=m —2 up to
v=m+2. If we neglect i+m+1 whenever it is added
to an integer of order unity or larger, and express all c„
in terms of c„„weobtain

c„, i ——m(m+1)c. ,—a,c„s—. (17a)

l = —m —1—2m(m+1) a. (19)

so that l differs from an integer in order y '. By this
choice, c„,+2 will be of order y ', c +I of order y ', and
in the recursion formula

(m —3) (m+4)c,„+4———3c,~p+a&c +s

+ate +i+@pc +, (20)

the first, term is of order y ', the next two terms are of
order y ', and u3c is again of order y 4. Hence, all
further terms up to v=2m are of order y '. At v=2m+1
we get a denominator 2(i+m+1) which, according to
(19), is proportional to us=0(y '). Hence, et~i is of
order y

' and so are all subsequent terms. Thus, in the

c,„&——st (m —1)m(m+1) (m+2)c —saic s—. , (17b)

m (m+1)c„~,= —(i+m+ 1)c„+vie

+~pc p+ . , (17c)

(m —1)(m+2)c~+s= —c„,+i+aic„+ascm i+ .
, (17d)

(m —2)(m+3)c„+,= —2c +s+atc +i
+ape + . . (1'le)

According to (17c), c +i and all subsequent c„are
small at least of order y ' (if c =1), hence the term
aic, +r( y ') in (17e) is negligible compared to the
other two terms. Inserting (17b) and (17a) into (17c)
gives, with c =1,

c„+i———(i+m+ 1)/m (m+ 1)
+at+-,'(m —1)(m+2)as+ . (18a)

Inserting this into (17d), we note that ai cancels. We
have already seen that ate~i in (17e) (and subsequent
equations) may be neglected; hence, we find that a&

has no influence on the high c„'s. Therefore, u~ by itself
cannot give us a Regge pole solution. This will be con-
firmed in a more general context in the next section.

Inserting (18a) into (17d), (17e) gives

(m —2) (m —1)(m+2) (m+3)c„+s
= —2 (i+m+ 1)/m (m+ 1)—4us+0(as). (18b)

This can be made small of order p 4 if we set
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We have seen in Sec. III that a constant term in the
potential does not cause a Regge pole. We shall now
show that there is in general no Regge pole at any
finite, real, negative / if the potential consists of only
even powers of r.

For this purpose it is better to use the original
differential equation (1) directly, rather than make
the substitution (5). We use here y=pr and write

v= —bo —b y' —bgy-

b g + 2n 2

Then if we expand P in a power series

(21)

(22)

4=2 f.y ' (23)

8 Vfe are greatly indebted to S. C. Frautschi for pointing out to
us that the pole at —2 is absent when e0=0, a1/0, and ate=0.

limit y —+ ~ the series has been successively terminated,
and the termination can be improved by adding to (19)
a suitable term of order y 4, etc. There is, therefore, a
Regge pole at l given by an expression close to (19),
except for 222= 0.

The cases m= 1 and 2 require special investigation.
Thus, if 222=2, (17e) and (18b) should have —l—3 on
the left-hand side rather than m —2. But our argument
was based on making the right-hand side of (18b) of
order y ' which will then make c +2(=c2 ~1) and all

subsequent c„oforder y ' as before. For m= 1, we have,
of course, c 2

——0, and in (17d) the factor 222 —1 is
replaced by the small but finite —I—2. Then, as can
be shown by explicit calculation, if we choose t according
to (19) plus a term of order p ', c2 and all subsequent
terms will be of order y ', which is even smaller than
their value in the general case.

The above argument must be modified if a2=0
(ai/0) in addition to a2 ——0. In this case, we may try
to make c +2 smail of order y ' by choosing i+m+1
=O(y '). However, since i+212+1 occurs in the de-
nominator of the recursion formula for v=2m, the
terms v&22N+1 will now be of order (i+222+1)/
(l+m, +1)=O(1). Thus, the series will not terminate
for y —+ ~ and the above consideration will not succeed.
Obviously this situation is very similar to that discussed
at the beginning of this section, and can in fact be
treated in the same manner. Thus, we find that we do
not get Regge poles at —1 and —2, but we still find

Regge poles at —3, —4,
In the same manner, we expect that if u2 is the

first nonvanishing even term of the potential (7), the
Regge poles at —1, —2, ~ —e are absent but
there are poles near —n —1 and all negative integers
beyond, and that the distance from the integer is of
order u2. =0(y '" ')

so that only even v will occur. ' Now the right-hand side

does not have any coeKcients depending on v, in con-

trast to (10).Since the b„are very small for very large y
according to (22), the right-hand side is dominated by
f,. Hence the f„are all of the same sign for v) ~2l ~,

and the asymptotic behavior of f„ for large v is that of

the exponential series e& which does not lead to a Regge
pole in our case of large y.

For any given finite y, however, it is possible to have

Regge poles at sufficiently large I. To see this, consider

v which is of the same order of magnitude as —l. Then,
disregarding the sum in (24), we get

f =-f-2/l' (25)

Thus, for large l, ) f„2 ~))~f„) so that b f„2„can be
of the same order as f„, even though b„ is small. Take,
for instance, the Gaussian potential

V= —Ae ~'"' (26)
Then (21) gives

b-= (~/~ 4') (—~'/v') ".
Ke therefore obtain

(27)

s/2

P b„f„2„=Ay 'f„exp (p—2l2/y2), (28)

making use of (25). Although A/p2((1, the exponential
will make this term larger than f„if l is suffKiently large,
and we, therefore, may be able to make the sign of f,
alternate. Thus, there will probably be Regge poles for'0

I
l

I
& (v/u) Dn(v2/~)]'" (29)

As y-+ ~, these poles go to (negative) inhnite l. It is
true that, when (29) holds, the sum p b f„2„of (24)
cannot be disregarded in obtaining (25). However, we

have convinced ourselves that this will not aRect the
qualitative features of our argument.

Returning to the case of very large p and small /, we

may inquire why the series (23) necessarily tends to
e+v while in the presence of odd powers of y in v (y) the
wave function may tend to e v. If we add to (21) a
term ao/y, we may still expand P in a power series (23).
But the term uo/y in the potential will now generate
terms of odd v in the series, and the recursion formula
for v=2n2 —1 (222=integer nearest to —l—1) reads

(2222+1)2 (1+222+ 1)f2~,
= f2~1—+of2m g b.f2ml 2n (3o)-—

For l= —1, fI may be nonzero and thus may generate a
series in odd s. However we know already that there is no Regge
pole at L= —1.

'0 Existence of Regge poles for the potential (26) is obvious
since it certainly accommodates bound states if A is large.

we get, for s= l+-1,
s/0

(v+2) (2l+ v+3) f&~2= f. Q—b~f, 2~, (24)
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Now fo~i (and all f of odd order (2m —1) will be of
order eo. If we choose i+m+1=0(ao)=O(y '), we
obtain

order in P. We thus obtain

focal/fom O(cio/i+m+1) =O(1). (31)

V

Mandelstam has also discussed the situation at finit
energy k2 where there is a Regge pole at l close to the
integer (or half-integer) m &0. There is then also a pole
near —m —1.We want to discuss this problem, including
the residues, in more detail. For simplicity and co-
herence with previous sections, we still assume the
energy to be negative, —p2, but we now assume it to be
inite.

Suppose there is, for 6xed energy —p2, a Regge pole
at l=m+n (m a non-negative integer or half-integer,
~a~(&1). This means that the power series (8) con-
verges for large x to a result much smaller than e, so
that (with proper normalization)

P(m+n, x) ~e *" (33)

(more accurately, P ~ x"e *i'). Then, for some l =m+P
close by, the wave function will be asymptotically

lP(myP&x) ~ e *" B(P n—)e*"y — (34)

where B is a constant independent of P. Let us now
consider the recursion formula (10) for l= —m —1+P
and v=2m (which is an integer), and assume for the
moment that its right-hand side does not vanish for
l= —m —1 (i.e., P=0). We find easily that

Com D1PC2m+1~ (35)

where Dj is again a constant. Likewise, all c„for v&2m
will be of order pco +1. Thus, in the recursion formula
(10) for v=2m+1

(2m+2) (1+2P)co +o
= (m+ 1)C2 +1 Coco +1 iilc2 ' ' ' (36)

the terms co, co 1, etc. , are all of relative order p.
(The a„are now of order unity, no longer small. )
Furthermore, for small P, the recursion formula (10)
for l= —m —1+P and for any v= 2m+1+v', v'&0, is
the same as that for l=m+P and v=v' to the lowest

For any v&2', the ratio

fo~i/(fo„fo~o)'i' (I=integer larger than m) (32)

will be of the same order as (31).By making this ratio
(32) asymptotically tend to —1, we can obtain a series
similar to that for e & and thus a Regge pole. This shows
that it is not the method used in this section, viz. direct
solution of the equation for P, which is responsible for
the absence of Regge poles for the potential (21).

The most important potential expandable in even
powers of r, and vanishing at oo, is the Gaussian (26).
Of sourse, this may be multiplied by any polynomial
in r'. Functions like e " are further examples.

&v'

(l™—+P)+D(v')P, v'&0, (37)
&o

Po= P&/(B+C)]~ (39)

Each positive Regge pole near m (integer or half-
integer) is accompanied by a negative one near —m —1

(but not vice versa).
If we normalize the wave function P(m+n, x) by (33),

the coe%cients c„ in its expansion (8) will be of order
unity. ' The expansion coefFicients c„ for l= —m —1+/
will be the same as for 1=m+a, except for terms pro-
portional to P —a or to P, both of which quantities are
of order n, as is seen. from (39). The behavior of the 5
matrix near the two Regge poles is

coeKcient of e t" 1

coefFicient of e*i' B(8—n)
for l=m+P, (40)

for l = —m —1+P.
(B+C)(P Po)— (41)

If we now let p2 vary, the positive pole will go exactly
to i=vs at some value of the energy, —yo2. Then the
negative pole will go to 1=—m —1 at exactly the same
energy, according to (39). This is in accord with the
result of Mandelstam. However, the residues will, in
general, be different from each other, being 1/B and
1/(B+C), respectively.

In the case of a pure Coulomb potential, u~, a2, ~

all vanish in (36). This means that, instead of (37), we

get for v'&&m:

~2m+1+v'
(l= —m —1+P)

&2m+v'
&v'

Cv&

(l=m+P)L1+O(8/v")). (37a)

Therefore the coeKcients for large v' tend to the same
limit for positive and negative l, and thus C=O in (38).
Hence, the residues at 3=m and at /= —m —1 are
identical in this case."However, the next terms in the

"V. Singh, Phys. Rev. 127, 632 (1962).

where D(v') is a coefFicient depending on v' (and 7)
but not on P to the lowest order. Then, since D(v') in
general behaves roughly as 1/v'!, the asymptotic be-
havior of the wave function will be

P(—m —1+P, x) +e *i-' (B(P—a)+C—P]e'", (38)

where C is another constant. We therefore get a second
Regge pole at l= —m —1+Po, where
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expansion of the 5 matrix at these poles need not be
the same.

Assuming there is a positive Regge pole at 3=m for
energy —y0', and calculating the right-hand side of the
recursion formula (10) for 1=—m —1 and v=2@a, we
shall find this, in general, to be a 6nite multiple of c2 .
However, if we now change the potential continuously,
adjusting the energy to stay with the same Regge pole
at I=m, we may And for some potentials V* that this
right-hand side will vanish. In this case we obtain

+].c2~+] where E~ is a 6nite number determined
by the potential, instead of (35).All c„for v& 2m+1 are
therefore of the same order of magnitude. This means
that CP of (38) is now of order 1 rather than P. Thus,
for exceptional potentials V*, one negative Regge pole
may be absent. We may regard this as the limit where
the residue at I= —m —1 vanishes. In fact, if we con-
sider a potential V*+hV, where b, V is small, we shall
Gnd that the coefficient C of (38) becomes larger and
larger as AV decreases. As a consequence, the residue
1/(8+C) will become smaller and smaller and will
vanish in the limit AV=O.

As was pointed out, this behavior of Regge poles at
1=m and I,= —m —1 occurs for both integer and half-
integer / because only the recursion formula for v=2m
matters. LSee (35).j On the other hand, in Secs. II and
III we showed that the Regge poles for large energy
go to negative integers, not half-integers: in that case,
the recursion formula for v=m was the important one.

VI

The simple method of Mandelstam is unfortunately
not applicable to more general potentials. An exception
is the potential

'U= —a/x —ap/s —at —asÃ —' ' ' (42)

which behaves as 1/x' at the origin. As is seen from (3),
this may be regarded as a particular superposition of
Vukawa potentials with a mass spectrum which behaves
as o(ps) ~ 1/p, for large p, . Since the term a/x' has
the same x dependence as the centrifugal barrier term,
this problem can be reduced to the case (7) by the
transformation

((l+-')'—a]'~' —-' ~ l. (43)

Thus, all results of previous sections may be translated
without difBculty to this case and no new problem
arises. Nevertheless, it will be useful to examine the
analyticity in l of this scattering amplitude since it may
give us some insight in the behavior of Regge poles
when the potential is more singular than simple
Vuk. awa potentials.

As is easily seen, the recursion formula (9) now

becomes

For v= —1, this equation can be satis6ed if and only if

r~((t+r)s a]l/2 (45)

Let us choose s=1/2+[(l+1/2)' —a]'is following the
convention of Sec. II. Then (45) becomes

(v+1) (v+1+2k()+r)s —aj' P)c,+t

= (v+-', +L(l+-', )'—a@")c,—g a c, , (46)
n, =0

which reduces to the form (10) by the substitution (43)
as was noted above. Obviously, c„is meromorphic in the
l plane cut along the line connecting the two fixed

branch points

l = ——,
' —a'", l = ——',+a'ip. (47)

The cut is so chosen that L(l+1/2)' —a$'is changes its
sign from positive to negative as / moves in the cut
l plane from a large positive value to a large negative
value. The cut lies on the real axis if a &0 (attractive
at small distance)'P and on the vertical line Rel= —1/2
if a(0 (repulsive at small distance).

As is seen from (43), if a Regge pole for the case
a=0 is located at l=l0, the corresponding Regge pole
for a/0 will be found at

~= —p+ &(lp+-')'+ ah'". (48)

Thus, if l p is real and & —1/2, the Regge pole will shift
to the right of lp as a increases from zero (attractive
short-range force), while it will shift to the left as a
decreases from zero (repulsive short-range force). This
is in accord with the expectation that, for a given

energy, more attractive potentials will accommodate
bound states of higher angular momenta than those of
less attraction. On the other hand, if L0 is real and(—1/2, Regge poles move to the left or right according
as u&0 or a&0, somewhat contrary to the common
sense argument. However, it is easy to understand this
behavior: It is because the horizontal cut pushes out
the complex t plane along both the positive and the
negative axis while the vertical cut deforms the l plane
in the opposite sense.

In the limit y~ where l0 approaches one of the
integers —1, —2, ~, the Regge pole (48) is found on
the real axis as long as a& —1/4. When a decreases
beyond —1/4, the Regge pole corresponding to lp= —1

goes oG the real axis and proceeds along the cut at

"For a &1/4, the cut extends into the region Ref&0. This
must be related to the well-known fact that a=1/4 represents the
strongest attractive 1/r' potential that can be handled by the
usual scattering theory. Incidentally, in the Klein-Gordon equa-
tion with a Coulomb potential, the quadratic potential term
Mes/rs is always attractive and thus belongs to the case o&0.
See V. Singh, reference 11.

P( +1+s)( +s)—l(1+1)+age,+,—(.+s)c.
tv

+P a.c. =0. (44)
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Re'=- —1/2. We find that this Regge pole follows the
movement of the branch point (47) as a decreases, but
cannot overtake it as long as y= 00. As a decreases
further, more and more Regge poles line up on the cut
line along Rel= —1/2.

As E= —y' increases from —~, those Regge poles
sitting on the real axis move to the right or left accord-
ing as ao)0 (attractive 1/r potential) or ao(0 (re-
pulsive 1/r potential). Regge poles along the vertical
line Ret= —1/2 move upwards or downwards in an
appropriate manner. When 8 approaches +~, Regge
poles come back to the position given by (48) going
through complex values. Of course, a more powerful
method is required for the analysis of Regge trajec-
tories for hnite E, such as the continued fraction method
of Lovelace "

For the potentials of the form (2), Regge poles tend
to negative integers as p approaches inanity. Appar-
ently, the Regge pole at l= —m —1 (m=0, 1, 2, ) is
somehow related to the term r ' of the potential V(r)
This may be better understood by comparison with the
Born approximation which is known to be approached
by the exact amplitude in the high-energy limit. '
Regarding V(r) as a superposition of "potentials" r"
rather than of Yukawa potentials, the Born scattering
amplitude contributed by r" is easily found to be

d3g g&A& xy2~&0: t—~-i
7 (49a)

d'3g ~iAk. I'm 0 (49b)

gives a behavior as t" for large t where Rel~ is alge-

braically the largest Rel; at a given E. Since in
this limit the exact amplitude agrees with the Born
approximation, comparison with (49) shows then that
l~= —m —1 if y' ' is the lowest odd power of y in the
expansion of the potential. This is in exact agreement
with our results in Sec. III.

"C.Lovelace, Imperial College, London (1962) (to be published).
"N. N. Khuri, Phys. Rev. 107, 1148 (1957).

where —t is the square of the momentum transfer. For
7'= —k'»p', an appropriate superposition of (49) for
all m will converge to the scattering amplitude caused

by V(r) in the first Born approximation. The Regge
pole expansion of the exact scattering amplitude,

Z'f FV'';& &(
—co 0)

"2' f'(~)~'*' 'L1+o(~ ')+. 3, (~0)

The relation (49b) shows further that the even

power term r' (m, &0) plays no role in thedetermina-
tion of Regge poles in the large energy limit (although
it may infiuence the location of poles at finite energies).
This is related to the fact that, as a function of the
coordinates x, y, s, r' is regular everywhere in the
three-dimensional space which makes the Fourier trans-
form (49b) vanish in the limit of high hk. (To see

this still better, and avoid any convergence problem,
take a function like e "', consider it as a product
e *'e 7/'e ", and take the Fourier transform for each
coordinate separately. ) On the other hand, the origin

x=y =s=0 is certainly a singularity for all terms
Note however that this singularity becomes

smoother and smoother near the origin as m increases.
This explains why the corresponding Regge poles move

further and further away from the origin of the com-

plex l plane.
When the energy is not large enough compared with

the potential, the exact amplitude will not approach
the first Born approximation, and thus the above
argument will not work. If the potential contains a
1/r' term, no energy is large enough compared with

V(r) since 1/r'is of the same order of magnitude as the
kinetic energy itself. Thus, the scattering amplitude

does not converge to the Born approximation even at
very large energy, and the corresponding Regge poles

do not tend to negative integers as was mentioned in

Sec. VI.
Mandelstam has shown how to improve the Katson-

Sommerfeld representation when the scattering ampli-

tude is meromorphic in the entire l plane and thus the
path of the "background integration" along Rel= —1/2
can be pushed to Rel =L where L is a 6nite but arbitrary
real number smaller than —1/2. When there is a cut
in addition to poles, his formula must be modified so

that it includes the contribution from the part of the
cut that lies on the right-hand side of the line Rel=L.
If all Regge poles are found to the left of the cut, it is

obviously dificult to approximate the scattering ampli-

tude in terms of a few leading Regge poles. Such a situa-

tion will be found in the case of the singular potential
(42). In general, if the potential is very singular at the

origin, it will be necessary to disentangle the contribu-

tion of cuts before the eGect of Regge poles is identi6ed.
This paper is intended for the clarification of some

mathematical problems concerning the Regge poles
that arise from the special assumption (2) of Mandel-

stam about the potential V(r). Although some of our

results will be valid for a more general superposition of

Yukawa potentials, others will undoubtedly be special

consequences of special assumptions. In particular, it
will be dangerous to speculate, on the basis of the
results of nonrelativistic theory, about the behavior

of Regge poles in relativistic particle physics.


