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A systematic approximation procedure is developed to determine the density of states associated with a
particular energy band. The density of states is expressed as the sum of two functions, one of which contains
the discontinuous derivatives produced by critical points, and is determined once the effective masses at
these points are known; the other is smooth, and is expanded in Jacobi polynomials. The coefficients in this
expansion are determined from the moments of the distribution. Two applications of the method are given.

HE calculation of the density of states has been

a central problem in the theory of lattice vibra-

tions, and in energy band theory for many years. As a

result of the work of Van Hove! and Phillips?? the

fundamental analytic properties of the density of states

(DS)—in particular, the nature of the singularities—are

well understood. It remains a formidable problem to

compute this function accurately for a particular
system.

One approach to the determination of the DS is that
of numerical sampling: The energy (or frequency) is
numerically evaluated at a sufficiently large number of
points in the Brillouin zone to allow an estimate of the
portion of the volume of the zone in which the states
have energies in a certain range. There are two principal
disadvantages to this procedure: first, the method is
quite laborious, since a large number of points must be
considered; and second, the DS itself is not obtained,
instead an average of the DS over some finite energy
range is determined. The latter difficulty is a serious
one, since the function is known to have singularities at
which the first derivative has an infinite discontinuity.
A second, frequently used procedure is the method of
moments, which was first introduced by Montroll.#5 In
this method, one expands the DS in terms of some con-
venient set of polynomials. The coefficients are deter-
mined from the moments of the DS, which can usually
be computed independently. One still has the difficulty
in this method that any approximating polynomial will
have derivatives of all orders, and hence the required
behavior at critical points will not be reproduced.
Further, the existence of singular derivatives in the DS
implies that the moment expansion will converge rather
slowly.

A method of alleviating this difficulty of the moment
expansion was proposed by Lax and Lebowitz. The
density of states, N(E), is expressed as the sum of two
functions, G(E) and H(E), where G(E) is a specified
function with the discontinuous derivatives produced
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by critical points in the E(k) relation. The parameters
of this function can be determined from the effective
masses at critical points. The function H(E) is smooth,
and can easily be approximated by a polynomial. In
this paper, the work of Lax and Lebowitz has been
extended in several respects; particularly in regard to
the choice of the singular function, and in the selection
of the set of polynomials in which H(E) is expanded.
Jacobi polynomials, rather than Legendre polynomials,
have been chosen because of the particular orthogonality
properties of these functions. In addition, Lax and
Lebowitz applied their approach only to the distribution
function of the vibration frequencies of a two-dimen-
sional square lattice. Applications to three-dimensional
systems are considered here.

First, we review the analytic properties of the DS.
The DS is defined so that N(E)dE is the number of
states per unit volume with energies between £ and
E+dE. It may be expressed as

1 dSe
= [——

2 d
N(E)y=—— [ &k
473 ) | ViE]

8ré dE

in which the first integral includes all k space enclosed by
a surface of constant energy E, and the integral in the
second expression covers a surface of constant energy.
For simplicity, we consider bands which have only
analytic critical points (in the sense of Van Hove! and
Phillips?). (An analytic critical point is a point in k space
where the gradient of the energy vanishes, and an ex-
pansion of the energy in powers of % is possible.) “S”
bands in cubic lattices are examples of such bands.

Consider the energy near a minimum of the band. The
energy then possesses an expansion in powers of the
wave vector which, in the case of a cubic lattice, may
be written as

Ek)=Y k?n[Ez,L+l>: Egn,i%:(0,9) ] (2)

<2n

in which X;(6,¢) is a “Kubic harmonic” belonging to -
the completely symmetric representation.” It is a linear
combination of spherical harmonics of /th order. To
compute N(E) in this case, it is convenient to use, in-

7F. C. von der Lage and H. A. Bethe, Phys. Rev. 71, 612 (1957).
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stead of Eq. (1), the equivalent expression®:

1 d

NE)=——

127 dE

Equation (2) can be solved by iteration to give k2 as a

function of energy and angle. The integration over solid

angle can be accomplished using the orthonormality

relations for the Kubic harmonics. The DS can then
be written formally as

N(E)=(E—Eo)'"* 2 an(E—Eo)™. 4)

The DS can evidently be expressed as a series in odd
half integral powers of the energy. The coefficients a,
are fairly complicated combinations of the E,, and
Es,,; so that usually it is practical to compute only a
few of them. The first three are given below:

ao=1/2m2E:32,
o= 5E4/47I’2E27/2, (5)
A= — (7/41!'2E29/2) [Ee— (9/4E2) (E42+E4,42)].

The series presumably converges for energies less
than that of the first saddle point. An analysis similar
to that leading to Eq. (4) can also be made near a
maximum. The result is formally similar to (4), except
that the independent variable is E,—E (where E,, is
the energy of the maximum), rather than E— E.

The behavior of the DS near a saddle point of the
band structure has been analyzed previously.!'? The
simplest discussion seems to be that of Wannier.® If
E, is the energy of the saddle point, the DS contains a
term of the form (E,— E)2 or (E— E,)Y2. The deriva-
tive of the DS has an infinite discontinuity for E=E,.
The singular term is superimposed on a smooth back-
ground function. There are two types of saddle points.
In one case we have

E(k)— Eo=ak\*+Bks*—vks*+O(k*), (6)

in which @, B8, v are positive, and ki, ko, and %; are
measured along the principal axes. The part of N(E)
which has the singular derivatives is

k3(E,0,4) sinfdbde. 3)

—(Es—E)Y2/4n2(afBy)V? for E<E,, ™
0 for E>E.. ’
Similarily, if
E(k)— E,=o'k12—B'k*— k2, ®
the singular part is
0 for E<E,, ©

— (E—E)Y2/4xxo/B'y')2 for E>E,.

Except for the singular parts just described, the
density of states is a smooth function of energy. Let

8 J. de Launay, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1956), Vol. 2, p. 219.
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University Press, New York, 1959), p. 70.
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E, and E, be the energies of states at the top and
bottom of the band. It is convenient to define a new

variable z by
22=(E— Eo)/(En—Ej). (10)

We write n(z) to designate the DS with the energy
variable replaced by z according to (10). The function
n(z) is expressed as

n(2)=g(2)+h(2), (11

in which g(z) is a function with singular derivatives as
previously described, and which will be specified below;
and %(z) is a smooth function with vanishing first
derivatives at the top and bottom of the band.

For simplicity, we consider a simple band with one
maximum, one minimum (both assumed to be spheri-
cal), and 9T saddle points of each kind. The generaliza-
tion to more complicated bands is straightforward. Let
the saddle points of the type specified by Eq. (6) occur
for =2, and those specified by (8) for z=2z,. We denote
by E.’ the reciprocal effective mass at the top of the
band. A suitable choice for g(2) is as follows:

(Em-Eo)”?l‘z(l—22)3/2J_z3(1~z2)”2

()=
§ m L ompr (B
m 8 ’ 2 2\1/2,
—— —_— 1/2 —_
5 (aﬂv)Uz(z) (22— )V (21—2)
N (1—g)

_2(0/5/‘{/)1/2 (1—2 2)3/2(z2—z22)1/2,7(z—zz):', (12)

where 7 is the unit step function, which has the property
that
n(x)=0 for x<0,

n(x)=1 for x>0.

The function g(z) has been constructed to have the
characteristic behavior of the DS at each critical point.
The complete DS, #(z), differs from g(z) by terms of the
order z® near z=0, and by terms of order (1—3z2)%2
near z=1. It is desirable to include this property ex-
plicitly in the expression for 4(z). To do this we write

h(z)=23(1—2%)%21/ (2). (13)

The function %’(z) which is defined by (13) is of order
unity at 2=0 and z=1. It is to be expanded in a set of
orthogonal polynomials. The choice of polynomials for
the expansion is determined by two requirements: The
polynomials must be orthogonal with respect to a
weight function consistent with (13); and second, it
must be possible to evaluate integrals containing the
DS and a polynomial independently of the expression
(11) for n(z).

A particular set of Jacobi polynomials possess the
required properties. The function %'(z) is expressed as

W (2)=3u calPn®B(1—232), (14)
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TasLE I. Coefficients of Jacobi polynomials appearing in the
expansion of the smooth part of the density of states for the energy
band specified by Eq. é6). The coefficients of the polynomials
with odd » vanish.

n Cn n Cn

0 1.5977618 6 0.0736
2 —0.13966731 8 —0.089
4 —0.0161960

in which the notation for the Jacobi polynomial is that
of Erdelyi et al.,'® and « and B are for the moment
undetermined. Now multiply both sides of (11) by
zP;(*8(1—22?%) and integrate on z:

J

1

1
n(z) Pyl B (1—252)zdz= / g2(2) Py« P (1—25%)z2dz
0

1
+> cn/ P (@B (1—222) Pyl ) (1—252)24(1—2%)3/%dz.
" 0
The Jacobi polynomials obey the orthogonality relation

1

/ Prb) (5) PP () (1—2)*(1 +-0) = hnbin (15)
—1

in which
2a+ B+1

hn=
2n+a+p+1

The substitution x=1—22? makes this relation useful
for our purposes provided that we also choose
a=B=23/2. The coefficients ¢, are now determined to be

I'(n+a+1)T (n+B+1)

(16)
wT (n+a+B+1)

32r rt
cn=;—[f 1(z) P 312:32 (1—22%)2dz
0

n
1

—/ g(z)Pn(“/?"*/”(l—222)zdz]. a7
0
The Jacobi polynomials are expressed as

n
P,6128(1=222) =3 g;(mg%,
7=0

(18)

The coefficients a; are given by

2SN @

The following recurrence relation is also useful:

a].(ﬂ):

Py B12302) () = [ (n+2)xP, 6232 (z)

(n+1) (n+4)

— —5(n+3/2) Py ©230 () ] (20)

10 A, Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Higher Transcendental Functions (McGraw Hill Book Company,
Inc., New York, 1953), Vol. 2, p. 168.
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The first seven polynomials are given explicitly below:

Py@r3(g)=1,

PyCIR3ID () = (5/2),

P,62:3 ()= (7/8) (6x2—1),

P3Ol (x) = (21/2)[*— (3/8)],
P4012:37) (i) = (33/8) (S — 3a2+-3/16),
P23/ (x) = (429/64) (605 — 52+ (3/4)],
P23/ (1) = (715/128)[ 1408 — 1504+ (15/4)22— 1/8].

(21)

Equation (17) is useful because it is possible to deter-
mine the integrals

1

/ P @323 (1—229)n(z)zds
0
independently. The #th moment of the DS is defined by

Em
M= / N(E)(E— Eo)"dE
Ey
1

=2(Emn— Eg)"t / 227y (3)ds.

0

(22)

It follows from Eq. (1) that these may also be

expressed as
2
M,=

- 23
&) (23)

/ [E(k)— Ey]"d.

Evidently, the M, can be determined if E(%) is known.
The matrix techniques which are used to compute
moments in the theory of lattice vibrations are not
usually available in energy band theory, except when
the tight-binding approximation is employed.

The moments M, of the singular function g(z), which
are defined by

1
M= / g(2)z2ntdz, (24)
0

can be computed by elementary techniques. Explicit
expressions are given in the Appendix. One then has
finally

M;

-y |
2(En— Eg)itt

32
n=— 3 a,«m[ (25)

hn 7

At each stage of approximation, the density of states
which is computed from (11) has the correct analytic
properties. One can expect that the convergence of the
expansion (14) will be sufficiently rapid so that only a
relatively small number of terms need be included.

In order to illustrate the application of the procedure
developed here, we have considered two examples. The
first of these is the calculation of the DS pertaining
to the band

E(k)=3— (cosk,+cosk,+cosk,), (26)
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for which an exact result has been given by Bowers and
Rosenstock! and by Montroll.!? In this case it is possible
to obtain a general expression for the moments M ; which
yields, in combination with Egs. (19), (24), and (25),
a complete solution to the problem of computing the
DS by the moment singularity method. The computa-
tion of the moments is accomplished as follows: The
Jth moment M; may be expressed as a combination of
“small” moments m;:

M;=2Y(3)i(— 1)@‘(? ) m, (27)

where the (Z) are binomial coefficients and

1n[=(27r)"3[ / / (cosk,~-cosk,+cosk.)idk.dk,dk..

The small moments may be computed through a
trinomial expansion,

£ 50

X / / / cos’k, cos®k, cos™ "k dk.dk,dk,
T (28)
7" /2 P
=— 3 Y [tH(p—0!GZi—p)IT2if i is even

2i p=0 t=0
=0 if 7 is odd.

Since the moments of the singular function are ele-
mentary integrals, and the coefficients a; have been
given, the coefficients ¢, of the Jacobi polynomials in
the expansion of the DS are determined for arbitrary #.
The formal result is, however, quite lengthy, and need
not be given here. The values of the first five nonzero
coefficients ¢, have been computed, and are given in
Table I. The DS which is determined from them is
shown in Fig. 1, where it is compared with the exact
result. The agreement is quite good.

It is useful to compare the moment-singularity ex-
pansion of the DS with conventional methods in which
the singularities of the DS are not explicitly designated.
Earlier calculations with the method of moments have
generally employed the Legendre polynomials as the
basic set of functions. An expansion, which is no more
complicated than that using the Legendre polynomials,
but which makes use of more detailed information con-
cerning the analytic properties of the DS has been
proposed by Sack.!® It makes use of the Tchebicheff

1'W. Bowers and H. B. Rosenstock, J. Chem. Phys. 18, 1056
(1950).

2E. W. Montroll, in Proceedings of the Third Berkeley Sym-
posium on Mathematical Statistics and Probability (University of
California Press, Berkeley, California, 1956), Vol. 3, p. 209.

13 R. A. Sack, Bull. Am. Phys. Soc. 6, 293 (1961).
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F16. 1. Density of states for the energy band of Eq. (26). The
solid curve is the exact result of Bowers and Rosenstock (reference
11) and Montroll (reference 12), the long dashes show the result
of the moment singularity expansion (11) including the first five
Jacobi polynomials with nonzero coefficients; the curve composed
of short dashes shows the result of the moment expansion (30)
including the first six Tchebicheff polynomials with nonzero
coefficients.

, 00

polynomials of the second kind, U,(z). These functions
satisfy the orthogonality relation:

1

/ Un(@ Ui (1= ) Pds=bndn. (29)

If the index » is odd, only odd powers of z are present
in Un(z). The expansion is the following:

n(z)=1—2)"2 3 b,U.(3).

n odd

(30)

The multiplying function (1—322)!/2 ensures that the
DS has the proper behavior at the top of the band, the
restriction to odd powers of z insures the same thing at
the bottom of the band. The effects of saddle points
are not explicitly included. The coefficients 3, are
found to be

bn=il/ n(2)U.(2)dz. (31)

™

The &, may be expressed in terms of the moments. A
Tchebicheff polynomial is expressed in powers of z:
Un(z)=3_; d;{mg2H, (32)
The coefficients d;( are given by
n+25+1
djn: 21 (___ 1)(n—1—2i)/2<_________)|
2

X[(Zj—i— 1) '(#)}!_1 (33)

Equation (22) enables us to express b, as
bn=(2/m)2 d; [ M/ (En— Eo)"*].

(34)
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F16. 2. Density of states for the energy band of the Mathieu
problem, obtained from Eq. (11) including the first five Jacobi
polynomials.

If the moments M; can be calculated, one has in
principle a solution to the problem of calculating the
DS. For the reasons discussed in the beginning of the
paper, one does not expect to obtain as good a repre-
sentation of the DS with a small number of Tchebicheff
polynomials as is possible with an appropriate singular
function and a small number of Jacobi polynomials.
Nevertheless, this procedure may be useful, particularly
in cases in which it is not feasible to locate all the
critical points of the DS.

The procedure of expansion in Tchebicheff poly-
nomials has been applied to the simple band of Eq. (26).
The first six coefficients are listed in Table II, and the
DS which is computed from them is shown in Fig. 1.
Although one more polynomial is present here than in
the previous case, the fit to the exact density of states
is noticeably poorer. The gain in accuracy resulting
from inclusion of an appropriate singular function is
quite evident.

As a second example of the application of the moment
singularity method, the DS has been computed for the
lowest energy band which is the solution of the Schréd-
inger equation for the potential

V=2V [cos(2mx/a)+cos(2my/a)+cos(2nz/a)]. (35)

This is the Mathieu problem, which has previously been
discussed by Slater.'* The details of the band calculation
in this problem will be discussed elsewhere. For the
purpose of computing the moments, the energy was
expressed as a Fourler series, and the coefficients of the
first eleven terms were found. The numerical accuracy
of the band calculation is sufficient for the effective
masses to be determined by differentiation of the series.
In Fig. 2, the DS is shown for the case (ma?Vo/2n%4?)
=0.1. The first five Jacobi polynomials were included
in the calculation.

The principal problem which is encountered in the
actual calculation of the DS by the moment singularity

147, C. Slater, Phys. Rev. 87, 807 (1952).
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TasLE II. Coefficients of Tchebicheff polynomials appearing in
the expansion of the density of states for the energy specified by
Eq. (26). Only polynomials with » odd appear in the expansion;
the coefficients of alternate odd polynomials (z=3, 7, 11, 15,
19, etc.) vanish.

n by n by

1 0.21220659 13 —0.0008733
5 —0.07073553 17 —0.009024
9 0.02357851 21 0.010770

expansion is that of retaining sufficient numerical
accuracy in the calculations of the moments to obtain
significant results for the coefficients c,. There is a very
substantial amount of cancellation in the computation
of the ¢,: seven-figure accuracy in the moments yields
only two significant figures in the determination of cs
for the first problem discussed. The problem of numerical
accuracy was noticed by Montroll in his original work
on the method of moments,® and appears to be common
to all moment expansions for the DS.

ACKNOWLEDGMENTS

We are indebted to C. Miziumski for his assistance
with the numerical calculations. We also wish to thank
the Biometrical Laboratory of the University of Cali-
fornia at Riverside, and the Western Data Processing
Center at UCLA for the use of the IBM 1620 and
7090 systems.

APPENDIX

In this Appendix, we give expressions for the moments
of the singular function, M, which are defined in
Eq. (24) of the text. The singular function g(z) is given
in Eq. (12). The results are

(Ep— Eg)V2

e LR IO R GRS
Y
—39U(aBy) T2 95(n) =3 N(/BY) () ] (A1)
The integrals d1, etc., are given by
1
gl(n)zf 222 (1—22)3/2d3
’ 3r 1X3X5X -+ X (2n41)
= ’ (AZ)
2 2X4X6X -+ - X (2n+6)
1 2n+3
92(n)=/ 2t (1—g?) 2= 91(n), (A3)
0
93(7’1,)321_3/ 22n+4(212__22)1/2dz=212n+392(n), (A4_)
0
1
g4(n) = (1— 525" / g (1 )92 2.2) 2d
n n
= (1—z2)nt32 3" (— 1)’“(}3)93(/3). (AS)
k=0



