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Moment Singularity Expansion for the Density of States~
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A systematic approximation procedure is developed to determine the density of states associated with a
particular energy band. The density of states is expressed as the sum of two functions, one of which contains
the discontinuous derivatives produced by critical points, and is determined once the effective masses at
these points are known; the other is smooth, and is expanded in Jacobi polynomials. The coefficients in this
expansion are determined from the moments of the distribution. Two applications of the method are given.

'HE calculation of the density of states has been
a central problem in the theory of lattice vibra-

tions, and in energy band theory for many years. As a
result of the work of Van Hove' and Phillips" the
fundamental analytic properties of the density of states
(DS)—in particular, the nature of the singularities —are
well understood. It remains a formidable problem to
compute this function accurately for a particular
system.

One approach to the determination of the DS is that
of numerical sampling: The energy (or frequency) is
numerically evaluated at a sufficiently large number of
points in the Brillouin zone to allow an estimate of the
portion of the volume of the zone in which the states
have energies in a certain range. There are two principal
disadvantages to this procedure: first, the method is

quite laborious, since a large number of points must be
considered; and second, the DS itself is not obtained,
instead an average of the DS over some finite energy
range is determined. The latter difhculty is a serious
one, since the function is known to have singularities at
which the first derivative has an infinite discontinuity.
A second, frequently used procedure is the method of
moments, which was erst introduced by Montroll. 4 ' In
this method, one expands the DS in terms of some con-
venient set of polynomials. The coefficients are deter-
mined from the moments of the DS, which can usually
be computed independently. One still has the difficulty
in this method that any approximating polynomial will

have derivatives of all orders, and hence the required
behavior at critical points will not be reproduced.
Further, the existence of singular derivatives in the DS
implies that the moment expansion will converge rather
slowly.

A method of alleviating this difhculty of the moment
expansion was proposed by Lax and Lebowitz. ' The
density of states, Ã(E), is expressed a,s the sum of two
functions, G(E) and H(E), where G(E) is a specified
function with the discontinuous derivatives produced
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by critical points in the E(k) relation. The parameters
of this function can be determined from the effective
masses at critical points. The function H(E) is smooth,
and can easily be approximated by a polynomial. In
this paper, the work of Lax and Lebowitz has been
extended in several respects; particularly in regard to
the choice of the singular function, and in the selection
of the set of polynomials in which H(E) is expanded.
Jacobi polynomials, rather than Legendre polynomials,
have been chosen because of the particular orthogonality
properties of these functions. In addition, Lax and
Lebowitz applied their approach only to the distribution
function of the vibration frequencies of a two-dimen-
sional square lattice. Applications to three-dimensional
systems are considered here.

First, we review the analytic properties of the DS.
The DS is defined so that E(E)dE is the number of
states per unit volume with energies between I'. and
F+dE. It may be expressed as

2.V(E) =————

8m' dE

1 dS~
d'k =

I:(k)=P k"(E„,+ P ,E,x,( ye)]

in which X&(0,@) is a "Kubic harmonic" belonging to
the completely symmetric representation. ~ It is a linear
combination of spherical harmonics of lth order. To
compute X(E) in this case, it is convenient to use, in-

' F.C. von der Lage and H. A. Bethe, Phys. Rev. 71, 612 (1957').

in which the first integral includes all k space enclosed by
a surface of constant energy E&, and the integral in the
second expression covers a surface of constant energy.
For simplicity, we consider bands which have only
analytic critical points (in the sense of Uan Hove' and
Phillips" ). (An analytic critical point is a point in k space
where the gradient of the energy vanishes, and an ex-
pansion of the energy in powers of k is possible. ) "S"
bands in cubic lattices are examples of such bands.

Consider the energy near a minimum of the band. The
energy then possesses an expansion in powers of the
wave vector which, in the case of a cubic lattice, may
be written as
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stead of Eq. (1), the equivalent expression'.

12~ dE
k'(E, 8,$) sin8d8/f4'

np ——1/2rr'Es" ',

ni —— 5E4/A'—Fp"',

ns — (7/'4rr'Et"—')$Ep (9/4Ep) (F—4 +E4 4 )$.

(5)

The series presumably converges for energies less
than that of the first saddle point. An analysis similar
to that leading to Eq. (4) can also be made near a
maximum. The result is formally similar to (4), except
that the independent variable is E E(where E„—is
the energy of the maximum), rather than E Ep. —

The behavior of the DS near a saddle point of the
band structure has been analyzed previously. ' ' The
simplest discussion seems to be that of Wannier. ' If
E, is the energy of the saddle point, the DS contains a
term of the form (E E)'/' or (E—E)"' The de—riva-
tive of the DS has an infinite discontinuity for E=E,.
The singular term is superimposed on a smooth back-
ground function. There are two types of saddle points.
In one case we have

E(k) —E,=nkis+8kps —ykps+O(k4),

in which n, p, y are positive, and ki, kp, and kp are
measured along the principal axes. The part of ft'f(E)
which has the singular derivatives is

(E E)1/2/4~2(nP~)1/2 for E(F
(7)

0 for E&E,.
Similarily, if

E(lt) E n k12 p k22 p kp2

the singular part is

0 for E&E„
(9)—(E—E,)'/'/4pr'(n'P'y')"' for E&E,.

Except for the singular parts just described, the
density of states is a smooth function of energy. Let

J. de Launay, in Sold State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1956),Vol. 2, p. 219.' G. H. Wannier, Elements of Solid State Theory (Cambridge
University Press, ¹wYork, 1959), p. 70.

Equation (2) can be solved by iteration to give k' as a
function of energy and angle. The integration over solid
angle can be accomplished using the orthonormality
relations for the Kubic harmonics. The DS can then
be written formally as

N(E) = (E—Ep) i/' Q n (E Ep) "—. (4)

The DS can evidently be expressed as a series in odd
half integral powers of the energy. The coe%cients u
are fairly complicated combinations of the E2„and
E2„,& so that usually it is practical to compute only a
few of them. The Grst three are given below:

E and Ep be the energies of states at the top and
bottom of the band. It is convenient to de6ne a new
variable s by

s'= (E—Ep)/(E —Ep). (10)

We write n(s) to designate the DS with the energy
variable replaced by s according to (10). The function
n(s) is expressed as

n(s) =g(s)+h(s),

in which g(z) is a function with singular derivatives as
previously described, and which will be specified below;
and h(s) is a smooth function with vanishing first
derivatives at the top and bottom of the band.

For simplicity, we consider a simple band with one
maximum, one minimum (both assumed to be spheri-
cal), and X saddle points of each kind. The generaliza-
tion to more complicated bands is straightforward. Let
the saddle points of the type specified by Eq. (6) occur
for s=si and those specified by (8) for s=ss. We denote
by E2' the reciprocal effective mass at the top of the
band. A suitable choice for g(z) is as follows:

(E E„)1/2-s(1 s2)3/2 ss(1 s2)1/P

g(s) = +
E 3/2 (E ')P/P

Dt s~'—
I
(sr'-s')'"~(»-s)

2(nPy)'/P s s

BT, (1—s') '/'
(s' s') "n(s—sp), (1—2)

2(n'P'7')'" (1—sp')'"

h(s) =s'(1—s') P/'h'(s) . (13)

The function h'(s) which is defined by (13) is of order
unity at s=0 and a= 1. It is to be expanded in a set of
orthogonal polynomials. The choice of polynomials for
the expansion is determined by two requirements: The
polynomials must be orthogonal with respect to a
weight function consistent with (13); and second, it
must be possible to evaluate integrals containing the
DS and a polynomial independently of the expression
(11) for n(s).

A particular set of Jacobi polynomials possess the
required properties. The function h'(s) is expressed a,s

h'(s) =Q,-, c„P„'&'(1—2s'), (14)

where g is the unit step function, which has the property
that

r/(x) =0 for x(0,
r/(x)=1 for x)0.

The function g(s) has been constructed to have the
characteristic behavior of the DS at each critical point.
The complete DS, n(s), differs from g(s) by terms of the
order s' near s=0, and by terms of order (1—s')"'
near a=1. It is desirable to include this property ex-
plicitly in the expression for h(s). To do this we write
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If the index m is odd, only odd powers of s are present
U (s). The expansion. is the following:

22(s) = (1—s')'" Q b.U„(s).
u odd

(30)

1

b ——
X 0

22(s)U (s)ds. (31)

The b„may be expressed in terms os of the moments. A
TchebicheH polynomial is expressed in powers of s:

U (s) P d (n)s22'+1 (32)

The coeNcients d, '"' are given by

22+2/+1
d n —2j+I( 1.) (n—1—22)/2

2

22-2j-1 y
- —'

&& (2 +»!
I (33)

2

Equation (22) enables us to express b„as

b-= (2/~)Z d'")L~./%- —&o)"'] (34)

The multiplying function (1—s—s' "' ensures that the
DS has the proper behavior at the top ofof the band, the
restriction o ot dd ~owers of s insures the same thing at
the bottom of the band. The effects of sadd e poin s
are not explicitly included. The coeKcients are
found to be
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TA&IE II. CoefIIcients of TchebicheG polynomials appearing in
the expansion of the density of states for the energy speci6ed by
Eq. (26). Only polynomials with n odd appear in the expansion;
the coeKcients of alternate odd polynomials (rz=3, 7, 11, 15,
19, etc. ) vanish.

2.0

b

0.21220659
—0.07073553

0.02357851

13
17
21

—0.0008733
—0.009024

0.010770

0-

FxG. 2. Density of states for the energy band of the Mathieu
problem, obtained from Eq. (11}including the first five Jacobi
polynomials.

If the moments 3E, can be calculated, one has in

principle a solution to the problem of calculating the
DS. For the reasons discussed in the beginning of the

paper, one does not expect to obtain as good a repre-
sentation of the DS with a small number of Tchebicheff
polynomials as is possible with an appropriate singular
function and a small number of Jacobi polynomials.
Nevertheless, this procedure may be useful, particularly
in cases in which it is not feasible to locate all the
critical points of the DS,

The procedure of expansion in Tchebicheff poly-
nomials has been applied to the simple band of Eq. (26).
The first six coeScients are listed in Table II, and the
DS which is computed from them is shown in Fig. ]..
Although one more polynomial is present here than in
the previous case, the fit to the exact density of states
is noticeably poorer. The gain in accuracy resulting
from inclusion of an appropriate singular function is

quite evident.
As a second example of the application of the moment

singularity method, the DS has been computed for the
lowest energy band which is the solution of the Schrod-
inger equation for the potential

expansion is that of retaining sufficient numerical
accuracy in the calculations of the moments to obtain
significant results for the coeKcients c„.There is a very
substantial amount of cancellation in the computation
of the c„:seven-figure accuracy io the moments yields
only two significant figures in the determination of cs
for the first problem discussed. The problem of numerical
accuracy was noticed by Montroll in his original work
on the method of moments, ' and appears to be common
to all moment expansions for the DS.
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APPENDIX

In this Appendix, we give expressions for the moments
of the singular function, M„' which are defined in

Eq. (24) of the text. The singular function g(s) is given
in Eq. (12). The results are

(E Es)&/z
cV„'= DE) '/'8 (n)+(E ') '/zd (n)

27r2

—-'X(nPy) '"dz(n) ——,'K(rr'P'y') '"84(n)$. (A1)

The integrals di, etc. , are given by

V= 2 VsLcos(2zra/a)+ cos(2zry/a)+cos(2zrs/a) g. (35) &,(n) = s»+&(] —sz) z/&ds

This is the Mathieu problem, which has previously been
discussed by Slater. "The details of the band calculation
in this problem will be discussed elsewhere. For the
purpose of computing the moments, the energy was

expressed as a Fourier series, and the coefficients of the
first eleven terms were found. The numerical accuracy
of the band calculation is sufficient for the effective
masses to be determined by differentiation of the series.
In Fig. 2, the DS is shown for the case (nza'Vs/2zr'fz')

=0.1. The first five Jacobi polynomials were included

in the calculation.
The principal problem which is encountered in the

actual calculation of the DS by the moment singularity

"J,C. Slater, Phys, Rev. 87, 807 (1952}.

3zr 1X3X5X X (2n+1)
(A2)

2 2X&X6X . X(2n+6)

yz (n) — sz n+4 (1 s2)1/2/fs—
2n+3

8r(n), (A3)

dz(n)=s, ' szn+4(s 2 s2)1/2a/s —~ 2n+sy (n)

n

= (1—s ') "+'"& (—1)" ~ (&) (A5)
I"=0 k

1

g (n) —(] s 2) 3/z szn+1(] s2)z/2(s2 s 2)1/zds


