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In most previous calculations of nuclear matter the energy has been calculated only at the equilibrium
density, which density has been determined by a minimum condition. In the present paper the author s
theory of nuclear matter is applied to a study of the complete energy-density relation of nuclear matter, in
the neighborhood of the equilibrium density. The emphasis here is not upon duplicating the accepted value
for the equilibrium binding energy, but rather upon a study of the leading (diagonal) contribution of the
quasi-particle interaction term gi (kik..

~
kzk4), which is the matrix element of a reaction matrix Gi. It is shown

that gi(kikz
~
kikz) must be evaluated partly by using observed nucleon-nucleon scattering phase shifts and

partly by calculating the close-in behavior of the two-nucleon wave function, and that this second part
receives a large contribution froin the deuteron state. Curves are given for the dependence of gi(kikz) kikz)
on the density and the center-of-mass momentum. It is also shown that gi(kikz

~
kikz) is sensitive to the size

of the nucleon repulsive core, but not upon the character of the attraction, when agreement with scattering
data has first been achieved. Finally, a comparison of gz(kzkz)kikz) with the prediction of first-order per-
turbation theory is made.

I. INTRODUCTION

N the Bethe-Weizsacker, semiempirical mass formula
~ - for atomic nuclei there are four major terms which
account for (1) the saturating effect of nuclear forces,
(2) the repulsive effect due to un'saturated nuclear
bonds at the nuclear surface, (3) the Coulomb repulsion
between protons, and (4) the repulsive effect which
occurs when the neutron number differs from the proton
number. Green' has made the most accurate determi-
nation of the constants in the semiempirical mass
formula and he has obtained a value of —15.8 MeV
per nucleon for the average binding energy due to
nuclear forces alone Leffect (1)].This is the number
which one would like to derive for the theoretical
idealization of nuclear matter.

The average density of nuclear matter is another
important number. According to the most accurate
determinations of nuclear radii by electron scattering
experiments, s the central density of nuclei (with
A &30) seems to be essentially constant. The measured
value is p—0.2 nucleon per fermi cubed. Corresponding
to this number we de6ne two other numbers d~ and
k& by

p=2(3zrs) 'kivs=d~ '.

The average internucleon spacing div is then div (1.7) F
and the Fermi momentum of nuclear matter is k~

(1.4—1.5) F '. In this paper we use for k~ the value

k~=(1.48) F '.

In a previous paper, ' a theory of nuclear matter has
been presented in which physical quantities are ex-
panded in powers of the function gi(kiks~ksk4), which

* A large part of the work. reported in this paper was done while
the author was a research associate at Cornell University, and it
was supported there by a joint program of the 06ce of Naval
Research and the U. S. Atomic Energy Commission.

' A. E. S. Green, Revs. Modern Phys. 30, 569 (1958),' D. G. Ravenhall, Revs. Modern Phys. 30, 430 (1958).' F. Mohling, Phys. Rev. 124, 583 (1961),hereafter referred to as
III.

is the matrix element of a reaction matrix Gl. It is the
purpose of this paper to study the leading contribution
of this function to the quasi-particle energy-momentum
relation oi'(k), the thermodynamic potential g, and the
average energy per particle (8)/(lV). The convergence
of the expansions of these quantities is also examined.

We consider only the ground state of nuclear matter,
which corresponds to the temperature T=O. In Sec. II,
the general expressions for zo'(k), g, and (E)/(X) to
second order in gi (kiks

~
ksk4) are summarized and

written explicitly for the case of infinite nuclear matter.
In III it was shown that to first approximation the

function —gi(kiks
~
ksk4) is the quasi-particle interaction

in momentum space. This function is therefore closely
related to the scattering amplitude for "quasi-nucleons"
in nuclear matter. In this sense it is appropriate to say
that the leading term in the energy depends only upon
the real part of the "forward scattering amplitude"
gi(kiks~ kiks). In fact, for high momentum values,
k))kyar, gi(kiks

t
kiks) reduces to the real nucleon forward

scattering amplitude Ts(ki, ks), which is the correctly
weighted sum of sin23;(kis) for all the states (i) of the
two-nucleon system. This is as one would expect,
because in the high momentum limit the distinction
between a quasi-nucleon and a real nucleon vanishes.
The momentum dependence of the term Te(kt, ks) is
determined in Sec. III using the measured phase shifts
as deduced from nucleon-nucleon scattering experiments.

The difference between gi(ktks
~
kiks) and the

sin23, (ki&) term is the quantity Ti.(ki, k&) which is
studied in Secs. IV, V, and VI. For states below the
Fermi sea, TI~ is the same order of magnitude as To.
This former term depends on the "close-in" behavior
of the two-nucl. eon wave function, and therefore, a
particular model for the nuclear interaction must be
chosen before T12 can be calculated. In Sec. IV an exact
expression, Eqs. (41) and (43), for the S-wave part of
T12 is derived, using the model of a spin-dependent
square well outside of an infinite repulsive core. Simi-
larly, in Sec. V another exact expression is derived for
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TI2 using the model of a spin-dependent, nonlocal,
separable potential outside of an infinite repulsive
core. In both cases the parameters of these interactions
are fitted with the aid of low-energy S-wave scattering
parameters.

A correct calculation of T» must include the contri-
bution of the wave function of the deuteron. This
contribution is therefore included in the derivations of
Secs. IV and V and its significance is also discussed. In
the calculations of Sec. VI it is then shown that the
effect of the deuteron state on the quasi-particle
energy-momentum relation a&'(k) is very large.

In Sec. VI curves are given for the momentum
dependence of T~~. These curves are computed after
erst making an effective mass approximation to ~'(k).
The quantity T» depends on both the center-of-mass
momentum 2Q as well as on the density, and curves for
these dependences are given. It is shown that T»
decreases with increasing density, an effect which helps
to achieve saturation in nuclear matter. The dependence
of T» on the nuclear interaction is also studied. Thus,
for parameters which fit the low-energy scattering
experiments, it is shown that T~2 decreases as the
hard-core diameter is increased and that this effect
is large. On the other hand, the difference between
using a square-well potential and a nonlocal separable
attraction is shown to have a very small effect on the
momentum dependence of T». It is therefore suggested
that (excepting for the core) the details of the nuclear
interaction are not important for nuclear matter
calculations, provided that agreement with nucleon-
nucleon scattering data is reasonable.

The contribution of
I Ts+T~sf to 4d'(k), g, and

(E)/(X) is also determined in Sec. V. Using the calcu-
lations of this paper, the binding energy is overestimated
by a factor of 2 and the equilibrium density occurs at
kv=(1.4)k~. This is not a disappointing result, how-
ever, because it is argued that the overestimate is
primarily due to the omission of the D-wave contri-
bution to Ti2. Moreover, in Sec. VII the second-order
terms in g&(k&ks I ksk4) are written down exactly for the
5-wave square-well model and it is estimated that their
contribution to the properties of nuclear matter is
& 10%of the linear term.

The success of first-order perturbation theory, as
applied to effective central forces, in producing a
qualitative understanding of nuclear matter has been
somewhat of a mystery, particularly in view of the
tensor character of the nuclear force. Since first-order
perturbation theory is the same as the first Born
approximation to sin28p, the calculations of this paper
readily lend themselves to a comparison with pertur-
bation theory. Thus, in Sec. VIII, curves which show
this comparison are presented for the case of no repulsive
core. The remarkable approximate agreement of first-
order perturbation theory with the S-wave part of

I Ts+T&sj is observed, and it is then further noted that

the latter quantity has a simple generalization to the
case of tensor forces.

lim v'(k) =1 if k&kv,
p-+p

=0 if k)kp,

where kv is related to the density p—= (cV)/0 by

p—=2(3a') 'kvs.

(2)

(3)

Finally, the result of Eq. (III.19) is that the thermo-
dynamic potential g is given by

where (E) and (E) are, respectively, the average energy
and number of particles in a given system. This expres-
sion shows that the mean separation energy of a
nucleon from nuclear matter, which energy must
correspond to the momentum k=kp, is the quasi-
particle energy 40'(kv).

In the present paper we shall be concerned with the
calculation, to leading order in g&, of the average energy
per particle and the quasi-particle energies, and we shall
also be interested in the convergence of the energy
expansion. In Sec. VI or III we have shown to second
order in g& that (Z) and co'(k) are related by the Landau

4 In III, Eqs. (73) and (74), it was shown that —g&(k4k2
~
k3k4)

is the antisymmetrized matrix element of a reaction matrix GI.
This same reaction matrix also appears in the PuB-Martin theory
of nuclear matter. See R. D. Puff, Ann. Phys. (New York) 13,
317 (1961) and D. S. Falk and L. Wilets, Phys. Rev. 124, 1887

II. GENERAL EXPRESSIONS

In a preceding paper, ' we derived expressions for the
thermodynamic quantities and distribution functions
of the ground state (T=O) of nuclear matter using the
methods of quantum statistics. In particular, we
showed that the quantities of interest could be expressed
as power series developments in the transformed pair
function, Eq. (III.12), with a weighting function v (k)
in momentum space integrals.

v'(k) = expPLg —40'(k) j/{1+expPI g
—40'(k) j), (1)

rs'(k) = 4s (k)+6 (k), o) (k) =k'k'/23f .

An important result of the investigations in III is
that for nuclear rnatter the pair-function expansion is
equivalent to an expansion in the function gt(kJks I ksk4)
of Eq. (III.13).4 Moreover, it was shown that nuclear
matter can be viewed as a composite of quasi-particles
whose energy-momentum relation is co'(k), and that to
first approximation the interaction potential between
these quasi-particles is —g&(k&k& I ksk4) Lsee Eq.
(111.78)$.

It was also shown that at T=O the weighting func-
tion v (k) is simply the Fermi distribution function
Lbut see discussion below Eq. (III.18)j.
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equations

(E)=p v'(k)o&(k)+-', Q v'(ki) v'(k2)u(kr, k2),

T24&2& (kr, k2) = (22rl22/3f) 'Qk12 p Lgr(kik2l kak4)]'
k3k4, m2q2

M'(kr) =8(E)/4&v'(ki)

=M(ki)+Q v'(k2)u(ki, k2)

where'

bu(ka, k4)
+-', P v'(ka)v'(k4), (6)

k3k4 bv'(ki)

T,i (k„l,)—= (2~@/m)- Qk„g L,'(k,)+.'(k,)]
k3k4, m2q2

xLg, (k,ksl kak4)]'

u(ki, k2) = —gi(kiks l
kik2)+-,'Q [gr(krk2l kak4)]'

k3k4

[1—v'(ka) —v'(k4)]Pl

1—P +O(gi'). (7)
Mi +M2 M2 M4

Thus, the program of the paper will be to make a
detailed investigation of the contribution of the linear
term in g& to these equations and to make an estimate
of the effect of the quadratic term in g&. We shall only
consider the idealization of infinite nuclear matter in
which (N), Q —+ 00 while p remains finite.

The state labels k, in Eqs. (5)-(7) refer to momentum,
ordinary spin, and isotopic spin quantum numbers;
i.e. , k= (k,222, q). We now become more explicit by
using Eqs. (III.13) and (III.10) to rewrite Eq. (7) for
u(ki, k2) as follows:

XP — . (9)
Mi +M2 Ma M4

In the expression for T»&" (kr, k2)

Wn= 4(k'/3f) -(kr+k2)',

and the summation Q2, is over all states of the relative
two-nucleon Hamiltonian H&'). The second-order terms
T34('& and T&(2~ will be investigated in further detail
in Sec. VII. The third term in Eq. (6) is called the
rearrangement energy. It has a leading contribution
which is second order in g~ and we rewrite it as

i&u(ka, k4)
-', Q v'(ka)v'(k4)

k3k4 8v'(ki)

v'(k2) v'(k4)Lgr(k3k4l k,k2)]
k2k3k4

Xp 0 gg'
&M2 +M4 Mi M2

p u(k„k2)
~2q2

= —(2r52/M)(Qk ) 'p T &2&(k„k2)+O(gra), (10)

(2rk' /~) (Qk12) LT0 (k 1)lr2)+ T12 (k lylr2)

+T i'& (k,k )+T &'& (k,k )]+0(g '), (8)

where k12 ——
—2, (k2—kr), and where the superscript (n, )

refers to 0(g") terms. The T;&"&(kr,k2) are defined by
the following set of equations:

Tao& (k, ,k2) =—(82r'M/5')k&2 Q fi(kis
l k12),

m2~ q2

T12&'& (ki,k2) —= (82r'M/5') k12 Q f2(k12 l
k0

l
k12)

m2q2kp

-M1+M2 —II n M (ko)—

—P
M 1'+M2' —W12 —M (k0)

where

Ts~'& (kr, k2) —= (22rir'/3f) —
'Qk12 p v'(ka) v'(k4)

k8k4, m2q2

xLg (k k lk k)]'
1

xpl, ,
— . (»)

EM2 +M4 Mi M2

The quantity T6"' will also be investigated in greater
detail in Sec. VII.

We have assumed with Eq. (2) that the Fermi
surface for nuclear matter is the same for all four spin
projections, or in other words that the quasi-particle
potential energy A(k), of Eq. (1), is spin independent.
This will be true if the T;i"& (ki,k2) of Eqs. (9) and (11)
are also spin independent (of mr and qi), and we shall
henceforth assume that they are. It is convenient for
the subsequent analysis to introduce a coordinate
change for the momenta kr and k2.

4 Por large kr a11d k2 values, such that Lco'(kq)+40'(k2)]) (bind-
ing energy of deuteron), Eq. (7) is incorrect and Kq. (III.39) must
be used for u(kI, k~). In this paper we shall not be interested in this
high region of momentum values, and therefore we have only
given the simpler form (7) for N(kI, k2).

1,,= (2k„) -'(k, —k, ) =kiev-'k, „ l, =-k~-'14, ,

On = (2k~) '(142+141),

k1v ——(1.48) F ',
(12)
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We conclude that Ts(l) is a very important term and
that it must be precisely calculated if one is to achieve
a quantitative understanding of the energy-density
relation for nuclear matter.

In Fig. 2 are plotted the experimentally determined
S-wave contribution to Ts(t) (curve A) and the sum of
the S-, I' , D -, an-d ti wave-contributions to Ts(l)
(curve 8). We see that only the S-wave part of Ts(t)
contributes for l&0.4, which corresponds to a labora-
tory energy Ei,b&30 MeV. In the region 0.4&i&1.0,
I', D, and F waves also make important contributions to
Ts(l) and they must all be included. For the region
l&1,0, even higher angular momentum states become
important, and curve 8 cannot be considered to be
very accurate for 1& 1.0. One finds from an examination
of these higher states (whose contribution can be
estimated using the one-pion-exchange potential)', that
their effect is mainly to lower the high-momentum
values (t & 1.0) of Ts(t).

The effect on the energy per particle of nuclear
matter when one uses curve 8, instead of curve A, for
the contribution of Ts(l) is to shift the calculated
minimum energy value to a higher density (kz=1.5k~)
than the observed density (kz—k&). (This is primarily
a D-wave effect, since the I' and F wave contributions
in the region 0.4(t (1.0 tend to cancel each other. )
It is therefore clear that at least one other term besides
Ts(l) must have an important effect in the quantitative

0.8-

06-

0.4

02-
I

sin28 o

-0.2 ~

-0,4

"0.6-

-08-

- I.O
0 .2 .4 .6 .8 I.O I.2 I.4 I.6

+ k/kN

Hamiltonian H~". This has been called t;he Blatt-
Hiedenharn representation in the literature. Thus, in
order to determine Ts(t) we have only to use the
Blat[-Biedenharn nuclear phase shifts which have been
deduced from nucleon-nucleon scattering experiments. '
In Fig. 1 are shown the curves of sin28, (l) for the singlet
and triplet S-wave states. For the case of an incident
nucleon of energy Ei,b scattered by a target nucleon at
rest, the parameter l is given by

IO

l = (hk&)
—'(-'MEt.b)'"~0.074(E&.b)'~' (21)

with Ei. b given in MeV. Thus, phase shifts correspond-
ing to laboratory scattering energies up to E&,b 300
MeV, are represented by the curves of Fig. 1.

An important feature of the 5-wave curves of Fig. 1

is that their sum exhibits a strong maximum at l
This means that their contribution to the energy of
nuclear matter via Eqs. (19), (17), and (20b) exhibits a
minimum at a density roughly equal to the observed
nuclear density. %moreover, a numerical calculation
demonstrates that the S-wave contribution of Ts(l) to
the nuclear binding energy is 25 ~ileV at kp=k&.

FIG. 1. Curves of sin2b(l) as a function of l=0/4r=(0 074).
)& (L~&,b)'". Shown are the experimentally determined triplet and
singlet S-wave curves. The low-energy effective-range parameters
corresponding to these curves are not the commonly accepted
values given at the beginning of Sec. VI. The dashed curve is a
plot of sin28(I(l) corresponding to the square-well resonance model
of F.q. (46) (0~=1.48 F ').

6 J. M. Blatt and L. C. Biedenharn, Phys. Rev. 89, 399 (1952).' The most recent and accurate determination of the nuclear
phase shifts has been made by Breit and co-workers. Their
phase-parameter representations are reported in G. Breit, M. H.
Hull, Jr., K. E. Lassila, and K. D. Pyatt, Jr., Phys. Rev. 120,
2227 (1960),and in M. H. Hull, Jr., K. E.Lassila, H. M. Ruppel,
1'. A. McDonald, and G. Breit, Phys. Rev. 122, 1620 (1961).
References to previous phase-shift analyses are given in the fIrst
of these two papers. The results of the second paper were un-
fortunately received too late to be included in the calculation of
To(&).

I I I I I I I

0 0.2 0.4 0.6 0.8 l.0 l.2 l.4 l.6 1.8
JL k/kN

FIG. 2. Curve A: the S-wave part of T0(l) as calculated from
experimental phase shifts. Curve B: the total of the S-, P-, D-,
and F-wave contributions to T0(l) as calculated from experimental
phase shifts (k~=1.48 F ').

P. Cziffra, M. H. MacGregor, M. J. Moravcsik, and H. P.
Stapp, Phys. Rev. 114, 880 (1959).
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calculation of the energy-density relation of nuclear
matter. In fact, the only other important term is T» of
Eq. (9), as we shall show in Secs. VI and VII.

For calculational purposes it is useful to have an
analytic expression for To(l). For this reason we have
made a least-squares fit of a fourth-order polynomial
to curve 8 of Fig. 2. The result,

Tp(l) = —(1.267)+ (13.88)l+ (26.44)P
(45.—14)P+ (14.26) l4, (22)

is a close approximation for the entire region
0.1(l(15, an. d for /(0. 1 the contribution of Tp(l) to
physical quantities is negligible. Equation (22) has
been used in the calculations discussed in the second
half of Sec. U.

IV. SQUARE WELL PLUS REPULSIVE
CORE MODEL

In III, it was emphasized that the function
gt (klks

~
ksk4) which appears in Eq. (7) can be written

explicitly in terms of the eigenfunctions of the two-
nucleon Hamiltonian H (". Then, in the previous
section we have shown that the function Tp~" of Eq. (9)
can be calculated by knowing only the asymptotic
behavior of the two-nucleon wave functions. This
fortunate circumstance does not hold for the calcu-
lation of any of the other T;&"), for which the details
of the two-nucleon wave function must be known. Now,
according to Eq. (III.62) the two-nucleon wave
functions for continuum states can be expressed in
terms of the reaction matrices (k

~

A &'&
~
ko), each of

which is equal to tan8;(kp) when k=kp (on the energy
shell). It is therefore convenient to express the function
g&(ktks

~
kok4) directly in terms of reaction matrices, and

this has been done in Eqs. (III.10), (III.11), and
(III.13) for the case of a spin-independent interaction.

In this section we shall neglect the complicated
details of nuclear forces and use the very simple
approximation of an 5-wave square-well attraction
outside of an infinite repulsive core. Thus, we consider
the potential U(r) = (M//s') V(r) de6ned by

U(r) =+ oc for r(a,
= —Up for a (r (b, (23)
=0 for r) b,

and which vanishes for angular momentum states with
1.&0. In this case one Ands' for the reaction matrix
(k~A&'& ~kp) the result

(k [A &P& ikp)
= —(kp/k) (yp' —ks) 'Lyp coskpb cosyp(b —a)

+kp sinkpb sinyp(b —a)] '
X{yp(kps —k') sinkpa+ Upgyp sinkb cosyp(b —a)

—k coskb sinyp(b —a)]), (24)
yo= (Uo+ko')'".

' The author is indebted to Sigurd Larsen of Columbia Univer-
sity for providing his calculation of the reaction matrix (24).
The calculation is most easily performed with the aid pf Eq. (73)
in F. Mohling, Phys. Rev. 122, 1043 (1961).

In the limit Up~0, this result approaches the well-
known hard-core expression

(k~A&o& ~kp)= —kp sinka(k coskpa) '.

We next introduce the dimensionless parameters

2 =kga,
8—k pfb)

p, =k~ Up,
and

/o=kN 'ko, I'o=kx 'yo= (/o'+p')'",

l = k 'k 7'= (P+p')'"

(25)

(26)

In terms of these parameters, the expressions for the
reaction matrix times cos8p and the reaction matrix
times cos'bp can be written as

//p '(/
i
A &'&

i /p) cosbp(/p)
= —Do'+p' cos'F'p(B —A)] '"1V,(l,l,), (27)

lip '(l
~

A l l
~
/p) cos'bo (/o)

Plo'+lj, ' c—os'I'p(B —A)] 'cV, (/, /o)/V, (/o), (28)

where

/I/t(l, /p) —= (7'p' —P) '{I'p(/p' —P) sinlA

+p'(I'p sin/B cosF'p(B —A)
—l cos/B sinF'p(B —A)])

/Vt(/, l) = I' sin/B cosY(B—A)
l cos/B sin V(B——A), (29)

Ãs(/) —= 7' cos/B cos V(B—A)+/sin/B sin Y(B—A). (30)

The expressions (27) and (28) are needed for the
general calculation of gt(k&ks~ksk4) using the square
well plus repulsive core model. Thus, if Eq. (III.11) for
the continuum contribution to fs(kts)ko~kts) is substi-
tuted into the expression for Tts~" (k&,ks), Eq. (9), then
one obtains for the case of a spin-independent S-wave
force the result

Tc(kt, ks)

= (24/or) (ls'/M)k&o dkoL(k~s (
A"'

~
kp) costs(kp)]'

Mt+too Wts eo(kp)—

Tc(/, 0)= (24/7r)l d/pg(l i
A & ' i/p) costs(/p)]' (32)

1 1
x pl +p

&/s lp' /ps+ el—

—P . (31)
(et'+(os' —Wgo —eo (kp)

We introduce the dimensionless parameters of (12) and
use Eq. (14a) to rewrite this expression as
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where

p(I, Q) =Q' —(M/f4')[4p'(Q —I)+pl'(Q+I) j (33)
~ —P fol GO =(d.

2.4-
Nuclear forces give rise not only to continuum states,

but also to a bound triplet S state, i.e., the deuteron.
This bound state, in turn, makes a contribution to the
function gi(kikp~kpk4) which must be included in a
calculation of the properties of nuclear matter. Accord-
ing to Eq. (III.11) the contribution of the deuteron
state to T»"&, Eq. (9) is

Tll(k„k, )

=6(52/M)k12 '(k122+y2)2kllp&p2(k12)+&22(k12)j

X
—4pi+ pp2 II 12 4p (7)-

—P, (34)
-4pl +4p2 /I 12 4p(Y)—

where 4p(y)= —(i242/M)F2=2. 226 MeV is the binding
energy of the deuteron. The functions pp(k) and @2(k)
are the Fourier transforms of the S and D components,
respectively, of the wave function of the deuteron,
normalized according to the convention

2 2
~ 4. 2.0-

l.6—

l.2-

0,8

0.4

0
I

0
0.2 0.4 0.6 0.8

I I I

0.4 0.8 l.2
k(F )~

I

l.o I.2
l

l.6

JL= k /k~~
I I

l.4 l.6 l.8
I I

2.0 . 2.4

Fro. 3. The momentum distribution of the deuteron, as
calculated for the square-well-repulsive-core model.

presently show, that the deuteron state is very im-
portant in the determination of the ground-state
properties of nuclear matter.

We wish to calculate T& explicitly, and for this
purpose we again use the square-well potential (23),
thereby neglecting the D-state component $2 of the
deuteron wave function. The expression for 1/p in terms
of the dimensionless parameter /12 of (12) is

k,v ' dk[gp2(k)+&22(k)]=2r/2. (35) yp(/12) =V2nv' '[1+v(8 —2)j '"(n' —/12')
—'

g lsln/123++(/12 +v ) (v Sin/128+/12 Cos/12+)lp (36)

One may inquire as to the meaning of such a term
as (34), and we propose the following story in answer to
such an inquiry. The quasi-particles of nuclear matter
represent the way in which nature arranges a collection
of nucleons so as to exhibit collective or normal modes
in nuclear matter. That is to say, the effective single-
particle eigenstates or quasi-particle states are these
normal modes, and in momentum space nature arranges
these states so that their distribution resembles a
free-Fermion momentum distribution. On the other
hand, the energy-momentum relation for the quasi-
particles, pp'(k) of Eq. (1), differs radically from that of
free Fermions. The question of the role of the deuteron
state is then related to the determination of 4p'(k). The
point is that the strong pair correlations in nuclear
matter, which determine the quasi-particle properties,
are related much more closely to the wave f24nc/ion of a
pair of isolated nucleons than they are to the potential
which exists between a pair of isolated nucleons (which
is, of course, quite singular). It is the Fourier transform
of two-nucleon wave functions, then, which is most
important in understanding the properties of nuclear
matter. With regard to the deuteron state, one may
imagine that if two nucleons And a "relative" wave
number available for occupation in the deuteron state,
then it will be energetically desirable for them to get
into this state. Hence, we should expect, and shall

where
v=4~ 'y=0. 157,

n=kll '(Up —y2)'l2.

(37)

In Fig. 3 we have plotted the momentum distribution
(2/2r)pp2(/12) of the deuteron as a function of the relative
momentum of the nucleons, using the triplet parameters
for a=0.4 F from Table I. The distribution is charac-
terized by a sharp maximum at 1»——v=0.157 which
corresponds to the inverse of the "size of the deuteron. "
The curve agrees very closely with the momentum
distribution given by the frequently used Hulthen wave
function of the deuteron [which is Eq. (53) with
a =0.0].

Use of the definition (33) together with Eq. (14a)
yields for T& the expression

T~(I,Q) =6/ '(/'+")'4p'(/)
&«~('—v') '+«'+") '&

Explicit computation, using the e6ective mass approxi-
mation (57) for p, reveals that Tll is the same order of
magnitude as the continuum term Tp of Sec. III. The
second term in the brackets gives the dominant (order
of magnitude larger than the first) contribution to Tll.
Thus, we see that the contribution of the deuteron
state to &p'(/1) and (E)/(Ã) is very important.
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TABLE I. Nuclear S-wave parameters, Eqs. (23) and {48).The values given in bold type represent the "best" fits in each column.

Hard-core diameter
~ (F)

0.0
0.2
0.4

Square well, range
b(I)

'

2.494
2.286
1.69b

Singlet

Square well, depth
U0 {F ')

0.3655
0.5295
1.421b

Square well, range
b (F)

2.494
2.286'
1.69

Triplet

Square well, depth
U0 (F ')

0.6162
0.8226~
1.875

0.2
04'
0.45

Separable attraction,
cutoff momentum

C' (F-)
1.434
1.79

Separable at traction,
strength

0.9448
0,9557

Separable at traction,
cutoff momentum

C' (F-)

2.295
2.479

Separable attraction,
strength

1.2121
1.1957

a Values correspond to a3 =5.61 F.
b Values correspond to r0I =2.1 F.
e Values in this row do not give good agreement with the curves of Fig. 1 for l &0.8(Blab) 100 MeV. )

In the Appendix of III, we have shown that the use
of the idealization of an in6nite repulsive core for the
nuclear interaction leads to an additional term in

gi(ktks~ ksk4), ts thereby resulting in the contribution

TFIc (Itl)Its) = (87r3f/I/')kts P fs(kts
~
kts)

m2Q2

X (or i+&us —nit' —cps'), (39)

which we shall henceforth include with T12&'&. From
Eqs. (A3) and (A11) of III, we obtain for the 5-wave
part of TIJOU the expression

Tile(I, Q) = 6/ '(P+e)—(/A —
x sin2/A), (40)

where e(1,0) is given by Eq. (33) and we have again.
used Eq. (14a). The term Tire gives a, small, but
appreciable, positive contribution to a'(/i) and
(&)/8').

As has already been observed in connection with

Eq. (20b) and Fig. 1, the nuclear force is spin dependent.

It also has a tensor character that mixes 5 and D wave
functions, but we shall not consider the complication of
tensor forces until the end of Sec. V. For a spin-
dependent nuclear force, Eq. (9) for Tis can be written
as follows:

Tts(1,0)= [T,(I,Q)+T, (I,Q)]
+[higher angular momentum terms], (41)

where

T, (I,Q) = s [To(1,0)+TiIc(I,Q)j„
42

«(I,Q) = [-', Tc(I,Q)+Tt (I,Q)+-,'Tile(I, Q)$~,

and where the explicit expressions for T~, T~, and Tll~
have all been written down in this section using the
square well plus repulsive core model.

Using the methods of contour integration the integral
(32) for Tc can be performed exactly after substituting
the explicit expression (27). The final expression for
both T, and T& is the same, namely,

T, , &(I,Q= —3 sin2bs(/)+3/ '(P+e)(P VP) '((/s+ )—(sei 2/nA[ —' —/'(P —7 ') 'j—/A)+p'(/B —st sin2/B))

+6p (P i' ) i[@ cos F—(B A) —eg t(k~i(/—, ie )jY, cosY, (B A) cos/B —e/ —sin/B sjni', (B—A)j
+/ 'P, (P—V,s) '(P+e) sin/A[(P+e) sin/A cosF, (B A) sinF'', (B——A)+W, cos/B cosi', (B—A)

—s sin/B sinF, (B—A)]) —6/ 's"'[Ii' cos'I' (B A) e] 'PT—t(/, ie—")]'f)(s), (43)

where
I' = (~'—s)'"

0(s) =0 if e&0

if e&0,

(44)

(45)

and Et(/, is'is) is given by Eq. (29). Although the
expressions for T, and T& are formally similar, we shall
see that they are quite different when evaluated for
realistic nuclear parameters. In particular T~ has a
singularity' at t.= v', which can be traced directly to the

'00ne can show that the function B(k), which appears in
Eq. (III.A4), is given by the expansion B(k)=(3s-) '(kra)'
X)i+0(4u)'f(k~/ks)j For a=0.4F we find. B~0.02, and
therefore the contribution of B(k) to the pair functions in the
expansion of physical quantities can be neglected to first
approximation.

contribution of TIi, Eq. (38). There are no other
singularities in either T, or T~.

In the literature there has frequently appeared a
spin-independent version of the square -well plus
repulsive core model which we are using. This is the
square-well resonance model of Gomes, Kalecka, and
Keisskopf, " in which the attraction gives rise to a
"just-bound" state at zero energy. The parameters
which these authors have chosen are

8=0.4 F,
b=2.3 F, (46)

Us'"(b —a) = s-/2, [(ts'/M) Us—28.3 Mev].
"I.. C. Gomes, J.D. Walecka, and V. F. Weisskopf, Ann. Phys.

(New York) 3, 241 (1958).
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When one sets /p
——/ in Eq. (28), then this expression

becomes equal to -', sin2bp(/). Upon using Eqs. (25) and
the numbers of (46) in this expression for sin28p(/), one
then obtains the dashed line curve shown in Fig. 1.
This curve (multiplied by 6) is only a fair approximation
to curve A of Fig. 2, which represents the experi-
mentally averaged values of sin28 for the singlet and
triplet S states. One might use the model for the esti-
mates of second order (in g~) terms presented in Sec.
VII, but we do not feel that it is good enough for the
calculation of the leading O(g~) term made in Sec. VI.
In particular, it cannot reproduce the important
bound-state effect discussed below Eq. (35).

V. SEPARABLE POTENTIAL PLUS REPULSIVE
CORE MODEL

It is of interest to investigate how the character of the
two-nucleon interaction affects the calculation of the
properties of nuclear matter. At first thought, it would
seem that the character of the nuclear interaction, i.e.,
the shape of the potential and its velocity dependence,
would have very important effects. At second thought,
however, one remembers that the parameters of a
phenomenological nuclear interaction must always be
fitted to the nucleon-nucleon scattering phase shifts
and these phase shifts are closely related to the oiI-
diagonal reaction matrix elements which determine T~,
Eq. (32). This leads one to the hypothesis that the
properties of nuclear matter are cot very sensitive to the
character of any two-nucleon interaction which is
fitted to experimental phase shifts. The purpose of this
section is to repeat the derivations of Sec. IV for a very
diferent S-wave interaction in order that this hypothesis
can be quantitatively pursued.

An S-wave interaction which is very different from a
square well is a nonlocal, or velocity-dependent attrac-
tion. With such an interaction the L, =O radial wave
equation becomes (for r) a)

corresponding to (27) and (28) are

//o '(/I A+& I/p) costa(/o)
—

(/ 2+ ( &)Dp4+ 2 (1+g )CP/po+ (1—a)~C4)—& ~&

XÃi (/, /p), (49)
//p (/I A I/p) cos 8p(/o)

= $lo'+2(1+a)C'/oo+ (1—a)'C4j '

XIV'(/1/p)iVp(/p), (50)
where

Xy(/, /p) = 2a'g(/)g(/p))sin/A+/C ' cos/A)
—L1+ag(/p) j sin/A, (51)

iV p (/) = L/'+ (2+ a)PC'+ (1—a.)C'j cos/A

+2a/C' sin/A,

g(/) =C'(C'+P) '

C=k~ 'C'.

Similarly, the bound-state wave function gp (/) is
given by

4'o(/) =I 2 C '(C+ )3'"(/'+ ') '

X ( (C+v)g(/)I sin/A+/C ' cos/A j—C sin/A }, (53)

where the experimental value for v= (a'"—1)C is given
by Eq. (37).

Upon substituting Eq. (49) into Eq. (32) for Ta,
and again using the methods of contour integration, one
obtains an explicit expression for Tq. The final expres-
sion for T, or T~ of Eq. (42) is found tobe

2'.
, (N)

3/ '(P+ —p) (/A ,' sin2/A—)—
+12a/ 'CL/'+2(1+a)C'P+(1 —a)'C4j '
X (I:/'+ ( —1)C'3&p(/)+ L/'+ (1—)C'3&4(/) }
+12a/ 'CLp' —2(1+a)C'p+ (1—o)'C'$ '

X(l p+(1—a)C'jÃp(/)+I p+(a 1)C'jlV4(/)}
+6/p '"I (/IA &o" Iip'") cosbp(zp'") j'e(p) (54)

where

yuP l(r lao)=r (r')'dr' Up(r, r')(r') '(r'I&p) (47)
& pro i

where the boundary condition due to the repulsive
core (which we still assume to be present) is that
(rlkp)=0 for r(a We shall . choose the simplest case
of a nonlocal potential, namely, the separable potential
of Yamaguchi":

rr'V o(r,r') = —2aC'N (r)u(r'),

u(r) =C' expl —C'(r —a)j.
The strength 0- of the separable attraction has been
de6ned so that a "just bound" state occurs when 0 = 1.
For the separable interaction of (48), the equations

"Y.Yamaguchi, Phys. Rev. 95, 1628 (1954).

Ep(/) = a g'(/) (C sin/A+/ cos/A)'+C' sin'/A,

Ã4(/) = 2Cg(/) (C sin/A+/ cos/A) sin/A, (55)

and 0(p) is given by (45). As with Eq. (43), the only
singularity in either T, or Tg occurs at ~= p' for T&.

VI. CALCULATIONS OF Tg2 AND THE
GROUND-STATE ENERGY

In this section we shall present curves of T~~, for a
wide range of acceptable parameters corresponding to
the S-wave nuclear interactions of Secs. IV and V.
In Table I we have made a list of the parameters u, b,
and Up, Eq. (23), for the square-well potential and of
a, a., and C', Eq. (48), for the separable attraction. In
each case the parameters have been determined from
(1) the binding energy of the deuteron=2. 226 MeV,
(2) the triplet scattering length, ap ——5.38F, (3) the
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7.0 TAsLz II. Effective mass parameters used in the
calculations of Sec. VI.

&, (k,Q)

5.0

4.0

3.0

x=kz/k~

0.8
1.0
1.2

1.930
3.039
4.226

cV*/M

1.624
1.855
2.086

2.0

I.O

-I.O

-2.0'
0 O.I 0.2 0.3 0 4 0.5 0.6 0.7 O,S

I

0.9 I.O

Fxo. 4. Q dependence of the 5-wave part of the function T12(l,Q)
for g=1.0. The effective-mass parameters used were those of
Table II, and the interaction used was the square-well model of
Sec. IV with the a=0.4 F parameters of Table I. The singularity
at e= v' occurs for Q=1.0 at l=1,0l2.

singlet scattering length, aq ———23.68 F, and (4) the
singlet effective range, r01=2.6 F.

Agreement with the experimental values of sin26,
Fig. 1, up to l=1.0 (E~,b 200 MeV) has also been
required. For some of the parameter sets presented
in Table I, this last requirement has resulted in a poor
6t either to the singlet effective range, or to the triplet
scattering length as has been indicated. The parameters
given in bold type represent the "best" fits in each
column, and it is remarkable that these best fits
reproduce the entire range of experimental 5-wave
phase shifts from Ei,b=o to 300 MeV. For the square-
well model we have, for reasons of simplicity, always
used the same range b with both singlet and triplet
states for a given value of the hard-core diameter. That
the ranges are essentially the same follows from the
experimental curves of Fig. 1.

In order to integrate or evaluate numerically the
function T&z of Eqs. (9) and (41) it is necessary to
know the explicit dependence of e, Eq. (33) on the
momenta 1 and Q. This is precisely the self-consistency
problem of the theory, because the &o'(1&) are determined
solely by the integral equation (15) together with Eqs.
(16)—(18). In order to simplify the solution to this
integral equation we approximate co'(1&) by a quadratic
expression (later justified by Fig. 9)

co'(li, x)—( —U(x)+ I M/M'"'i(x)]li2) Ep.. (56)

This is the effective-mass approximation, in which both
U and the effective mass M* are density-dependent
parameters. Upon substituting the approximation (56)
into the expression (33) for e, one obtains

c(1,Q)=e(l, Q) = I7—(M/M~)P —L(M/M*) —1jQ', (57)

where the ratio M/M" is greater than 1 for nuclear
matter. From (57) we see that the effective mass

approximation is equivalent to the approximation
(14b) of Sec. II.

Use of (57) in either of the expressions (43) or (54)
makes it possible to perform the integration (1'7)
(numerically) for any given choice of U and M*. Trial
values of these parameters can be chosen and used to
evaluate 2 j~( ). Then Ao'~) and 312' & can be substi-
tuted into Eq. (15) for &u'(l&, x) and new values of I/ and
jf* can be determined for a recalculation of AI2& &.

This iteration procedure is, in fact, rapidly convergent
and it results in the one-pair approximation to ~ (li,g).
That the two-pair terms give only small corrections to
the one-pair term is shown in Sec. VII. The effective
mass parameters used for the studies of the function
T» discussed below are given in Table II. They were
obtained by using the above described iteration
procedure (see Fig. 9).

Figures 4 through 8 represent numerical computations
of the S-wave part of the function T» as given by Eq.
(41) and either Eq. (43) or (54). In each case the
approximation (57) was used in Ti2(l, Q), which was
then plotted as a function of 1=k/k~, The figures show
how Ti2 depends on Q, x, a, character of nuclear
attraction, and strength of nuclear attraction. We
discuss below each of these cases separately, noting
first that positive values of F12 correspond to an

7.0

6.0

5.0

T, (gQ)
KO

I,O

-1.0

"2.0
0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O

g k]
N

FIG. 5. x dependence of the S-wave part of the function T12(l,Q}
for Q=O.S. The effective-mass parameters used were those of
Table II, and the interaction used was the square-well model of
Sec. IV with the a=0.4 F parameters of Table I. The singularity
at e=v'occurs for g=0,8 at l=1.038.
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attractive eRect, whereas negative values correspond
to a repulsive eRect.

Q Dependence

In Fig. 4 the Q dependence of the S-wave part of
T~~(l,Q) is plotted using Eq. (43) together with the
g=0.4F parameters from Table I and the eRective
mass parameters for x=1.0 from Table II. It is seen
that increasing values of Q correspond to a greater
attractive effect. In the literature the center-of-mass
effect is often eliminated, for convenience, by setting
Q=0.0 in calculations. It is seen that this choice
greatly underestimates the attraction, and that if any
average Q value is to be selected, then it should be

Q—0.75. Actually, the Q integration limits in Eqs. (17)
and (18) show that there is no "best" average Q value
which can be selected, independent of /~ and /, for
nuclear matter calculations.

x Deyendence

In Fig. 5, the x dependence of the S-wave part of
Tr. (l,0.5) is plotted using Eq. (43) together with the
a=0.4 F parameters from Table I. It is seen that Ty2

decreases rapidly with increasing density, i.e., with

x, as it should if the saturation of nuclear matter is to
be explained. The eRect shown by these curves is due
entirely to the variation of the quasi-particle energy-
momentum relation, i.e., of the eRective-mass param-
eters, with density. The eRect is not great enough,
however, to give saturation at x—1.0, and the reason
for this will be explained in connection with Fig. 10.

a Dependence

In Fig. 6, curves are plotted which show the variation
of the 5-wave part of Tt~(l, 0.5) with the diameter of

9.0

e.o—

70—

6.0

5.0

4.0

5.0

2.0

I.O

-I.O

"2.0

-'5.0
0

I I I I

Q. I 0.2 0.5 0.4 0.5 0,6 0.7 O.e 0.9 I.O

/„-k]k

I'IG. 7. Effect of the type of nuclear attraction on the S-wave
part of the function T» (I,Q) for x=1.0 and Q=O. 5. The efiective-
mass parameters used were those of Table II, and the interaction
parameters used were those corresponding to a=0.4 F in Table I.

the nuclear repulsive core. It is to be emphasized that
the square-well parameters used to obtain these curves
all produce at least fair agreement with the experimental
S-wave phase shifts, as has previously been discussed.
Therefore, we may conclude from these curves that the
properties of nuclear matter, and in particular, the
saturation density, are very sensitive to the diameter
of the nuclear repulsive core.

We note here that the reason why the a= 0.4 F curve
looks different from the other two curves is because the
latter curves correspond to a triplet scattering length
a3=5.61 F. The triplet parameters corresponding to
83 5.38 F are 6= 2.05 F and Uo= 0.8465 F for a= 0.0
and b=1.87 F and U0=1.195 F ' for a=0.2 F. Using
these parameters one obtains poorer agreement with the
triplet S-wave phase shifts above E~,b= 100 MeV than
with the parameters of Table I, but the curves of Fig. 6
become uniformly spaced.

T, (4,Q)

6.0—
Deyendence uyon the Character of the

Nuclear Attraction

5.0—

4.0—

KO—

I.O .

0 I I

0 O.I O,R 0,5 0.4 0.5 0,6 0.? 0.8 0.9 I.O

Fxo. 6. u dependence of the S-wave part of the function T~2(l,Q)
for g=1.0 and Q=O.S. The effective-mass parameters used were
those of Table II, and the interaction used was the square-well
model of Sec. IV with the parameters of Table I.

The curves of Fig. 7 show how Tt2(l, 0.5) varies (for
a=0.4 F) when calculated using a separable attraction
instead of a square-weH potential. The variation is seen
to be very small, and, in fact, is no greater than the
corresponding variation in the fits to the phase shift
curves of Fig. 1. Thus, the hypothesis made at the
beginning of Sec. V that the properties of nuclear matter
are not very sensitive to the character of any two-
nucleon interaction which is fitted to experimental phase
shifts has been verified in a particular case. We shall
cite this result at the end of the section as evidence for
the fact that the tensor character of the nuclear force
is not essential to an understanding of nuclear
satur8, 'tlon.
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6.0

5.0

4,0

3.0

2.0

I.O

"2,0

-3.0 —
g /
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I
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Fio. 8. Curves of T, (I Q) and T&(I Q) for x=1.0 and Q= 0 5. The
effective-mass parameters used were those of Table II, and the
interaction used was the square well model of Sec. IV with the
a=0.4F parameters of Table I. The sum of these two curves
appears in Figs. 5, 6, and 7. The dashed curve is the "continuum"
part of Tg.

Dependence upon the Strength of the
Nuclear Attraction

The singlet and triplet 5-wave nuclear interactions
are almost the same strength, and therefore one might
expect to gain insight into the dependence of Tis(l, Q)
on the strength of attraction by plotting T, and T&, Eq.
(43), separately. At first sight one would not expect the
great variation shown by the curves in Fig. 8. Clearly,
the triplet contribution to 7» greatly dominates over
the singlet contribution for /(0. 8. The reason for this
great variation can be partly attributed to the bound-
state term T»(l,Q), which as pointed out below Eq. (38)
is the same order of magnitude as Ts(l,Q), Fig. 2. In
fact, when the bound-state contribution is not included
(dashed line in Fig. 8), Ti has a behavior similar to
that of T,.

If one refers to Eq. (32) for To(l,Q), one sees that
To(I,Q) can, in general, be expected to be a nega-
tive quantity for l values less than the maximum
ls values of P(i~At'&jls) costs(ls)7'. Unless these maxi-
mum /p values occur where lp«x, then one way expect
that Tc(l,Q) will never become positive. Thus, we can
understand the diGerence in Fig. 8 between T, and the
dashed line curve for the continuum part of T&, because
the singlet interaction is closer to a zero-energy reso-
nance than the triplet interaction )see also comment
following Eq. (40)7.

If the maximum lo values of L(tI~ At~&
~
lp) costi, (ls)7'

occur in the region lpP)x, then one can expect that the
contribution of the 1th partial waves to Tis(l, Q), Ect.
(41), will be small and negative. We thus conclude that
besides the I= 0 terms there is probably only one other

-0.4

-o.e—

-12—

-2.0—

-2,4—

-2.8—

302

-3.6—

-40 — x = 1.2

44-

-4.8
0

I I I I I

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
k

Fjo. 9. The O(gl) part of the quasi-particle potential energy 6
as a function of lI'= ki/kp for various values of x=kp/kA
(k~ ——1.48 F '). The dashed lines are the effective-mass approxi-
mations to the curves (fitted at li'=.0.0 and l1'=1.0). The inter-
action used was the square-well model of Sec. III with the a =0.4 F
parameters of Table I.

set of terms in T&s(l,Q) which it is essential to include,
namely, the D-wave contributions which we expect to
be large and negative.

We now define a quantity 6 "&(lr,x):
6"&(li,x)=)Ast &(li,x)+A, st &(lr, x)7Zp.

—(—U (x)+L(3I/M*(x)) —17lis}E&. (58)

According to Eq. (15), Dti&(lr, x) is the O(gi) part of the
quasi-particle potential energy. It has been numerically
computed using Eqs. (17), (22), (41), (43), and (57)
together with the effective mass parameters of Table II,
and the a=0.4 F square well parameters of Table I.
The results are plotted in Fig. 9. Also included as
dashed lines are the effective mass approximations to
these curves, using the same parameters from Table II.
It is clear from Fig. 9 that the quasi-particle energies are
strongly density dependent, as they must be. The
effective mass approximation is also seen to be fairly
good for ki (k p. For ki) k p, the approximation is bad,
and the curves depart markedly from a quadratic fit.
The Qattened portions of the curves for ki (2k' reRect
the influence of the bound-state contributions and show
that quasi-particles have a great preference for low-
momentum states in nuclear matter. The reason for this
has been discussed below Eq. (35).

Vfe next use the results represented by Fig. 9 to
calculate the 0(gi) contribution to the thermodynamic
potential and the ground-state energy per particle. The
thermodynamic potential is given by Eq. (4), which
can be written in terms of the effective-mass parameters
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of Eq. (56) as

g
&"'—[—U+ (M/M') x']L'r, . (59)

Similarly, according to Eqs. (19), (15), and (56), the
O(gr) part of the ground-state energy can be written in
terms of the effective-mass parameters as

(&}"'/(N)=L——,'&+—,', (1+M/M")p"]Zv. (60)

I Note that the leading contribution to the rearrange-
ment energy of Eq. (15) is 0(grp). j By plotting the
effective mass parameters of Table II as a function of x
and extrapolating the resulting curves, one can obtain
the values of these parameters necessary to calculate
g'" and (8)"&/(cV) over a wide range of densities. The
results are shown in Fig. 10 as a function of x '= d/d~,
where d is the average internucleon spacing in nuclear
matter.

-20—

-2B—

"32—

-36—

"40—

p= )

2(3m') 'k~' ——d~—' d~ 1.66 F——.
(61)

From the definition of the thermodynamic potential
as g= (E)/(&V)+p 'tP —T(S)/(W) and the fact that the
pressure at T'=0 is given by

-52—

-56—
tp= —~((~)/(»'))/~(1/p), (62)

it is clear that the curve for the thermodynamic
potential should pass through the minimum of the
energy curve. The curves of Fig. 10 come as close to
satisfying this condition as one could expect from the
accuracy of the calculation which has been made.

A more serious question with respect to the curves of
Fig. 10 is why the minimum of the energy curve occurs
at x '=0.75 instead of at x=1.0, and why the computed
binding energies are so much greater than 15.8 MeV,
which is the value obtained for nuclear matter from the
semiempirical mass formula. The discrepancy cannot
be attributed to higher order terms, because, as the
estimates of the next section show, the O(gt') contri-
butions to (E)/(E) are much smaller than the O(gt)
term which we have calculated. Considerable insight
into the reason why the curves of Fig. 10 are not in
agreement with experiment can be obtained by sub-
tracting away the I', D, and F contributions to Tp(l),
thereby using curve A of Fig. 2 instead of curve B.
The result (which has not been done self-consistently)
is represented by the dashed line in Fig. 10. This curve
shows that it is the higher angular momentum contri-
butions (mainly D wave) to Tp which have led to the
large energy values in the curves of Fig. 10. Moreover,
it is the D-wave contribution to 10 which is responsible
for the shift of the energy minimum from x '—1.0 to
x '—0.75.

From the preceding paragraph we may infer that the
properties of nuclear matter are largely determined by
only the S-wave part of the nuclear interaction, and
that this is the reason why so many of the purely
S-wave calculations which have been reported in the

-60
0.6

I I I I

0.7 O.B 0.9 1.0 1, 1

X
I =-I

N

I I

1.2 1.3 l.4

I' IG. 10.The 0 (g&) contribution to the thermodynamic potential
and the energy per particie as a function of x "=d/d& (drr= 1.66 I'l
when T0 and the S-wave contribution to T12 are included, The
dashed line is the O(g&) part of the energy per particle when only
the 5-wave parts of both T0 and T» are included.

literature have resulted in approximate agreement, of
theoretical calculation with the experimental numbers
for nuclear matter. "Ke must ask then how it occurs
quantitatively that the D-wave contribution to the
binding energy is small. The answer lies with the higher
angular momentum contributions to Tr p, Eq. (41),
which we have not calculated in this paper. In particu-
lar, one can expect to calculate a large repulsive D-wave
contribution to T», as we have already noted in
connection with Fig. 8. The total D-wave contribution
to (Tp+Trp) will then be small, as will be all other
higher angular momentum contributions.

Ke finally discuss the tensor character of the nuclear
force. That the argument given in connection with Fig.
8, for the contribution of D-wave terms to T~~, con-
tinues to be valid for tensor forces can be demonstrated
by showing that the most general form of the continuum
part of Trs(l, g) is the same as To(l,g), Eq. (32).
Therefore, the tensor character of the nuclear force,
although important in a discussion of nuclear forces, is
probably not important to an understanding of the
properties of nuclear matter (see also Fig. 7).

'3 In this connection, see S. A. Moszkowski and B.I.. Scott, Ann.
Phys. (New York) 11, 65 (1960).
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VII. ESTIMATES OF THE SECOND-ORDER TERMS

In the notation of Eqs. (8) and (10) the terms which
are second order in gi(kik2I kpk4), and which contribute
to the quasi-particle potential energy D(k), are T241",
T5"', and T6('). These terms require a complete
knowledge of the function gI, whereas the calculations
of To"& and T~2&" only require the diagonal elements

gi (kik2 I
kik2). We write the off-diagonal matrix elements

of g~ as follows:

g, (k,k, lk, k4) =/I~p~(k, +k2 —k,—k4)L(2qr)'/07'

Xg1 (ki.K12
I k24), (63)

where from Eqs. (III.10) and (III.13)

1 f 1
gi(k»Ki.

I
k24) = f1(k»

I
k24)+2 f2(k»

I
ko

I
k24)

/|;0 h112 h)p khII. +h/2 W12 hIp

(64)

with K12 ki+k2. For the case of a spin-dependent interaction, but in the absence of tensor forces, one can extract
the spin factors from gi by generalizing Eqs. (III.11).One then obtains the expression

gi(k12K12I k24) = (2qr)
—2(k2/M) Q (2L+1)PJ.(k12 k24)k„—'{L/I„, ,8„,„,—(—1)~/i„,„,/I', ,7

L=O

where

X [~qi qa/Iq q4+ ( ) /I qiq4/Iqqq37gS (k12K12
I
k24) +pm~m4/Imqm4+ ( 1) /Imzm412mqm47

Xpq&qlI1qqq4 ( 1)'/I'q, q4~q9q37gs (k12K12lk24)}, (65)

gs (k,2K„lk,4)=(k,4IAs 'lk„) cos'mrs(k12)12qr —'(12'/M)k„dkp(k12IAs Ikp)(k24IAs' Ikp) cos his(kp)

1 ~ /' 1
+(k'/M)k24 ' P (k»'+P')(k24'+Pq)g, zs(k»)gqzs(k24)

h112 h10~ ~heal +hI2 lF12 hIo

1 1

In analogy with the derivation of Eq. (43), one can derive an explicit expression for gs' & using the square-well-
repulsive-core model. The final expression (again including a hard-core correction term) is, in dimensionless units,

gsIP&(1Qlk)=(k'+p)(/' —k') '{(/'+p)Dk '(P —F ') ' sinkA cos/A —(O' —F ) 'sin/A coskA7
+/42(k2 —F ') 'Lsin/B coskB lk ' sinkB co—s/B7}+/42(k2 —F ') '[jan cos'F (B—A) —p7 '
X {E1(/,2p'")I F, cosF', (B—A) coskB—ck ' sinkB sinF, (B—A)7+k—'F (P F') '(k2+ p)—sinkA

X((P+p) sin/A cosF, (B—A) sinF, (B—A)+/F, coslB cosF, (B—A) —p sinlB sinF', (B—A)7}
k

—lp1/2I /42 cos2F (B A) p7
—1E (k apl/2)$1(/ 2pl/2)e(p), (67)

where 1=k/q 'k12, k = k/q 'k24, Q = 2k/q 'K», and p is given by Eq. (33).We next substitute Eqs. (63) and (65) into
the expressions for T24, Tp, and Tp, Eqs. (9) and (11).Keeping only the 5-wave contribution we obtain:

2.5

T (/,I=»(» ' /'d/o{I go"'(/el/o)7'+I g "'(/QI/o)7'}{(M*/M)P(/o' —/') ' —P(/o'+ ) '

Tp(/Q) —24(qr/) '(M*/M) lppd/p{l gp'p&(/QllII)72+I gi&'&(/Ql/p)7'}P(P —/p2)
—'

+6(qr/Q) '(M*/M) /od/oLx2 —(lo—Q)27{Lgo~ (/Ql/p)7'+I gi& (/Qllp)7 }P(P—/p) 1 if Q(x

=6(-/e)- (M*/M) /od/. L"-(/.-e) 7{Le'&(/el/o)7'+Lg. &"(/el/. )7'}P(/-/o')- if e»,

Tp(/, Q)=-»/~ '(M*/M) d/p{l gp"'(/pe I/) 7+I gi"'(/pe I/)7'»(/p' —/') '

+3/qr —'(M*/M)Q '

=—0 if Q) x.

{z2 g2~)

lp 'd/p(x' —Q' —/p'){Lgo"'(/pel/)7'+Lgi"'(/pel/)7'}P(/p' —P) ' if Q(x
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We have arbitrarily selected a cutoff at l0=2.5 in the
expression for T64(/, Q), because according to Fig. 9 the
quasi-particle potential energy rapidly approaches zero
at high momenta. Thus, at lo 2.5 we expect that
~'—co, and the two energy denominators in the expres-
sion for Ts4(/, Q) cancel when &u'=re. The computed
expression for T34 should not be very sensitive to the
choice of the lo integration cuto6. It is also expected
that the use of the effective mass approximation for co'

in the region x(lo(2.5 should not seriously impair the
accuracy of the computed expression for T34. In
Ts(/, Q) one must remember to replace l by /6 in the
expression for 6, Eqs. (33) or (57).

We have not carried out the full calculation of T34,
T5, and T6. Instead we have made estimates which are
believed to be reliable to within a factor of 2. These
estimates show that T34, T5, and T6 are each an order
of magnitude smaller that (Te+Trs). Moreover, the
total second-order contribution to the quasi-particle
potential energy is estimated to be &10% of the
first-order terms. On the basis of these estimates we
conclude that the convergence of expansions in powers
of gr(k&/:&lk&k4) for the physical quantities of nuclear
matter is probably rapid.
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VIII. PERTURBATION THEORY IN NUCLEAR
MATTER
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In this section we investigate the extent to which the
results which we have calculated in Sec. VI can be
understood by a perturbation theoretic treatment.
Of course, one can not expect to understand the role of
the repulsive core by using perturbation theory, unless
one makes use of approximations such as in the pseudo-
potential method. "We therefore consider the case of
no hard sphere (see Fig. 6). When a=0.0, the expres-
sion (43) for T, (1,Q) or T, (1,Q) in the case of a square-
well attraction becomes

-', T, , (1,Q)
= —sin286 (/)+Iu'/ '(P+ 6) (P—Y ') '(/8 ——,

' sin2/8)

+ 214'(P Y') '[/4' CO—S'Y,B—6] %4 (/, 66'")

X [Y, cosY,B cos/8 —6/ ' sin/8 sin Y,B]
2/ V [l4 cos Y 8 6] [/t(l ze )]0(6), (69)

where from Eq. (28) we have

sin25p(/) = —2[l4' cos'Y'8+P] 'Xt(/, /)&s(/), (70)

Fto. 11.Curves of sin26&(l) and —,'T.(l,Q) for Q=0.5, the x=1.0
effective-mass parameters of Table II, and the square-well model
of Sec. IV with the a=0.0 singlet parameters of Table I. The
dashed lines give the Born approximation to these curves.

and

Xt(/, /6) = (Ys' P) 'l4'[Ys —cosY68 sinlB
—/ cos/8 sin YOB], (71)

Xs(/) = Y cos Y'8 coslB+/ sinlB sin YB.

Ke wish to compare the values of the expressions
(69) and (70), using the a=0.0 parameters of Table I,
with their leading terms in a perturbation expansion.
We consider here only the case of the singlet nuclear
interaction, because then we can be sure that the
complication of the bound-state effect discussed in
connection with Fig. 8 is not present. An expansion in
powers of ps= k~ 'Us gives for T., and sin28, (/)

—'T, (] Q) =It44/
—'(/8 —-' sjn2/8)[(P+6) '+s/ —'(s+cos'/8)] ——'l4'/ '8 sin'/8+2l4 (2+6) '

[sin (—6) 8 coslB —(—6) l cos (—6) 8 sin/8]
X X[Sin(—4)'t 8 Sin/8+l( 6) ' s COS( —6)'—l'8 COS/8] (if e 0)~+O(l4') (72)

'.[sinhe'"8 coslB 6"'/ ' coshe"'8—sinlB] exp( —6"'8)[sin/8+le '" coslB] (if 6)0) I

sin28o(/) =l4'/ '[lB——', sin2/8]+0(144)
(2~) 'l(ll v'6 I/)+O(l44).

(73)

The expression (72) can be calculated directly by making a perturbation expansion of the operator form of T, (k&,k,).
'4 K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957}.
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From Eqs. (9), (III.11), and (III.76), the general expression for T, (kr, ks) is

Sx&M 0
T, (kt, k2) =

1 1
kryo

—Q krks V P — —P - — V krks
@s (2~) s c2 (v t+~s II'&—l (et'+(os' —IF»

(
kskl V P

~

—Pl, , v kIks ~ (74)
cot+(vs —II&'&1 krog'+(us' —H"'

After replacing the two-nucleon Hamiltonian FX(2) by
the kinetic-energy operator IJO&" in the energy de-
nominators, and using the interaction (23) with a=0.0,
one can derive (72) from (74). Similarly, Eq. (73) is

nothing more than the first Born approximation to the
reaction matrix, as has been indicated in the second
line of (73).

In Fig. 11 we have drawn curves of —'T, (l,Q) for
Q=0.5 and @=1.0 using Eq. (69) and the leading
perturbation term (72). We have also included the
corresponding curves for sin28s(l). It is seen that the
Born approximation to these curves is excellent for
/8= (3.69)l))1, which is the criterion for its validity.
An extremely interesting aspect of these curves is the
Born approximation to sin23e(l), which is often cited
as the leading eRect due to the nuclear attraction in
calculations of nuclear matter. "It is seen that the first
Born approximation (73) is fairly close to being equal to

"H. A. Bethe, Phys. Rev. 103, 1353 (1956). See also reference
11.

the sum Lsin23s(l)+'sT, (l,Q)] which appears in the
preseni. theory. Thus, we are able to understand this
well-known result in the present connotation. A similar
result holds for the triplet interaction.

XVe finally observe that the triplet-state nuclear
interaction includes a strong tensor force, whose
contribution to the properties of nuclear matter cannot
be simply understood by using first Born approximation
(which gives zero for a tensor force). However, the
combination Lsin28s(l)+-sT, (l,Q) j, which gives the
0(g&) 5-wave contribution to the properties of nuclear
mat. ter, continues to be physically significant when
there are tensor forces. The detailed study of the role
of tensor forces in nuclear matter is left for a subsequent

investigation.
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