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In addition to causing electron-phonon scattering, the electron-
lattice interaction, considered in a previous paper, also modifies
the structure of the stationary states, which become mixtures of
the states considered in the adiabatic or Born-Oppenheimer ap-
proximation. The modified phonon and electron energies and elec-
tric current density are calculated. When a criterion depending on
band structure is satisfied, the modified electronic configuration of
lowest energy can be qua1itatively different from the Fermi dis-
tribution of a normal metal, due to an effective interaction be-
tween electrons and holes of the same spin on each energy shell
that arises from the electron-lattice interaction. Below a critical
temperature there are two independent states of stationary free
energy. The upper state has normal conductivity and heat ca-

pacity. The lower state has associated with it an electric current
density that appears to have no dissipative resistance and that
exhibits a Meissner effect with a resonance phenomenon at certain
frequencies in an oscillatory field. In zero field the phase transition
between these states is of second order, with a discontinuity in heat
capacity at the transition temperature. An energy gap can occur,
but it is not required in deriving the properties of the electric
current density and of the phase transition between the two states.
Various quantities calculated from the present theory for a simple
model (effective mass, spherical Fermi surface, single conduction
band) are in reasonable agreement with experimental values.
Energies are generally an order of magnitude smaller than in the
earlier theory of Frohlich.

I. INTRODUCTION

N a previous paper, which will be referred to as I,.~ the electron-lattice interaction responsible for
electrical resistivity in ordinary metallic perfect crystals
has been shown to be a form of the Jahn-Teller effect,
arising as a correction to the Born-Oppenheimer or
adiabatic approximation. The matrix elements that
describe electron-phonon scattering are derived in I
by a general argument that takes into account the
Coulomb interaction between electrons and the elec-
tronic energy band structure. This argument leads
qualitatively to the formalism usually assumed in the
theory of metallic conductivity, ' but it gives somewhat
different values for the nonvanishing matrix elements.

Matrix elements of this interaction occur not only
between degenerate Born-Oppenheimer states, leading
to transitions between such states described as electron-
phonon scattering, but also between nondegenerate
states. Hence, the stationary states and energy spectrum
are also modified, and the true stationary (or meta-
stable) states are mixtures of the Born-Oppenheimer
states. The present paper will examine this modification
of the lowest electron-lattice states and of the energy
spectrum. Since electron excitations are mixed with the
pure phonon excitations of the Born-Oppenheimer
approximation, the modified states can have a non-
vanishing electric current density associated with the
phonon states. Although this current density vanishes
in the normal state of a metal or in the absence of a
magnetic 6eld, it will be shown that if a certain criterion
depending on the energy band structure is satisfied,
there is a state of different structure that is stable at low
temperatures, and for which this current density is
related to the magnetic induction by equations anal-
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ogous to the London equations. ' This current density
appears to be a true supercurrent, without electrical
resistivity, and leads to an explanation of superconduc-
tivity as such and of the Meissner effect that appears to
be qualitatively different from the generally accepted
microscopic theory of Bardeen, Cooper, and Schrieffer
(BCS)' and of Bogoliubov and Valatin. '

The detailed derivations of the present paper are
limited to the effective mass approximation, on the
assumption that there is only one partially filled band
and that the electron energy shells are spheres in the
momentum space. The modided phonon and electron
energies are derived in Secs. II and III, and the structure
of the ground state is derived in Sec. IV. Up to this
point the argument is very similar to the earlier work
of Frohlich, although certain results are quantitatively
different as a result of the difference between the
electron-phonon interaction assumed by Frohlich and
that derived in I. The present derivation has the very
important advantage that as a result of the more
careful treatment of singularities in I no singularities
occur in the second-order perturbation theory as used
here, and all results are found to be small 6nite correc-
tions to the Born-Oppenheimer approximation. The
qualitative change in the ground state that is found here
results from a small change in energy that causes a
change in the ground-state electronic configuration; the
perturbed energy of an excited Born-Oppenheimer con-
figuration becomes lower than the perturbed energy of
the nominal Born-Oppenheimer electronic ground state.
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Thus, as in the BCS theory, the perturbed ground state
cannot be obtained by perturbation theory from the
unperturbed ground state. Nevertheless, it can be
obtained by perturbation theory from what is nominally
an excited configuration. Thus, the use of second-order
perturbation theory appears to be justi6ed.

In Sec. V it is shown that the present theory leads
to a second-order phase transition in zero magnetic
held, with reasonable values for the critical temperature
and discontinuity in heat capacity derived from a
rather crude model of the structure of the ground state.
In nonzero magnetic held there is a contribution to the
electric current density of the low-temperature phase
that apparently exhibits no dissipative resistance and
that leads to a Meissner effect. This current density is
discussed in Sec. VI.

The present theory can lead to an energy gap by
two different mechanisms. The first is that of the BCS
theory —the second-order interaction between electron-
hole excited states has the structure of an attractive
electron-electron interaction. The second possibility
might occur if there are overlapping electronic energy
bands in the Born-Qppenheimer approximation. The
energy gap is discussed in Sec. VII, although the
derivations of the present paper must be generalized
to the case of overlapping bands before a quantitative
discussion can be given. A similar situation holds for the
magnetic transition, discussed in Sec. VIII, since the

upper state is more complex in structure than the
ground state of a normal metal. A detailed derivation
of the properties of this state in nonzero magnetic
field becomes comparable in complexity to the theory of
the de Haas-van Alphen effect.

The attenuation of an applied magnetic field in the
low-temperature phase results from a field equation

LEq. (97) below] that has more structure than any of
the earlier treatments of the Meissner effect. In partic-
ular, a resonance phenomenon is possible at certain
values of the frequency of an applied field.

+a=+i+& (2)

The function C;,~'~'"(e) is the Born-Oppenheimer
electronic wave function (parametrically dependent on
the nuclear coordinates) approximated by exciting
electrons from orbitals g;, p;, gk, ., occupied in the
electronic ground state to excited orbitals p„g~, p„
X( e„) is the Born-Oppenheimer lattice wave

function describing a state in which e„phonons are in

II. STATIONARY STATES

The matrix elements between zeroth-order Born-
Oppenheimer states derived in I LEq. (I-29)] are

(C "„'"".(5)x( . 8,—1 ), Hc;p"" (S)x( '.8, . ).)
= —(e„hu)./2$M)&ha(e. —e;—i5;) '

y (47rze'/K'ye) (1V/ v), (1)

where the electron wave vectors e and 0; are related by

the longitudinal normal mode with wave vector x. It
is assumed that the conduction electrons interact with
ion cores of mass 3f and charge Ze, of which there are
S in total volume t/'. The screening constant X is
estimated by the formula LEq. (I-23)]

V=2 (4me'No/ ep), (3)

ea ei+~N g—(Sb)

when a phonon of mode —x is emitted. There are no
diagonal elements of Eq. (1), which arises from an
operator proportional to the normal mode momentum

p—K pk
The energy correction for a Born-Oppenheimer state,

to second order of the Rayleigh-Schrodinger perturba-
tion theory, follows from Eq. (1). If it is assumed that
co „=~„and if occupied electron orbitals are described
by occupation numbers f,(e;), where s refers to spin
orientation, the energy correction is

n,+1
X +, (6)

—Eg 6~: AMg c~ e~+ (RAN„

where 1'to is the density of conduction electrons and 6p' ls
the Fermi level measured from the bottom of the
conduction band for conducting electrons or from the
top for conducting holes. This formula follows from a
semi-empirical argument that leads to an estimate of
the velocity s of longitudinal acoustic waves LEq.
(I-27)],

s'/v' = -', mz/M,

where ns is the electron effective mass and v is the
electron velocity at the Fermi surface. The quantity 6,
in Eq. (1) is found to be of the order (s/n) e,.

The matrix element of Eq. (1) describes the scattering
of an electron from a; with energy ~, to 0 with energy
e„while one phonon of mode x is absorbed. There is an
analogous matrix element, proportional to (n „)&, that
describes the same electronic transition, where one
phonon of mode —x is emitted, leaving n, in the final
state. These are the only matrix elements that occur
between the Born-Oppenheimer states, if the electronic
wave functions are expanded to first order in the
nuclear displacement coordinates.

Each Born-Oppenheimer state is characterized by a
set of occupation numbers e„ for the longitudinal
lattice modes, by a choice of )V occupied electronic
orbitals, and by occupation numbers for the transverse
lattice modes, omitted here since they are not affected
by the interaction of Eq. (1) unless Umklapp transitions
are taken into account. The difference in energy between
two states such a,s those of Eq. (1) is

(Sa)

when a phonon of mode x is absorbed, and is
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where, if Z=1,
I s —(Itt//~ Vs) (gtrse4pg~s/ (Ks+Xs)sL (» « )s+.g

2 j } (7)

The phonon wave vector tc in Eq. (6) is determined by
Eq. (2).

For states of physical interest it is reasonable to
assume that

used here (developed in I) is intended to meet various
theoretical objections to Frohlich's derivation. The
present formula divers from Frohlich's primarily in the
structure of the quantity I, s of Eq. (7). This will be
shown to have important consequences.

A well-known representation of the Dirac 5 function

PS g Pigs b(».-«;)—=lim 8;/$(«. »;)—'+b j
bs~O

(14)
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III. MODIFIED PHONON AND ELECTRON
ENERGIES

The energy correction given by Eq. (10) is obviously
of the form of a renormalization of the phonon energies.
From the constraint of Eq. (2), one of the two summa-
tions over electron wave numbers can be replaced by
summation over the phonon wave number x. Thus the
energy associated with each longitudinal normal mode
becomes

&(~„)= (~.+s)&~„L1—~(~)3, (12)

where, if the contributions from both electron spins are
the same,

n(t») =Q 4f (1—f.) (».—»;)I.'/L(». —» )'—A' re '] (13)

As before, rr, is fixed by Eq. (2). This expression is
estimated in Appendix A for the normal electron Fermi
distribution at absolute zero, and u(t») is found to be
of the order (s/e) if s is less than the diameter of the
Fermi surface. This formula exhibits the anomaly
discussed by Kohn' since ~ must decrease abruptly as K

increases beyond this value. The result is, except for
this anomaly, a small renormalization of the phonon
frequencies, with no observable consequences.

The energy correction given by Eq. (11) does not
contain the phonon occupation numbers m, . Hence, it
describes an additional electronic energy due to the
electron-lattice interaction. Formally, since it is
quadratic in the electron occupation numbers, it leads to
correlation between electron momentum states. This
formula has the same qualitative significance as that
derived by Frohlich' and used by him to develop a
microscopic theory of superconductivity. The a,rgument

' W. Kohn, Phys. Rev. Letters 2, 393 (1959i.

This condition, which is compatible with the detailed
structure of the present theory, simplifies Eq. (6) to give

AR =AE t,+AB,t,
where

— 2(»„—«;)I, s

aE,~= —g g(l„+', )fire„-
s e (»g —»,)' fi'ei '—-

Hence, I, s of Eq. (7), which contains a factor of this
form, concentrates the electron-hole interaction given
by Eq. (11) primarily to an interaction between states
on the same energy shell. To examine the effect of this
it is convenient to de6ne a chemical potential function

~.(~) =~~/~f. (~) =«(~)+»'(o),
where 8 includes the electronic Hartree-Pock energy
in addition to the correction hE. Thus, from Eq. (11),

».'(~')=2 I "(2f.—1) (16)

if the 8-function property of I„' is used to simplify
Eq. (11) by omitting (» —»;)' in the denominator. For
the Fermi distribution at absolute zero Eq. (16) implies
that »'(o) has a finite discontinuity at a.&, the Fermi
surface,

»'(e& —) =E~ I~'t~&'~ (17)

'«(~p+) = —Q; I,;tp&'. (18)

This is, however, an oversimplification, since it is
not correct to use the limiting form of Eq. (14) when
f(0) is discontinuous. Since 8; is 6nite L (s/v)»;] in
the present case, the function «'(0) is continuous at. the
Fermi surface but it has a sharp zigzag of the form

—tan 'L2v(o. —o p)/sa. p$.

Using Eqs. (3), (4), and (7), near 0~,

tr2e(0 —rr~)
-

i 'V~ 2),4

«'(a)——(s/v)»(0)' tan-~
s«

X —. (20)
(lr'+)~') '

The summation over e; has been replaced by integration
in bicentric coordinates,

4x'0 0

KdK pdp) (21)

where o, p are, respectively, the magnitudes of o;, e, in
Eq. (16). The near singularity in the integrand effec-
tively restricts the range of K to values for which
~0 —lr~ ~&p&&0+s, so that the energy shell, p=o., falls
within the limits of integration. Hence, the upper limit
of K is taken to be 2r.

The quantity oi 'V/6tr'E is the ratio of the volume
of the Fermi sphere to that of the erst Brillouin zone.
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This is just ~2 for simple monovalent metals. The other
factors in Eq. (20) are of the order of magnitude of
unity when ~o o—p~ ) (s/o)o p, except for (s/o)4(o).
Hence, asymptotically,

c'(o pW) a (s/o) ep, (22)

and the ef'feet is a small renormalization of the one-
electron energies which should be insignihcant at normal
temperatures.

At very low temperatures, unless the term .' is large
enough to cause the one-electron potential function
p(o) =e(o)+e'(a) to turn over, the point of inflection
due to e' will increase the observed effective mass but
will not qualitatively change the properties of the
system. If e' is large enough, however, the function p(o)
can have a relative maximum just inside the Fermi
surface, followed by a relative minimum just outside.
This is the situation considered by Frohlich' in his
theory of superconductivity, since superseded by the
Bardeen-Cooper-Schrieffer theory. Because the effects
considered here, derived from the matrix elements of
Eq. (1), are somewhat different from those obtained in
the earlier theory, it is worthwhile to re-examine their
implications.

If the unperturbed energy e(o) is expanded in powers
of (o —o p) the modified one-electron potential near the
Fermi surface is

q(~) = 4p+f4o(~ —~p) [1—P)+ . . (23)

There will be a subsidiary maximum and minimum if
the quantity in square brackets is negative. This
criterion is p) 1, where by Eq. (20),

tt'o p' V ) 2X4 2'p ~4d14

&6 p~)

For simple monovalent metals the first factor is just ~.
If the integral is estimated by the trapezoidal rule,

P=8X4/(4o p'+X')', (27)

which will be less than unity if X&~~~. Since X is the
screening constant for the perturbed effective Hartree-
Fock potential in a metal, it cannot be much larger than
2/r where r is the effective radius of the unit cell. But
this gives X—0-~, indicating that simple monovalent
metals should not satisfy the criterion. A relatively
small change in the constants would suffice to make p
exceed unity, pa, rticularly since, by Eq. (3), V is
proportional to eF.

The existence of this subsidiary maximum and
minimum implies a qualitative change in the nature of
the electronic ground state. If, following Frohlich, this
is taken to be the criterion for superconductivity, then
the present result is compatible with the fact that the
alkali metals are not superconductors, but that metals
with more complex band structure are. If should be
poted that the parameter s/o, which measures the

strength of the electron-lattice interaction in. the present
work, does not enter into the criterion constant p, which
depends only on the electronic energy band structure.

Comparison of Eqs. (17), (18), and (22) gives the
following approximate formula, which will be used in
the derivation of thermodynamic properties,

P, I,,'=(s/v)e(o;).

IV. STRUCTURE OF THE GROUND STATE

(25)

(27)

The su%x I will be used to denote the state of lowest
energy (or free energy) which has these properties of
spin and momentum isotropy. The corresponding
property for a real metal is the requirement that f;
should depend only on e;.

The entropy associated with state I is given by the
usual formula

—TSg 2kT Q; [f; lnf„+(1———f,) ln(1 —f-;)). (28)

The number of conduction electron= is

iV=2+, f,. (29)

These formulas are subject to the exclusion principle,
so 0&&f,~&1, treating f; as a statistical function to be
determined by the condition of minimum free energy.
Expressed as a potential per electron this condition is

,'8 (E Jh' TS)/8f;———
=v' —f+&T»[f'/(1 —f'))=0 (~0)

To consider the structure of the ground state when
P)1, it is convenient to pass to the limit in Eq. (14),
thus confining the interaction of Eq. (11) to particles
and holes of the same spin in the same energy shell.
This is reasonable when the electron distribution func-
tion f.(o) varies smoothly with o, as it is found to do
for the modified ground state. For consistency, if this
is done, it is necessary to require that f, (4r) have well-
dehned derivatives with respect to components of o,
except possibly for a bounding surface in the limit of
T=O'K. The one-electron energy 4(o) is taken to be a
Hartree-Pock energy appropriate to the Born-Oppen-
heimer electronic ground state. As is well known,
although this does not imply that the total Hartree-
Fock energy is the sum of the 4(o), it does imply that
e(o) is the derivative of this energy, as indicated in
Eq. (15).Hence, for small displacements from the Fermi
distribution the total electronic energy, except for a
macroscopic constant, can be obtained by integrating
Eq. (15). By Eq. (16) this becomes

E„=P,P;f„(,—Q.I.,'(1—f,.)). (26)

If f, (4r;) is independent of spin and also independent
of the direction of o;, the approximation of Eq. (25)
gives
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The solution f, of Eq. (32), in which f, occurs implicitly
on the right-hand side, approaches Eq. (34) as T~ 0.

If terms of second order in (s/n) are neglected, then

(35)

f"=—2
—2L(~'- ~~)/(s/~) ~~j

—(s/a) eF & (e;—ep) & (s/v) ep.

Qualitatively, as a result of the electron-lattice
interaction, the Fermi distribution has been modified
in a shell of Gnite thickness enclosing the Fermi surface;
the distribution function goes continuously from 1 to 0;
and the one-electron effective potential p of Eq. (33)
is constant throughout this shell. This state has
stationary free energy, in fact minimum, subject to
momentum isotropy, but it is a state of hnite entropy
at T=O, and it is not the true ground state of the
system.

To make further progress it is necessary to examine
states for which f, (e) depends on the direction as well
as magnitude of e. From general symmetry arguments,
such as Bloch's theorem, this discussion can be limited
to states with time-reversal symmetry,

f+(~) =f ( ~), -—(37)

where the subscript denotes spin direction. This condi-
tion implies that M8= 0 and that total linear momentum
vanishes in the absence of external 6elds.

An important property of the quantity I„' of Eqs.
(7) and (26) is that it vanishes quadratically as g

approaches zero. It reaches a very Qat maximum for
a= X, where X is of the order of V2o.~ for ordinary metallic
conductors and is not likely to be of a different order of
magnitude for superconductors. Hence, an electron

subject to 0&f;&1.When f,=0 or 1, Eq. (30) does not
hold. Here

,'BE-/8 f,= e;L1—(s/n) (1—2f,)). (31)

When T)0, Eq. (30) is equivalent to

f =(1+expL(~' —l)/&Tj} ' (32)

This automatically satisfies the condition 0 &f, &1.
So far this is completely analogous to the derivation

of the normal Fermi distrubution function, and would
be identical if p; were not a function of f;. This depend-
ence, however, leads to a new result for very low temper-
atures. This results from the fact that Eq. (30), when
T=0, has a solution with 0(f,(1 over a /nile interval
of energy. This solution is determined by

p'= "L1—(s/~) (1—2f')] = f, (33)

if 0 &f, (1. Clearly, this determines the distribution
function at T=O,

Q. Q, f„=i%. (40)

The ground state is that distribution which has rnin-
imum energy subject to Eqs. (39) and (40). This will

be referred to as state II, which is to be determined
by minimizing the free energy, without the constraint
of isotropy, for T&0'K.

It is convenient to use the limiting case of Eq. (14)
and to exparid I; in spherical harmonics,

I,P=8(e, ,e;) Q I„P.(cos(o,,),
@=0

where, since I;,' vanishes when ~=0,

I„=O.

(41)

(42)

If x=cos0, where 0 is the polar angle for a spherical
polar coordinate system in momentum space (axial
symmetry is assumed for convenience), then let f&(a)
be defined by

f"((r,x) = Q (2)+1)f)(0)P)(x) (43)

interacts with holes throughout the opposite hemisphere
of its energy shell with comparable strength. This is in
striking disagreement with the interaction postulated
in the BCS theory, which restricts the interaction to
diametrically opposite electron-hole pairs (of opposite
spin).

The effect of an interaction of this kind is to favor
distributions in which the electrons on an energy shell
are bunched together in a compact region (or several
such regions) with a compact distribution of holes in
complementary regions, determined by the detailed
form of I„'.Since continuity between adjacent energy
shells is required, the state of lowest energy can be
expected to have a distribution described by a new kind
of potential surface dividing regions in which f;=1
and 0, obtained by superimposing hills and valleys on
the normal Fermi surface. This surface is a level
surface of the one-electron effective potential given by
Eqs. (26) and (31), without the constraint of isotropy,

~-="—2 I~"(1—2f~'). (38)

Equation (37) implies that the potential surfaces for
the two diferent spin directions should be related to
each other by inversion. Hence, in the absence of
external 6elds, it is ne-essary to consider electrons of one
spin only, multiplying calculated thermodynamic
functions by two to account for the other spin direction.

If the limiting potential surface is determined by
p;=f', then f;=1 for p, (l and f,=O for p;)l. This
surface will intersect each energy shell (&=const) in a
curve determined from Eq. (38) by

(39)
7 (occ) I (unOCC)

for e;, e,, and o, on the energy surface ~;, subject to the
normalization condition
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Thus for the isotropic component,

p 0' f"(o,x)dx.

where, approximately, by Eq. (25)

constIp= 2(s/v) p(o.),

and, from Eq. (31),

p'(o) =p(o)l 1—(s/v)(1 —2fp(o)3.

(47)

The functions f„(o,T) can be. treated as independent
thermodynamic variables, subject to the condition of
continuity in 0 required in passing to the limit in Eq.
(14). In terms of these functions, the internal energy
difference between states I and II is obtained from
Eq. (26). Expressed as an average energy per particle
in momentum shell 0,

To simplify the following discussion it. will be assumed
that f" can be approximated by redistributing f' on
the energy shells, without changing the net number of
electrons in each shell. This implies that

fp(o)=f'(o).

Then Eq. (38) becomes (dropping the spin index)

p,"(a-,x) =p'(o)+const Q I„f„(o)P„(x), (46)
n)0

Eq. (46), substituted on the right-hand side of Eq. (51).
This gives an integral equation to be solved for the
single function f„.Then in turn each of the f, m&~n,
should be recalculated from the equation with
expanded out to order e. This cycle can then be repeated
with m increased by unity.

constIi= —constIp= —2(s/v) p(o). (52)

Then p" (o,x,T) is linear in x with at most a single root
xp(o, T).

At T=O'K, xp(o) determines the intersection of the
limiting potential surface y=f and the energy shell

p(o), by Fq. (39). Thus, if xp(o') is unique the energy
shell is divided into two compact regions. Suppose for
spin +25 the region containing x=1 is that of the
occupied energy states. Then for consistency, xp(o)
must be determined by Eq. (44) if Eq. (45) is assumed.
Then by Kq. (51),

f'(a) = fp(o) =-', Pp(x)dx=-,'(1—xp), (53)

»(o) =1 2f'(o) =1 2fp (o). (54)

V. ENERGY, HEAT CAPACITY, AND CRITICAL
TEMPERATURE

In this section the simplest possible nontrivial
example will be considered. Suppose that only the m=0
and n = 1 terms occur in the Legendre series of Eq. (41).
Then Eqs. (42) and (47) imply that

fi( ) = l Pi(*)d*=-'L1—»'(o)3n&0

Also
Ui(o. ,T)—Uii(o, T) = ——,

' const Q I„f„'(o,T) (49)

The condition for minimum free energy, Eqs. (30)
or (32), becomes a set of integral equations

f-(o, T)

=1
2 P„(x)

p" (o,x,T)—1 )-
1+exp

l
dx, (51)

IT

where p" depends on the functions f„through Eq. (46).
It should be noted that f =0 for n)0 is always a
solution of these equations. Thus, the isotropic distribu-
tion f'(o, T) corresponds to. a definite thermodynamic
state of the system. It will be shown that a second
solution can exist below a certain transition tempera-
ture, becoming the distribution f"(o,x) described by
Eq. (39) at T=O'K.

The approximation of Eq. (45) amounts to the
initial stage of an iterative procedure that might be
used to determine solutions of Eq. (51).Given estimates
of f for. ni&n, retain only the terms with m&~inn

The heat capacity difference per particle in shell 0 is

AC(a, T) =d(Uii(a', T)—Ur(a, T))/dT

=-,' const P I (Bf„'(a,T)/BT). (50.)
n&0

=fp(o)[1-fp(o)] (55)

Uxp=2 [Ur (o,O) —Uii (o,O) jE(p)d p

—(2/15) cV(pp) (s/v) 'p p'. (57)

This should be equal to Hp'/Sv if states I and II are
identified with the "normal"' an() "superconducting"

This could also be obtained directly by minimizing the
energy expression, Eq. (26). The f„(a) with n)1 do
not vanish, but are determined by equations analogous
to Eq. (55). By Eq. (46) they do not affect the integrand
of Eq. (51) when I„=O for n) 1. Thus the only approx-
imation made here, assuming this truncation, is that
of fixing the number of electrons in a given energy shell

by Eq. (45).
By Eqs. (49) and (52) the internal energy difference

per electron in shell 0 is

Ui (o,0)—Uii (o,0) = ——,
' constI ifi'(o,0)

= (s/v) p(o)fp'(1 —fo)' (56)

Then using the approximate formulas, Eqs. (36) and

(45), the excitation energy per unit volume of the
upper state is
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[fo info+ (1—fo) ln(1 —fo) j1V(o)do

= 2k [fo info+ (1 fo)ln(1 fo)j—
p

—2k)V(op) (s/e) op.
)&Ã(o) ( do/dfo)dfo—

(58)

The iterative method discussed in Sec. IV can be
used to evaluate the distribution function at finite
temperatures. In the first cycle of this process, the n=0
approximation to the potential function is

states, respectively, df superconductors, by the usual
thermodynamic argument. Equation (57) is an order
of magnitude smaller than the corresponding result in
Frohlich's theory, ' which is empirically too large by at
least an order of magnitude. Thus, Eq. (57) is consistent
with empirical values of critical magnetic field Bp at
absolute zero, if the crudeness of the various approxima-
tions made here is taken into account.

When the crystal lattice structure is taken into
account it is to be expected that the anisotropic distribu-
tion function of state II will have at most a small finite
number of possible orientations with respect to the
reciprocal lattice, and hence that the entropy per unit
volume vanishes. Any finite degeneracy of the ground
state would be resolved by an "infra-Jahn-Teller"
eRect due to weak interactions not taken into account
here and probably not leading to easily observable
phenomena.

In the absence of an electromagnetic field, the
entropy of the upper state is finite. This does not imply,
however, that the entropy of this state does not vanish
in the critical magnetic field H, . Without further
analysis, no conclusion can be drawn about the thermo-
dynamic properties of the upper state for the transition
associated with the Meissner eRect, except at T=O'K
or II =O. When T=O and H=O, the entropy of. state I
is determined by Eqs. (28) and (36) to be

Bg will be reasonably small for all states of interest
even for temperatures below T„since the most impor-
tant region for the distribution function falls within

is(s/o)o of the Fermi surface. Equations (60) and (63),
in agreement with the definition of g, imply that g(o,0)
vanishes.

The heat capacity per unit volume of the upper state,
from Eqs. (28) and (30), is

Ci= TdSr/dT (64)

[y (O', T)—i ][dfo(o, T)/kd Tj.iV (o)do. (65)

y.= -'or'lV (op) k' (70)

is the same constant that is obtained for the electronic
heat capacity of a normal metal, despite the qualitative
difference between f'(&r, T) and the normal Fermi
distribution function.

The e=i approximation to the potential function,
in the first cycle of the iterative solution of Eq. (51), is

p(o, x,T) 1 = o(o.)—op —( s/—o) o( o)

&&[1—2f,(,T)+2f,(,r)x], (71)

again using Eqs. (35) and (48). The approximate
integral equation for fi, with B given by Eq. (60), is

Then from Eq. (62),

dfo= fo(1 —fo)d (B—g).

Hence, using Eq. (63),

(dfo/kd T) = fo(1 fo) (o —«)/[k—T+ o (s/o) o3', (67)

(do/dfo)r= —[kT+-', (s/v)oj/fo(1 —fo). (68)

Then Eq. (65) becomes

1—
Ci—2koTX(op) ln

i
dfo =y T, (69)

o- o&
where

B(o,T)= 2(s/w) o(a)/kT. (60)

p (o,x,T)—i = o (o') —op —(s/o) o (o') [1—2fo (o,T)]
= k TB(o,T)g (o,T), . . (59) where

where

f, (o,T) =F(xo,.Bfi) (72)

J"(xo, Bfi)=-,
+ xdx

(73)
i [1+expBfi(xo—x)j

g(~ T)=fo(~ T) fo(~0)—(61)

Equations (34), (35), and (48) have been used here.
The approximate integral equation for g derived from
Eq. (51) is

where xo is the root of Eq. (71). For consistency with
the equation for fo, xo must be approximately equal to
the value determined by Eq. (53) for T)0. Then

xo(~,T)=1—2 to(~, T).

fo(~ T) =fo(~0)+g= (1+expBg) ' (62) This value of xo always satisfies

When Bg is small the right-hand side of Eq. (62) can
be replaced by (2+Bg) ', and this equation has an
approximate solution, using Eqs. (34) and (45),

Bg=»{[1—fo(,T)j/fo(~, T)}
(o op) [k—T+—', ( s)/og -(63).

xp'& 1. (75)

When Bf, is large, Eq. (73) has the asymptotic form

&(xo, Bfi) 4(1—xo')([1+expBfi(xo —1)j '
—[1+expBfi(xo+1)g '}. (76)
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Thus, Eq. (72) agrees with Eq. (55) as T —+0 "K. The
general behavior of F(xp', Bfi) as a function of Bfi is
that it rises from zero with monotonically decreasing
slope and approaches a constant value ei (1—xp')
exponentially. It follows that Eq. (72) always has a
solution fi ——0, corresponding to the isotropic state I.
In addition, if the initial slope BdF/d(Bfi) exceeds
unity there will be a second solution with finite fi.
Hence, there will be a critical value of 8 and, by Eq.
(60), a critical value of T below which the anisotropic
state II exists.

The initial slope of F(xp, Bfi) can be obtained by a
Taylor expansion of Eq. (73),

above, and from Eqs. (60), (74), and (80),

(dfi'/dT). = . (81)
36(1+5xp') T. 6(1+Sxp') (s/o) e

It follows from this that the jump in heat capacity per
unit volume at T„given by Eqs. (50), (67), and (74), is

-eW(e) (dfio/dT). (de/dxp)dxo
V

5$ 1$
epcV(ep-) kT,+ -es

~

—kT,
9o 2 o i . , 1+Sxo'

F(xo, Bfi) (1/12)B—fi—(1/240) (1+Sxo')
X (Bfi)'+ . (77)

= 2.291V (es) (s/o) elk. (82)

Hence, the condition for a second solution of Eq. (72) is
From Eqs. (69) and (84), the ratio of DC to Ci at

T„. is given by

B&12. (78)
(AC),/y. T,= 2.07. (83)

Since this is independent of xo, and since 8 depends
only on e, not on e—ep, the critical temperature T is a
slowly varying function of o- near 0-p. Hence, for all

energy shells for which f, is appreciable the transition
temperatures will be nearly the same, and the critical
value of T at the Fermi surface can be identified with

T„ the transition temperature for a superconductor in
zero magnetic field. The transition is clearly of second
order since the distribution functions f' and f"coincide
at T'

From Eqs. (60) and (78), the transition tempera, ture
1s

kT, = ,'(s,'o)e, . - (79)

This is an order of magnitude smaller than the corre-
sponding quantity in the theory proposed by Frohlich.
Although the constants for the alkali metals would
lead to unusually large values of T„ those metals do not
satisfy the criterion indicated by Eqs. (23) and (25).
For the actual superconducting metals ep is considerably
smaller, since they tend to have nearly filled or nearly
empty bands, while by Eq. (4), s/o must be of compar-
able magnitude for metals of comparable atomic mass.
This could make the quantity given by Eq. (79)
considerably smaller than in the case of the alkali metals
and could put T, in the range of experimental values.

~hen Bf, is small, Eqs. (72) and (77) can be solved
fol' fi,

f '(8)—20(8—12)/8'(1+5xo') 0 (8—12«1. (80)

The steepness of the increase of fi to its asymptotic
value is indicated by the fact that for x0=0, 8=12.7
gives Bfi 3, obviously alrea——dy in the range of the
asymptotic formula, not Eq. (77), and fi= 0.236,
compared with its asymptotic value 0.250. Thus, 8
must be very close to 12 for Eq. (80) to hold.

In the limit as T —+ T, from below, 8 —+12 from

T,M'= const (85)

for isotopes with the same electronic energy band
structure.

VI. CURRENT DENSITY AND THE
MEISSNER EFFECT

In the present theory, since no canonical transforma-
tion has been carried out, the electric current density
is given by the usual formula derived from the non-
relativistic Schrodinger equation. This is

j(x) =Q Re %*L(q k/im ) grad

—(q '/et' c)A(x)]%'dr ', (86)
C. J. Gorter and H. B. G. Casimir, Z. Physik 35, 963 (1934);

Z. Tech. Phys. 15, 539 (1934).'F. Seitz, The 3fodern Theory of SoHds (McGraw-Hi11 Book
Company, New York, 1940), pp. 221—223.

This ratio is in good agreement with the value 2.00 of
the Gorter-Casimir two-Quid model' and the value 1.52
in the BCS theory. 4 Experimental values lie within
this range.

Another nondimensional ratio, the law of correspond-
ing, states, follows from Eqs. (57), (70), and (79).This is

y T,'/Hp' ——y T,o/8irUip=0. 055. (84)

This ratio is 0.159 in the Gorter-Casimir theory and
0.170 in the BCS theory, A factor of three could easily
be accounted for by including higher terms in the
I.egendre polynomial expansions used to derive Eq. (57),
and by improving other rather crude approximations
made here. Since Uzo depends on an angular distribution
in momentum space in the present theory, it should be
more sensitive to details of the band structure than is
kT, .

The isotope effect is a consequence of Eqs. (4) and
(79) which imply the relationship
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where J' ~ dr ' denotes integration over all coordina, tes
except those of particle o., whose coordinates are set
equal to x. The quantities q, m are the charge and
mass, respectively, of particle n. This current density
is gauge invariant when the usual gauge-dependent
phase transformation of the Schrodinger wave function
+ is associated with a gauge transformation of the
vector potential A. By the equation of continuity,
divj must vanish under stationary conditions. This
places a condition on divA when 0' is specified, and,
together with boundary conditions and the definition
curlA= 8, should suflice to determine A uniquely.

For the Born-Oppenheimer zeroth order wave func-
tions indicated by Eq. (1), the principal contribution to
the current density arises from the terms for which e
denotes an electron, since the nuclear masses are very
large compared with the electron mass. It is a reasonable
approximation to replace Eq. (86) by the corresponding
expression summed over the electrons only. Even so,
there will be a term linear in the nuclear displacement
coordinates to the approximation considered in deriving
Eq. (1).For diagonal matrix elements, since the lattice
vibrational quantum numbers do not change, these
terms vanish when the full wave function (integration
over nuclear displacement coordinates) is taken into
account. The usual statement that phonons do not
carry electric current follows to the same order of
approximation from Eq. (86), since the phonon
momenta also occur only to first order in the current
density operator. Thus, the phonon contribution to the
first term in Eq. (86) va, nishes exactly for the zeroth
order wave functions considered here, while the second
term (dependent on A) is small in the ratio of electron
to nuclear mass. The momentum due to this second
term cannot be neglected, since for a material medium at
rest it is equal in magnitude to the net electron momen-
tum. This should be taken into account in considering
the problem of Aux quantization in multiply-connected
superconductors. " A discussion of this point will be
given in a separate paper.

j„p=0, for all p, (87)

then to second order the mean value of j is

Hp„'
(j&=jpp+2', (j-—joo)(H„„IIpp)'— (88)

The first term, jpp, of Eq. (88), for the electric current
density given by Eq. (86), is the usual expression for
the electronic current density in the theory of normal
metals. Unless there is an energy gap (which has not
yet appeared in the present theory), this first term
should lead to normal electrical conductivity and
magnetic susceptibility. For an applied magnetic field,
if there is no energy gap, the first term can be made to
vanish by a shift of the distribution function in momen-
tum space under which to lowest order the electronic
energy remains equal to its value in the absence of a
magnetic field. If there is an energy gap of the kind that
occurs in nonconducting crystals, the Brillouin zones are
either completely full or completely empty at T=O'K
and an infinitesimal shift in the distribution function
cannot occur. In either case the term jpp leads to normal
magnetic susceptibilities and electrical conductivity.

For the current density operator of (86) the second
term of Eq. (88) will be denoted by j„in anticipation of
the discussion given below. If terms of opposite spin
and momentum are related by the time-reversal
symmetry condition, Eq. (37), then

The wave functions that interact with a given +p
though the matrix elements of Eq. (1) all differ from %p

by both an electron transition and a phonon transition.
Since the current density operator contains the individ-
ual particle operators additively, it has no nondiagonal
matrix elements for wave functions of this kind.

For states N„ that interact with a given state%"p, if an
operator j has this property,

8 I~g e e
j,= ——Q Q — Ae.+-A ly. l' —Air, +-A ly, l' (f4+m .+1)f~(e;)L1—f (e.)]

m ' ~ Av, c C

e e
+ —@ .—-A le-. l' — —@ '—-A lt-'I' (&.+&-.+1)f-(—')L1—f-(—

C C

g2 .2

(2~+1)(I@ I'—I&'I')f (1—f )
tSC 2 + AM

(90)

If &f&, and P, are Bloch waves rather than plane waves, the terms arising from the gradient operator still
cancel exactly if Eq. (37) holds.

This expression can be simplified by noting that only the antisymmetric part s (f,—f ) of the term f, (1—f,)
contributes to Eq. (90), since the other factors under the double summation are symmetric in indices i and a.

rP F. London, SuPerJimids (John Wiley lk Sons, Inc. , New York, 1950l, Vol. I, p. 152; J. B. Keller and B. Zumino, Phys. Rev.
Letters 7, 164 (1961);S. S. Deaver and W. M. Fairbank, ibid. 7, 43 (1961);R. Doll and M. Nibauer, ibid. 7, 51 (1961).
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Then Eq. (90) reduces to

e2 I .2

j.(x) = — A(x)Z 2 (2&.+1)
SSC i 6 PgQ)ff

= —(e s/mc)R (x) A (x), (91)

(e'/2mc')R(x) A'(x) =-,'A(x) j s(x).

where the density function R(x) defined by these
equations is periodic with the structure of the crystal
space lattice. Since g and p, are Bloch waves, both
normalized to A' ' in the unit cell, it follows that R(x)
integrates to zero over each unit cell.

The current density j, has several remarkable
properties which justify the hypothesis that it should be
identified with the superconducting current density.
Since I„ is an intera, ction effectively confined to
electrons and holes within the same energy shell, j,
vanishes when f; is constant on each energy shell, as is
the distribution function for state I. Hence this current
density is a property of state II only and vanishes
above the transition temperature. The magnetic sus-
ceptibility of a normal metal is small because the
distribution function can shift in momentum space so
that the gradient terms in Eq. (86) cancel the vector
potential terms. " This applies to 30p, as mentioned
above, unless there is an energy gap, but not to the
current density of Eq. (91), which depends only on
relative momenta and thus cannot be affected by a
simple translation of the distribution function in
momentum space. The energy due to the interactions
that produce this current density, given by the per-
turbation formula, Eq. (11), depends only on relative
energies, . for which the effect of the vector potential A
cancels out. Henre, the electron-lattice interaction
introduces a current density with no change in the
energy of the material system, which plays a passive
role in providing the coupling density function R(x).

The energy associated with this current density can
be thought of as an addition to the energy density of the
electromagnetic field. An energy density of this kind
occurs in the derivation by London" of the energy
conservation law that follows when the London equa-
tions, relations between j, and the electromagnetic
field of the same nature as Eq. (91), are adjoined to
Maxwell's equations. Following exactly the derivation
by London, neglecting any time dependence of R(x),
this energy density is found to be

has been defined in analogy to the London constant

Ar, =4m.hos/c', (94)

8(A. (x)j,(x))/Bt= E(x), (96)

derived from Eq. (91) when there is no electrostatic
potential.

As mentioned above, in discussing the gauge invar-
iance of Eq. (86), the vector potential is determined
here by: its curl, the magnetic induction; by the
equation of continuity for j(x); and by boundary
conditions (A and its first derivatives must be con-
tinuous), thus fixing a particular gauge. Under station-
ary conditions the present theory leads to div(RA) = 0
instead of the London gauge, divA=O. Thus A can be
treated as a field variable.

In the presence of an electrostatic field there is an
additional potential gradient term in Eq. (96), and a
corresponding dissipative current density. The usual
derivation of electrical resistivity, when applied to j,
as defined by Eq. (91), leads to a null result. This
occurs because the acceleration term in the Boltzmann
equation vanishes, since an electrostatic field leads to a,

uniform rate of translation of the electronic distribution
function in momentum space, " whereas Eq. (91)
depends only on relative momenta and energies and is
not affected by a displacement in momentum space.
Thus, j, as derived here appears to be a true super-
current, with no electrical resistivity.

From this argument, the dissipative current j„ in
superconductors (observed at high frequencies) must
be attributed to the first term jop of Eq. (88), as applied
to Eq. (86). This term behaves as a normal metallic
current if there is no energy gap, and as the normal
electronic current density of an intrinsic semiconductor
if there is an energy gap in state II.

When combined with Maxwell's equations, Eq. (91)
leads to an equation for the amplitude of an oscillatory
vector potential fieM of frequency co. This equation, in
Cartesian coordinates, if eo and co are taken to be
unity, is

L
—c'V'+ (4sre'/m)R(x)]A(x) = (oo'+4ori~o) A(x). (97)

where Xo is the penetration depth. Since A(x) is not
positive definite the present theory is not equivalent to
the London theory. In fact, Eq. (93) implies that A(x)
is singular, while R(x) as defined by Eq. (91) is regular.
Thus, a formulation in terms of R and A appears to be
more a,ppropriate than a formalism analogous to the
London theory, based on equations

curl(i1(x) j,(x))= —(1/c) $(x), (95)

The function

A (x) =m/e'R(x) (93)

"R. E. Peieris, Qssawlgos Theory of Solids (Oxford University
Press, New York, 1955), pp. 144—150; A. H. Wilson, reference 2,
pp. 160—176."F. London, reference 10, pp. 65, 66.

Since R(x) is real and periodic, Eq. (97) is analogous to
the Schrodinger equation for a Bloch electron in a
periodic lattice. Its solutions are wavelike in character,

"N. F. Mott and H. Jones, The Theory of the Properties of
3fetols arid Alloys (Oxford University Press, New York, 1936),
pp. 93-96.



Moo rr r F D Er. Ec l'Row-r. A r rr cE sz A rF. s oF r. ow ENEB. c v

damped only by the electrical resistivity through the
imaginary term on the right, if ~' is near an eigenvalue
of the operator on the left-hand side, The eigenvalues
&os' of the operator in Eq. (97) consist for each propaga-
tion vector k of a discrete set of real numbers, bounded
below. Thus cess(k), the set of eigenvalues, will have a
band structure analogous to the energy band structure.
%hen co lies in a gap between these eigenvalue bands the
vector potential must decay exponentially from values
at an external boundary, with a penetration depth
determined solely by the function R (x) if co is suKciently
small. Since R(x), from Eq. (91), is a thermodynamic
function of the material, this provides a qualitative
explanation of the Meissner effect as the reversible
expulsion of a static magnetic field during the transition
from state I to state II.

When &o is near an eigenvalue of Eq. (97) there
should be a peak in the dissipative part of the complex
conductivity since partial penetration of the field can
occur. This might be the explanation of the absorption
peak observed in thin film experiments on Hg and Pb."
If it were possible to carry out similar experiments at
the surface of single crystals, Eq. (97) indicates that the
effect should be anisotropic in a manner characteristic
of the eigenvalue band structure of this equation.

VII. THE ENERGY GAP

Experimental data on electron tunneling across a
thin insulating 61m between superconducting layers"
and on microwave and infrared absorption" provide
direct evidence for an energy gap in superconductors.
The present theory can lead to such an energy gap,
although its existence is not required, as shown by the
argument developed here, to account for many of the
most important thermodynamic and electromagnetic
properties of superconductors.

The argument developed so far in this paper has been
concerned with effects of first order in the electron-
lattice wave functions, treating the Born-Oppenheimer
states as zeroth order states. The calculated second-
order energy changes are finite, and lead to the various
results considered above. There is another effect that
must still be considered, since the modified electron-
lattice states will in general form a continuum, and any
interaction between states in a continuum can lead to
a collective state separating off below or above, depend-
ing on the sign of the interaction, It can easily be seen
that the residual interaction between the modified
electron-lattice states characterized by electron-hole
excitations (coming from Born-Oppenheimer states all

'4D. M. Ginsberg and M. Tinkham, Phys. Rev. 118, 990
(1960); P. L. Richards and M. Tinkham, ibid. 119, 575 (1960)."I.Giaver, Phys. Rev. Letters 5, 147, 464 (1960); J. Nicol,
S. Shapiro, and P. H. Smith, ibid. 5, 461 (1960).' M. A. Biondi, A. T. Forrester, M. P. Garfunkel, C. B.Satter-
thwaite, Revs. Modern Phys. 30, 1109 (1958); M. A. Biondi and
M. P. Garfunkel, Phys. Rev. Letters 2, 143 (1959);R. E. Glover,
III, and M. Tinkham, Phys. Rev. 108, 243 (1957); D. M. Gins-
berg, P. L. Richards, and M. Tinkham, Phys. Rev. Letters 3,
337 (1959).

2ep (12kT„ (98)

since this is the maximum amount by which two bands
originally tangent at the Fermi surface could be
displaced.

The present theory indicates that in principle it
should be possible to have superconductors without an
energy gap. Then the dissipative component of the
current density of the superconducting state shouM
have the properties of the current density of a normal
metal. A superconductor of this kind would exhibit
the behavior indicated by the London theory of
microwave absorption (summarized by Schaforth"),
which postulated an electrical conductivity p„compar-
able to that of the normal metal.

It is interesting to note that most superconductors
probably have overlapping bands. This is related to
their property of being relatively poor metallic con-
ductors. In fact some time ago Born and Cheng's
proposed that this property by itself might account for
superconductivity.

The density function R(x) of Eq. (91) will also be
considerably larger when orbitals @ and @; come from
two overlapping bands than in the case of a single band.
By Eqs. (93) and (94) superconductors without an
energy gap would have exceptionally large penetration
depths, since R(x) would then be relatively small.

'7 M. R. Schafroth, in Solid-State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1960), Vol. 10,
pp. 324-337.

's M Born and K. C. Cheng, Nature 161, 968, 1017 (1948);
K. C. Cheng, ibid. 16B, 247 (1949).

with the same lattice wave function) is just the electron-
electron interaction Hamiltonian assumed in the BCS
theory, with matrix elements modified only because of
the difference between Eq. (7) above and the matrix
element for electron-phonon interaction that is usually
assumed. . The result is that the interaction is important
only for electrons on an energy shell, and, thus, the
Hamiltonian analogous to that used by BCS becomes
purely attractive, since the second-order interaction
matrix element is negative on the electron energy shell.
An energy gap for modified electron excitations should
follow from this, exactly as in the BCS theory. The
present formalism does not require the ad hoc assump-
tion of a limiting electron energy difference made by
BCS. A more complete discussion will be given in a
later paper.

An energy gap of the same nature as that in a normal
intrinsic semi-conductor can also occur in state II if
the normal Fermi surface cuts across two overlapping
energy bands. As a result of the electron-hole interaction
that leads to the modi6ed potential function of Eq. (38),
the limiting potential surface defined by Eq. (39) could
lie between the two bands. The excitation energy is
determined by the potential function p(o) rather than
by the one-electron energy e(e). According to Eqs. (22)
and (79) such a gap would be limited to
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VIII, THE MAGNETIC TRANSITION

Equation (5S) indicates that state I is degenerate at
I'=O'K. However, this state is not observed except
in a magnetic field, since state II has lower free energy
below the critical temperature. It is known from the
theory of the electronic diamagnetic susceptibility"
that the electronic wave functions cannot be represented
by Bloch waves (approximate momentum eigenfunc-
tions) when a magnetic field is present. From the
degenerate perturbation theory, it is to be expected that
the correct zeroth-order orbitals could be constructed
as linear combinations of Bloch waves on the same
energy shell, translated in momentum space by an
amount proportional to the vector potential. The energy
of these orbital. s should then depend on the magnetic
held, which would remove the degeneracy of state I.

An accurate evaluation of the critical magnetic held
at temperatures between 0 and T, will be left for a
later paper. This requires a detailed treatment of state
I in a magnetic held and would be comparable in
difFiculty to the theory of electronic susceptibility and
the de Haas-van Alphen effect. It would also be
necessary to extend the argument for the field-independ-
ent heat capacity difference given by Eq. (82) into the
intermediate temperature range.

The author is indebted for helpful correspondence
and discussions to Professor R. E. Peierls, Professor
H. Frohlich, and Professor J. Bardeen and to Dr. T. D.
Schultz, Dr. G. V. Chester, Dr. J. G. Valatin, Dr. D. J.
Thouless, a.nd Dr. R. M. May.

APPENDIX A

When (2a p/~)) 1+2t, the lower limit for the p integra-
tion is just 1. Here,

C= (s'/e')Lapy, '/2K(K +g ) g

from Eqs. (3), (4), and (7). The relation

a p'U/62rsiV =

(A6)

(A7)

valid for half-filled bands (alkali metals) has also been
used. The other constants in Eq. (A5) are

D = 222//pp/p= (g/p) (a p2/ir2)

8= (s/v) «p
——(s/e) (52ap2/22ri),

F= 2ygpga~ /fg g' = (s/tt) (2a p/s) .

(AS)

(A9)

(A10)

(~C/ap) 21'did ($31'—(s'/3') g

)&t'212+ (s/v)'(ap/2s)2)} ' (A12)

where P rP has been—replaced by P.
The dominant term in the principal value of this

integral gives

The domina, nt contribution to the integral (A5) comes
from the singularity in the integrand along the curve

(A11)

Hence g can be considered to.be small for the region
near this singularity. When (2a p/~) )1, the inner
integration can be approximated by setting $=2ap/s
and multiplying the integrand by 221, the interval of $.
This reduces the integral (A5) to the form,

It is required to estimate the magnitude of Eq. (13)
for the Fermi distribution:

«3(v) =g;4(«g —«,)I.P/(«, «,)2 52«a—„2], —(A1)

where 3r, =o~+x. In spheroidal coordinates, with

«3(3«)=(tt/s)2rC~'/a '(a '+K')

—(~/e)2rir3$4/ap (ap2+S2) (K2+P2)2

—(s/e)

(A13)

(A14)

(A15)

(2 y/ )+

0 . (2~~/~) —q
2 Q

dk (0' n'), t & 1 —(A3)

In these variables,

«„—«, = (52~2/2233) &31

and the integral to be evaluated is

(23ry/x) +g 4" (8 n')kn-
( ) ($2312+g72) ((2~2 P2)

(A4)

(A5)

&= (a.+a;)/~ g= (a.—. a;)/~, (A2)

the summation over the Fermi distribution, 0-, &0-1, (g,
is

when K—'A—Op.

If ~ exceeds 20+, the singularity in the integrand is no
longer within the region of integration. The integral
then becomes of the order of magnitude of the constant
C, smaller than (A14) by a factor s/ii. The condition
g = 20-1: corresponds to the diameter of the Fermi
surface. This is the Kohn anomaly, ' since the abrupt
change in phonon energy must cause a similar change
in phonon occupation number when the phonon
momentum equals the Fermi surface diameter in a
given direction. An eGect of this kind has been observed
in Pb."

~' B.N. Brockhouse, K. R. Rao, and A. D. B.Woods, Phys. Rev.
Letters 7, 93 (1961).


