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The properties of the decays of all heavy bosons of zero strangeness, angular momenta ~& 2, and isospin ~&1
are analyzed. First, we describe the symmetry characteristics of 1l|'-pion states (for E~&5) with respect to
permutations in isospin and momentum space. Secondly, we give the strong, first-order (with emission of a
real photon), and second-order electromagnetic decays together with the nonrelativistic and extreme relati-
vistic barrier factors for each initial spin, parity, and G parity. These barrier effects (together with the
amount of phase space available) are important in determining relative decay rates. Finally, we present the
matrix elements for strong and electromagnetic decays into 4 or fewer pions. All results are summarized in
tabular form.

I. INTRODUCTION explanations which tend to increase the usefulness of
the material.

In Sec. II are presented two tables which give the
symmetry characteristics of various pion states with
respect to permutations of the isospin coordinates and
the space coordinates. The first of these has been dealt
with in very complete and detailed fashion by Pais. '
These tables are used to determine the barrier factors
for each decay mode, as well as the number of linearly
independent matrix elements.

The tables intended to be most directly related to
experimental observations of the branching ratios of
pion resonances are contained in Sec. III together
with sufhcient explanatory material to enable them to
be used; a discussion of their contents is included.

Finally, tables of the explicit matrix elements for
decays (strong or electromagnetic) into X&~4 pion
modes appear in Sec. IV.

N the past few years unstable bosons of zero
~ - strangeness have been both predicted and found
experimentally. The existence of the p, co, and g is now
quite firmly established, and the quantum numbers
(i.e., spin, parity, isospin) of the first two have also
been determined. '~ Further resonances in the pion
system are at present being sought and sometimes
found, ' and it is not unreasonable to anticipate that
still more will appear as the search continues.

The arguments by means of which quantum numbers
are assigned involve considerations of branching ratios
for observed decay modes as well as (in the case of
three-pion decays) the correlations displayed in a
Dalitz plot. For the former, a table of transitions which
can occur in each case is indispensable: parts of such a
table have appeared in the literature, 4 but to our
knowledge, no complete list has been published.
Equally important, however, in making semi-
quantitative estimates of the relative frequency of
various allowed modes is to know the "barrier factor"
associated with each one. These factors are only in-
directly related to the angular momentum of the
decaying boson, but they can inhibit a particular decay
mode in the same way that an angular momentum
barrier does. The principal motivation for this paper
is to present fairly complete tables which include these
barrier factors in each case.

The backbone of this article is contained in a series
of tables related to final states of pions and photons.
Since the main objective is to make these tables useful
for experimental physicists, we have endeavored to
minimize the amount of discussion having to do with
derivations, but to be rather explicit with those

II. e-MESON STATES

We list in Table I the names of the irreducible
representations of the permutation group' ' belonging

TABLE I. The irreducible representations of the symmetric group
associated with each isospin function for 37 pions, 2 « 37~& 5.

Representations

(2)
(1')
(2)
(1')

(3); (2,1)
(2,1)
(3)

(4) (2')
(3,1); (2,1')

(4); (3,1); (2')
(3,1)
(4,)

(3 1')
(5)' (41); (32) (2', 1)

(4,1); (3,2); (3,1s)
(5); (4,1); (3,2)

(4,1)
(5)

0
1
2
0
1
2
3
0
1

3

0
1
2
3
4
5
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Rosenfeld, Phys. Rev. 125, 687 (1962), where earlier references
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TABLE li. The irreducible representations of the symmetric group associated with each spatial function for N pions (2 ~&N ~& 3),
for both parities and for J&~2. The barrier factor L is the power of the momentum that appears in the wave function in the
nonrelativistic limit; h. is the same factor for the extreme relativistic case. The exponent outside a group entry is the number of
times the particular representation appears. The dots refer to classes not written down, for reasons explained in the text.

N J~ L, A Representations N J" L h. Representations

4 0+

0

0 0
2 1
2 2
4 2

3
4
6 3
6 4
6 5
6 6

3 3
5 4
5 5
7 5
7 6
7 7
9 6
9 7
9 8
9 9

1+ 2 2
4 3

6 4
6 5
6 6
8 5

2 0+ 0 0
1 1 1
2+ 2 2

3 0 0 0
2 1

4 2

6 3

0+

2 2
4 3
6 4
8 5

1 1

3 2

2 2
4 3

2+ 3 3
5 4

(2)
(I')
(2)

'

(3)
(2,1)

(3); (2,1)
(3); (2,1)' (1')

forbidden

(I')
(2,1)

(2,1) (1')
(3); (2,1)' (1')

(2,1)
(3); (2,1); (1')

(3); (2 1)
(3); (2,1)' (1')

(2,1)
(3); (2,1); (1')

(4)
(3,1)
(2')

(4) ' (3,1); (2')
(3,1); (2,1')

(4) (2')
(2 12)2

(14)s

(1')
(2,1')
(2')

(2') '

(3 1) .

(31)' "
(4)' . .

(4) "
(2,1')

(3,1); (2')
(3 1)

(4)

(4)2 ~ ~ ~ ~

5 0

0+

0 0
2 1

2 2

4 2
4 3

6 3
6 4
6 5
6 6

3 3
5 4
5 5
7 5
7 6
7 7
9 6
9 7

9 8
9 9

2 2
4 3
4
6 4
6 5
6 6
8 5

1
3 2

3 3
5 3

2 2 2

4 3
4 4

2+ 3 3
5 4
5 5

4 1 1 1
3 2

3 3
2+ 2 2

4 3
4 4

2 3 3
5 4
5 5

(3,1)
(4); "; (2'); (2,1')

(2 1')

(4); (3,1); (2')
(2 12)2

(2 1')

(341); (2'); (2,1')
(4)
(4) ".

(3)

(3,2)
(5); (4,1); (3,2)

(4,1); (3,2); (3,1'); (2', 1)
(4,1); (3,2); (2',1)

~
4 (3,1')' (2', 1)

(2 13)s

(2 13)3

(2 1')'

(2, 1')
(3,1') (2',1);

(3,2); (3,1') (2' 1)
(3 2)
(41)2 ".
(4 1)

(4 1)'
(5)';
(5)'
(3)' . . .

(3,V)
(4,1); (3,2); ~ ; (2s 1)
(4 1) ' (3 2) . (2' 1) .

(s) ".
(3)'

(4,1)(3);;(3,2); (3 1')
; (3,2); (3,1') (2' 1)

(2' 1)

(3); (4,1); (3,2)~, (3,1')'; (2', 1)
(3 12)2 ~ (22 1)2 ~

(4,1); (3,2); (3,1'); (2',1)
(5)
(5) ~ ~ ~

to each isospin function for two to five mesons. ' In
this table, the symbol (3) stands for a function com-

'I A very explicit prescription for the construction of this table
is given by Pais (reference 5), who also has tabulated the entries
for T=0 and 1. We require the isospin values up to T=3, since
we consider initial states with T=0 or 1 and processes for which
ar &2.

pletely symmetric in the isospin variables, (ls) for one
completely antisymmetric, and so on. ' It will not be
necessary to have any detailed understanding of the
relationship between the symbols and the representa-
[ions for which they stand in order to use the table.

Table II refers to the effects of permutations of the
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pion momentum coordinates. s For each spin J~& 2 and
both parities I', the possible values of the barrier
factors are given. Two such factors are listed for each
entry. The one which we call I. is the number of
powers of the momentum which appear in the pion
wave function in the nonrelativistic limit; the one
called h. is the same number in the extreme relativistic
limit. The reason for the distinction can be seen upon
consulting some of the explicit matrix elements to be
given in Tables V—VIII: a factor such as (oui —ois)

contributes L=2 and A=1, while (pi —p.) (ps —p4)
contributes I.=A= 2.'

In every case, the symmetries allow pion wave
functions to be multiplied by powers of ~g; P oi, ~",

where the co's are energies in the c.m. system and X is
, an integer. Since energy conservation ensures that this

will multiply matrix elements by constants in cases
where pions alone form the final state, we have omitted
all such factors from consideration in Table II. When
the table is used for Anal states in which particles
other than pions are involved, these additional factors
should be included.

For every PL,AJ, Table II gives the irreducible
representations (classes) which occur. Since not all of
them are needed, many are indicated only by dots.
For iV~~4, the philosophy has been to omit the entry
for a class if it satisfies (a,) plus either (b) or (c) of the
following criteria: (a) It is not useful for constructing
entries for higher (L,A]; (b) it cannot be combined
with a pion isospin function; (c) the class has already
been encountered for lower values of both L, and A.

The method of construction of such a table need not
be understood in order to m.ake use of it, and we v ill

go into no details. We only will mention that the table
for J=O, E= (—1P is really a listing of the symmetry
properties of Lorentz invariants made up of the pion
momenta. Thus, for all other J~, one need work out
the transformation properties of only the lowest [I.,Aj.
A table of group multiplication then provides the
entries for all higher tLL,Aj.

In order to construct functions that are symmetric
in isospin and momentum space, identical classes from
Tables I and II must be combined. Each time that a
representation is listed, an independent wave function
(and therefore matrix element for which this is the
final state) can be formed. As an example of this
construction, consider the problem of making up a
five-pion state with T= 1 and J"=1 . Since the class

(3,1') required for LL,A]=$2,2j is not shown under
T= 1 for 6ve pions in Table I, there is no such state;
i.e., no wave function which contains just two powers
of the particle momenta.

In each of the cases PL,A)=t4, 31 and P4,4], there

By reinterpreting J as the orbital contribution to the angular
momentum and relabeling the parity if necessary, one can use
Table II in combination with a similar one for spin coordinates to
give corresponding information for other identical particles.

9 p; is the three-momentum and p; is the four-momentum of the
jth pion.

is one state with isospin synunetry (4,1), one with (3,2),
and one with (2', 1). Whether or not the two sets of
matrix elements should be considered to compete with
each other is a separate question to be discussed briefly
in Sec. IIIB. In order to 6nd a state with T-symmetry
(5), one must go to PL,Aj=L6,5) and L8,5j.

J~g C Strong

0++ + (~~)0, 0
(ss.sw)0, 0

Order e

(+—)1,yi
(+—o)2, vl

0+—

0—+

0

1 +

(++——0)S, 4 (ss.)2, y2+

(+—000)5, 4 (+—0)1, pl+
(000)3, y 1+

(++——)5, 5 (+—)1,vi+
(+—00)5, 5 (+—0)2, 71+

+

(0000)9, 7

(+—0)6, 3 (s.s-)2, y2

(++——o)4, 3 (+—0)1 71
(+—000)4, 3 (000)3, y1

+ (++——)4, 3 (+—)1,vl
(+—00)4, 3 (+—0)2, yi
(0000)6, 5

(+—o)3, 2 (0) VI

(++——0)3, 2 (s.s)0, pi+
(+—000)3, 2 (s.ss)0, yi

(~~ ~)3, 2 (+—)1, ~1+

(+—0)2, ~I+

(+—0)2, 2 (0), y1+

(++——0)2, 2 (7rs)0, yi
(+—000)2, 2 (s.s.s)0, pl+

2++ + (ss)2, 2

(~~~~)2, 2
(+—)1 vl
(+—0)2, y1

(+—0)5, 4 (0), y2

(++——0)3, 3 (~~)0, y2+

(+—000)3p 3 (7rsm)0, y2

(+—0)1,y1+

(++——)3, 3 (+—)1,xi+
(+—0o 3 3 (+—0)2, 71+

+
)

(0000)5) 4

(y —0)4, 3 (0), q2+

(++——0)4, 3 (s.s.)0, p2
(+—000)4, 3 (s.ss.)0, y2+

(+—0)1,&t

Order P
(s.7r)0, 0

(o), vv

(++——)2, 1

(+—00)2, 1

(+—)1,yy

(ws.s)0, 0

(o), 7v

(+—0)2, t
(+—)1,vv
(De+e )1, 1

(+—0)1, 1

(000)3, 2

(o), vv

(+—0)1 1

(+—)S, &&

(+—0)4, 3
(000)8, 5

(0), pv

(+—)1, 1

(+—0)2, 2

(+—)1, vv
(e+e )0, 0

(w~) 2, 2

(+—0)3, 3
(000)5, 4

"IY

(o), »
{+—0)3, 3
(+—)&, &&

(s-s.~)2, 2

(0),

(+—0)2, 2

(+-)1,''

TABLE III. Decays into pions and photons of a T=O boson
with various J+0. After each configuration of pions alone appears
the nonrelativistic barrier factor L followed by the fully relativistic
barrier factor h.. For pions accompanied by gammas, L is given
together with the multipolarity of the photon. Missing entries
(within the boundaries explained in the text) are forbidden.
(+—0) stands for (s+s 7ro), and an entry written as (ss.s) stands
for all pion charge contributions that give the correct total charge.
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TABLE IV. Decays into pions and photons of a T=1 boson with various 1+0. See Table III for explanations of symbols.

J'Po C Q Strong

0++ — 0 (++——)2, 1

(+—00)2, 1

1 (ssss.)2, 1

0+ + 0 (++——0)5, 4
(+—000)5, 5
(00000)9, 7

1 (+++——)5, 5

(++—00)5, 4
(+0000)7, 6

0-+ — 0 (++——)7, 6
(+—00)5, 4

1 (++—0)5, 4
(+000)7, 6

0 + 0 (s s.rr)0, 0

(~swiss-)0,

0

1 (srrvr)0, 0
(ss.sss.)0, 0

1++ — 0 (++——)4, 3

(+—00)2, 2

Order e

(ws)2, v2+

(+—o)1, »+
(000)3, v1+
(000)2, v2

(srr)1, v1
(~~~)1,v1+

(+—)» v1
(+—o)1, v1+

See 0++

Order e'

(++——)2, 1

(+—00)2, 1

(+—)1,vv

(ss)0, 0
(+) vv

(7rs.)0, 0

(o)vv

See 0++

(~~)1, v1+
(ss.s)1, v1-

Seep +

(srrs.)0, 0
(+),vv
(+e+e )1, 1

(ss.s.)0, 0

(o), vv

Seep +

(o), v1
(s.s)0, v1+
(s.ms.)0, v1

(+—0)1, 1

(+—)1 vv

(s.s.)2, v2 (+—0)2, 1

(+—o) 1, v1 (+—)» vv
(000)3, v1- (De+e )1, 1

(000)2, v2+

JPG Q Q

1 + 0

2++ — 0

2+ + 0

Strong

(+—0)4, 3
(000)8, 5

(++——0)4, 3
(+—000)4, 3
(00000)6, 5

(~s.rr) 4, 3
(s.s s.s.rr) 4, 3

(++——)2, 2

(+—00)2, 2

(ss.ss.)2, 2

(+—0)3, 3
(000)5, 4
(++——0)3, 3
(+—000)3, 3
(00000)5, 4

(s.s.s.)3, 3
(snrs s.s-)3, 3

Order e Order e~

(+—)1 v1+ (+—o)4 3

(+—0)1, v1 (000)8, 5

(0), vv

See1 + See1 +

(o), v2
(ms.)0, v2+
(s.ss)0, v2

(+—0) 1, v1+

(+—0)3, 3
(+—)1,vv

(+), v2
(7r7r) 0, v2+
(s.s.)1,v1
(sss)0, v2
(~~~)1, v1+

(~s.)2, 2
(mrs-) 3, 3
(+),vv

See 2++ See 2++

(+—)1,v1 (s.s)2, 2

(+ 0)1 v1+ (+—0)3i 3
(000)5, 4

(o) vv

1 (++—0)2, 2

(+000)4, 3

+ 0 (+—0)1, 1

(000)3, 2

(++——0)1, 1

(+—000)1, 1

(00000)3, 2

1 (s7rs.)1, 1
(ss.s.ss.)1, 1

0 (+—)1, 1

(++——)1, 1

(+—00)1, 1

1 (w~)1, 1

(7r~s.w) 1, 1

(+),v1
(ss)0, v1+
(s.s.s)0, v1-

(+—)1,v1
(+—0)1, v1+

See 1++

(o) v1'
(s.rr) 0, v1
(~ss.)0, v1+

(+),v1'
(s.s.)0, v1
(s.s.s)0, v1+

(s.ss.)1, 1

(+),vv

(+—0)1, 1

(000)3, 2

(o), vv

See 1++

(+—)1, 1

(+—0)2, 2

(+—)1,vv
(e+e )0, 0

(ws.)1, 1

(s.ss)4, 3
(+),vv

2-+ 0

2 + 0

(++——)3, 3
(+—00)3, 3

(~~~~)3, 3

(ms.rr) 2, 2

(~~~~~)2, 2

(~vr7r) 2, 2

(s s.s s.s-)2, 2

(o), v2+

( )0, &2
(s.s.s.)0, v2+

(+—0)1 v1

(j—0)2, 2

(+—)1,vv

(+) v2'
(ss.)0, v2
(~~)1, v1+
(sss.)0, v2+
(snrs-) 1, v1

(s.s.s)2, 2

(+), vv

See2 + See2 +

(+—)1,v1+ (~~~)2, 2

(+—o)1, v1 vv
(o), vv

Only one other simple group property must be
explained before the tables can be fully exploited. It
is necessary to know which representations are con-
tained in a given set of pion charges. The general
method will be clear if explained for Ave pions. "
(a) Arrange the partitions of 5 in "descending order" s:
(&); (4,1); (3,2); (3,1,1)=—(3,1s); (2,2,1)= (2', 1); (2,1s);

"See a)so A. Pais, reference 5, Sec. II{d).

(1'). (b) To any pion specification attach a partition
which tells how many particles are in each charge
state. Thus, m+m+m. +s. m has three pions with + charge,
two with —charge, and none with zero charge; we thus
associate with it the partition (3,2,0) or (3,2). (c) From
this charge specification, one can make linear combina-
tions which transform as all the irreducible representa-
tions from the most symmetric up to and including
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the partition written in (b) above .In that example,
we would be able to conclude that the state
(s.+m+m. +n. s ) contains at least once the irreducible rep-
resentations (5), (4,1), and (3,2), and not at all the
representations (3,1'), . .

To return to the example of a 1,T= 1 state, suppose
that we want to complete the enumeration of the (s+)s
(s )' states. From the above argument, we see that
there are two states with tL,A]=t4,3j and two with

t 4,4). On the other hand, the configuration ~+(s')' has
only one state with L4,3$ and one with P4,4g. The
mode (m')s occurs once with L6,5j and twice in a
(probably noncompeting) wave function corresponding
to $8,5j.

Of course, the number of independent states which
can be written according to the above discussion is
identical with the number of independent matrix
elements which exist for a decay from an initial boson
with the given J" and T to one of these pion states.
Tables I and II used in this way prove very useful in
indicating how many independent matrix elements
must be considered.

More important for the moral we want to draw in
this paper is the fact that the tables enable one to pick
out the minimum barrier factors which can occur for
each set of quantum numbers; this is what we do in the
following section.

III. ALLOWED DECAY MODES

A. Tables

In this section we present a systematic set of tables
for the possible decays of initial bosons with spins ~& 2

via strong and electromagnetic interactions. Table III
refers to isospin T=O and Table IV to T'=1.

In both tables, all possible combinations of J ~& 2, I',
and G are given in the first column, together with the
charge conjugation quantum number C= (—1)rG for
neutral bosons. The second column includes all possible
E-pion decays for X~& 5 which can occur through strong
interactions. The following remarks are relevant for
this column: (i) Symbols such as (+—0), etc. , refer to
particular pion charges; a symbol such as (erst-) implies

that all combinations of charge consistent with charge
conservation for the given number of pions are possible
with the same PL,A]. (ii) The numbers which appear
after each pion configuration are the miriam barrier
factors PL,Aj in that order. (iii) Any missing con-

figuration for S~& 5 is strictly forbidden.
In the "e" column, final states involving one real

photon and up to three pions are given. After each

gamma appear the multipolarity and parity of the
photon. For each pion charge specification, only the
final states with the least possible value of I. +L» are

listed. "Again, within these limits, the lack of an entry
indicates a forbidden 6nal state.

TABLE V. Strong interaction decay matrix elements for bosons with T=p and J~& 1 into Q»&4 pions. Entries are relativistically
correct in the rest frame of the boson, and are given only for the lowest possible I.value. Relative signs for diferent charge configurations
are arbitrary; magnitudes are not, unless exPlicitly indicated by constants a, b, ~ ~ ~ . The symbols Psqr Ps, (P&,Ps ) refer to the
4-moments (3-moments) of the pions in the order listed in column 2. Matrices for (s')' or (s')4 are not shown unless they compete with
the charged pion decay modes. The following symbols are used in the table:

U=yI'y2Xy3 —y2 yaXp4+p3 y4Xp& —p4 yIXy2y

&=pi Xp2+p2X pa+p3Xp~.

JPg

p+ +

p—+

0

(Pion charges) L

(+—)o
(00)0
(++——)0
(+—00)0
(0000)0

(++——)&

(+—00)3

(+—0)6

(++--)4
(+—00)4

(+—0)3

(++——)3
(+—00)3
(0000)3

(+—0)2

Matrix

2b

b

3b

(P~ —Ps) (Pa P4)&—
Cdl (&2—RI)+%2 (M3 al)+%3 (M1 ~2)

f (u, —a s+~s —~4) (pi —pa) X (ps —p4)+ (~r —~s —~3+~4) (pi —P4) X (ps —pa) g

pl(%2 &3)+PI(%8 ~1)+PB(~1 ~2)

{a(p&+p2—p~ —p4) (col+cD2 cD3 N4)+ (2 o) 5{pl P2) (~l ~2)+ (P3 P4) (~3 ~4)j)
((&—)(p+p —p —p )( + — — )+ L(p —P )( — )+(P —P)( — )3)

4(pi~s+Ps4b+P84&s+P4~4)

"The factor A. has been omitted whenever real photons occur, since in these cases there is less reason for distinguishing between

1.and A.
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The last column lists those processes which can
occur with one virtual gamma and which result in
either two or three pion states, except that in the few
cases for which neither of these is possible (0+, C= —1),
the /=4 decay is given. There further appear all
decays with two real photons accompanied by zero or
one pion"; only when neither of these is allowed will
one Gnd an entry for (7'.)&7. Finally, every entry in the
"e" column can appear in the "e"' column with the
gamma ray replaced by a Dalitz pair; occasionally the
L value is lowered because a virtual photon which has
even parity can carry away zero angular momentum.
Only those Dalitz pairs not covered by this rule are
written explicitly in the table (see T=O, 0 and. 1
7= 1, 0 + and 1 +).

B. Discussion

As was mentioned in the Introduction, the main
point to which we wish to draw attention in Tables III
and IV is the appearance of the barrier factors L and A.
Because of the symmetry requirement on states with
a number of identical particles these factors are more
often than not larger than the spin J of the initial state.

In order to see how to take these factors approxi-
mately into account, we consider an effective point
interaction for the decay of an initial boson X into X
pions. Such a Lagrangian density can be written in
terms of a dimensionless coupling constant g(R) and a
range R (S=c=1):

Z;.,=g(R)R"+" 'X(D "4~) -(D"~~) (1)

in which v=g v;, D represents a derivative in four-
space, and all the necessary labels relating to com-
ponents in four-space and in isospin space have been
omitted. The smallest possible value of v for a given
symmetry is equal to or greater than L, since there
are time derivatives as well as space derivatives in
Eq. (1).Further examination shows that the relativistic
scalar matrix element takes the form (in the rest-frame
of the X)

(g) (MxR)" ~$Mx(co; (o;)R—s7~~(l p I
R—)'~—z (2)

where each of the last factors schematically represents
a term which is linear in the three-momenta, Iyl, in
both the nonrelativistic and. the extreme relativistic
regions. ' Terms that involve

differences

of pion
energies, such as I (co,—4o;)R7, reduce in these limits to
—'(p' —y &)RR and ( I y; I

—
I p; I )R, respectively, where

R is the pion Compton wavelength.
The main point to be made is that at least (I. A)—

powers of the range R are "used up" in this model in
accompanying the mass Mx of the decaying boson,
arid in most cases one will not wish to assume MXR to
be small. The conclusions, to be used as a guide in
semiquantitative estimates, can be summarized:

'~Speci6c examples, without the constants in front, can be
found in Tables V-VIII.

TABLE VI. Electromagnetic decay matrix elements for bosons
with T=O and J«1 into E«3 pions, except in the case 0+ for
which /=4 is the lowest possible. For explanation of symbols,
see Table V.

p++

p+—

p-+

0
1++
1+

1 +

(Pion charges) I,

(+—)0
(00)0
(++——)2
(+—00)2

(+—0)0
(000)0
(+—o)2

(+—0) t
(+—o) &

(+—0)4
(+—)&
(+—0)2

Matrix

b

2 (441+442 444444)
C01—Q) 2

1
3

Pi+P2 —2P3

pc —p2

(444 —
Cc)4) A

o(i 4
—i44)

sA

(i) The matrix element for relativistic pions will
carry a factor = (lpIR)~.

(ii) The corresponding matrix element for non-
relativistic pions will carry instead a factor

=(I plR)'(I ylR-i2)~'.

In most applications, the distinction between the
ra,nges R and R /2 will make little difference and can
safely be ignored.

Many hypothetical cases in which information about
the L values would be useful can be picked out of the
tables. For example, the neutral component of a T=1,
0—+ boson with %&8m. would have its strong four-
pion decay rate inhibited not only by the available
phase space but also by the appearance of a factor
(pR)'4 in the case of (++——) and (pR)" for the
mode (+—00). For this example, the decay to two
pions and a photon, to three pions or to a pion and
Dalitz pair (all with lower barrier factors than the four
pion mode) might indeed overtake the strong decay rate.
While the quantitative importance of such factors will
depend strongly on the energy release in the process,
it should be clear that the appearance of a high L
serves in many cases as a warning that a particular
decay may be reduced in intensity, so that electro-
magnetic channels must be considered simultaneously.

In using Tables III and IV to estimate branching
ratios for competitive modes, it must be remembered
that we have not included decays of the initial bosons
into lighter ones (such as ri, i) plus pions or gamma
rays. It hardly seems worthwhile at present to include
such tables since the quantum numbers of some of the
lighter bosons are still very much in doubt, and also
because Tables I and II show how to construct pion
states which can be combined with those of heavier
bosons by straightforward methods.

We could illustrate the uses of the decay tables by
further hypothetical examples. However, their useful-
ness has already been demonstrated in an examination
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ALE VII. Strong interaction decay matrix elements for bosons with T= I and J&~ j. into ~~&4 pions.
For explanation of symbols, see Table V.

0++

(Pion charges) I.

(++——)2
(+—00)2
(++—o)2

(+000)2

(+—00) 5

(—0++)5

(++——)7

(+000)7

(+—0)0
(000)0
(++—)0
(+00)0

Matrix

2 (433+432 443 434)

(~1—~2)
(431+432—2404)

(3 1—~2—~3—~4)

43 (443 —434) U

b (441+442 443 404) (pl p2) ' (p3 p4) U
bt'443(pl —ps) (p, —p4)+433(pl p3) (p4 —ps)+444(p, p4). (ps ps)]U

(+—00)2

(—0++)2

(++——)4

(+000)4

(pl p2) X (yl+P2 P3 p4)

o {(Pl P3) X (Ps P4) t 403 4ds 433+434l (P2 Ps) X (Pl P4) Lldl 442+433 4347j
+b(yl P2) X (113 P4) (pl p2) ' (ps p4)

43{(yl —ys) X (ys —y4) (~s—434)+ (yl —ys) X (ps —p4) (432—444)+ (pl —p4) X (ps —ys) (422—ols) )—2b{psXys(pl —p4) (ps —ps)+ysXP4(pl —ps). (ps —p4)+ysXP4(pl —ps) (ps —p4))

(+—0)1
(++—)1
(oo+)1

pl+$2 —2ps

(+—)1
(+0)1
(++——)1
(+—00)1
(++—o)1
(+000)1

(+—0)4
(++—)4
(00+)4

2b (Pl+ps —ps —P4)

b(yl —Ps)
~(I +I2—2v)

&(3n1—n2 —us —P4)

(441 —312)A

of the possible quantum-number assignments for the q
and i mesons, " and we refer the reader to this article.

IV. MATRIX ELEMENTS

For a detailed analysis of the boson decay modes, the
explicit forms of the matrix elements are required.
For three pions such forms have repeatedly been
written down in the literature" in those cases where
they were needed. In the expectation that a general
table will prove useful, we present a more complete
collection of matrix elements in this section.

The tables presented here give the matrix elements
for strong decay into /~&4 pions, and for electro-

"E.M. Heniey and B. A. Jacobsohn, Phys. Rev. 127, 1829
(1962). No distinction between L and A was made in that paper.
Note added in proof: The accumulation of recent evidence points
to 0 + for the g, rather than to 0 . See, for example, H. Foelsche,
E. C. Fowler, H. L. Kraybill, J. R. Sanford, and D. Stonehill,
Phys. Rev. Letters 9, 223 (1962)."See, for example, reference 2.

magnetic (e) decays (i.e., with one virtual quantum)
for /~&3. In the 'two cases for which there can be no
decay with S~&3, the X=4 electromagnetic elements
have been listed.

For each J~g, each E, and each charge specification
we have included all amplitudes with the lowest possibleI value; the only exception to this rule is that con-
figurations (srs)s and (srs)4 have been omitted unless they
compete with some mode containing charged pion'.

Tables V and VI give the strong and e' matrix
elements for an initial T=O boson, and Tables VII
and VIII do the same for T=1. The electromagnetic
tables differ in the two cases for two reasons: firstly,
G=C for T=o and G= —C for T=1, T,=O; and
secondly, the selection rule AT~&2 (valid for one
virtual quantum) imposes more restrictions on the
T=o than on the T=I initial state.

Although the form of all matrix elements refers
explicitly to the Lorentz frame in which the decaying
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p++

p+ ~

0

(Pion charges) I
(++——)2

(+—00)2

(+0)0

(+—)o
(00)0
(+0)0

(+—0)2
(++—)0
(+00)0

(+—o)o
(000)0
(++—)0
(+00)0

(+—o)1
{++—)1
(00+)1

Matrix

o (M 1+Cds C03 Cd 4)

b(a g ag)—
c

o(rug —a 2)

b

o(p~ —p2)

b (pr+ps —2ps)

c(pl+p& —2p8)

particle is at rest, each entry is relativisticaily correct.
In some cases this may not be immediately apparent,
since we have used relations of which the following is

TABLE VIII. Electromagnetic decay matrix elements for bosons
with T= 1 and J&&j. into X&~ 3 pions, except for the neutral 0~,
in which case X=4 is the lowest possible. For explanation of
symbols, see Table V.

typical:

prxpsr0s+psxys~r+psxp&~s= (p&xps)(g; (o;)

=-',~(y Xp+p Xys+ysXp, ),

and the irrelevant constant 3M has been dropped.
In several instances, the decay amplitudes included

here are not unique. One of the terms for T=O, 1 +
corresponds to the symmetry class (4) and the other to
(2'); as a consequence, the two components of the
matrix interfere in the correlations but not in the total
decay rate. On the other hand, the fact that both
terms of the matrix for the I.=4 entries of the T= j.,
1++ boson belong to the same symmetry class (3,1)
means that interference will occur in the total decay
rate as well as in the correlations.

A brief explanation of the relative normalizations is
needed. %here there is no relation between the entries
for a single J~g, this fact has been indicated by writing
explicit arbitrary constants. The relative magnitudes
in other cases are written in such a form that, in
calculating decay rates, for each group of e identical
particles one should multiply the integral over phase
space by 1/n if thi.s integral is calculated without regard
to the identity of the products.

(+—o)1
(++-)1
(00+)1

(+—)1
(+0)1

(+—o)2
(++—)2

(00+)2

(+0)1

{+—0)4
(++—)4
(00+)4

o (pi+ps —2ps)
b (pi+ps —2ps)

c(p,+pa —2ps)

o(pi —pi)
b(p, —p~)

cA
dA

eA

o(pi —ps)
b (a)g —

curn) A

C((or (os)A

d ((ur —(os) A

V. SUMMARY

A pair of tables (III and IV) presented here should
serve as a useful guide in estimating branching ratios
for the decay of zero strangeness bosons with various
quantum numbers via strong and electromagnetic
processes, since they include information on the barrier
factors in each case together with the other con-
sequences of selection rules. In addition, we have
systematically listed explicit forms of the matrix
elements for the decay of these bosons into four or
fewer pions.


