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FIG. 9. The measured relative probability F for exciting a
nuclear state by neutron inelastic scattering vs the quantity
SA '~' B(E2) for that state. The straight line is a least-square fit
of the type described in the text.

quantity 5A 't'B(L~"2), together with the line which

gives the best fit to the data. As can be seen, the devi-
ations of the data from this line are greater than those

in Fig. 8. The chi-square value of the 6t is 2.2 times the
expected value. The best 6ts to the data when the
parameter rt in Eq. (4) is 0.0 and —1.0, have, respec-
tively, chi-square values of 3.1 and 3.6 times the ex-
pected value. To summarize, if Eq. (4) is considered a
valid expression for all of the data presented in Table I,
then the parameter e has a most probable value of
—0.5. However, no value of e could be found for which

Eq. (4) gives a good description of the data.
The significance of the results illustrated in Figs. 8

and 9 is not clear, since the median energy of the neu-

trons used in these experiments, approximately 2—3

MeV, is such that contributions from direct interactions
are not expected to be important, However, for the
neutron energies used, and for the nuclear levels studied

in these experiments, it seems clear that a correlation

does exist between the probability of exciting a nuclear

state by neutron inealstic scattering and the reduced

quadrupole transition probability, B(E2), of that state.
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It is shown how phase relationships between partial waves in the optical model result in focusing effects
which are largest for surface partial waves. In the case of very low incident energies where the wavelength

of a partial wave is large compared to the nuclear surface thickness, it is shown how the phase relationships

may enable surface- and volume-reaction mechanisms for a direct reaction to be distinguished by looking at
gross features of the angular distribution. Thus, low-energy direct interactions may be used as a probe for
the nuclear interior.

1. INTRODUCTION
' ' I is well known that elastic scattering cross sections

are sensitive only to the optical-model potential in
the nuclear surface. 'However, it is also true that optical-
model wave functions calculated in potentials which 6t
elastic scattering data are not negligibly small in the
nuclear interior' even for incident particles such as
deuterons or a pai ticles which may be expected on

* Supported by the Australian Atomic Energy Commission and
the Australian Institute for Nuclear Science and Engineering,' J. S. Nodvik, Proceedings of the International Conference on the
Nuclear Optical Model, Florida State University Studies, Eo. 3Z
(The Florida State University, Tallahassee, 1959), p. 16; G. Igo,
Phys. Rev. 115, 1665 (1959).' I. E. McCarthy, Nuclear Phys. 10, 583 (1959).

physical grounds to lose their identity when they get
into the interior. One wouM, of course, expect the physi-
cal breakup of the particle to contribute to the imagi-
nary part of the potential so that the model should give
a good estimate of the probability of finding a particle
inside.

This apparent contradiction has led some people to
consider that the optical model must be regarded more
as a parametrization of elastic scattering than as a
physical description of a nuclear reaction. The success
of the distorted-wave Born approximation for direct
interactions, which consists of a sum of overlap inte-
grals involving the optical-model wave function in the
vicinity of the nucleus, shows that the wave function
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has physical meaning near the nucleus, not merely at
infinity. This led Eisberg and McCarthy' to propose
that direct reactions could give information about the
nuclear interior. However, in most cases which have
been studied it can be shown that the interior of the
nucleus, even though the overlap integral is taken from
r=o to (x), contributes very little to the cross section
for reasons which are inherent in the optical model.

In a simple picture of nucleon inelastic scattering
Klton and Gomes4 showed that if the incident particle
penetrates the nucleus and collides with an interior
particle, the reaction product particle is almost certain
to be totally internally reflected at the surface. Austern'
showed in a detailed calculation of an optical model
involving a large number of partial waves how phase
averaging in an overlap integral involving partial waves
of small / (i.e., ones which penetrate the interior) re-
sults in the integral averaging almost to zero.

The picture of Elton and Gomes is incomplete in
that it considers contributions to the reaction only from
regions of the nucleus where a particle traveling along a
given, trajectory (in a semiclassical picture) is likely to
penetrate without first being involved in a collision and
also from which it is likely to escape along a particular
trajectory without a further collision. It was shown by
McCarthy' that there is a region of the nucleus, called
the "focus" where a particle is likely to be found, not
because it is very likely to get there on a particular
trajectory, but because many trajectories lead to the
same point. Similarly, for outgoing particles, most of
the particles originating at the focus are likely to come
out in the same direction if they do come out at all.

At very low energies (—5 MeV) the focus in the
optical-model wave function is in the interior of the
nucleus. Hence, effects which can be attributed to the
focus can in these cases be attributed to the interior.
Simple direct-interaction models involving the focus
at an energy where it is in the surface have confirmed
the idea that the focus is responsible for the observed
large departure of nucleon inelastic scattering cross
sections from the spherical Bessel function shape which
is predicted by the plane-wave Born approximation
particularly at scattering angles 0—O and m.

Identification of such e6ects at low energies would
confirm the idea that the interior plays a part in the
reaction. The question of precisely what eGects to look
for can only be answered by a detailed investigation of
distorted-wave angular distributions at low energies.
The present work shows that the interior contributes a
large amount to forward and backward cross sections

' I. E. McCarthy, in Proceedings of the International Conference
on the NNclear Optical Mode/, Florida State University Stgdies,
Eo. 3Z (The Florida State University, Tallahassee, 1959),p. 24.

4 L. R. 3.Elton and L. C. Gomes, Phys. Rev. 105, 1027 (1957).
5 N. Austern, Ann. Phys. (New York) 15, 299 (1961).' I. E. McCarthy, Nuclear Phys. 11, 574 (1959).
7 I.E.McCarthy and D. L. Pursey, Phys. Rev. 122, 578 (1961);

A. J. Kromminga and I. E. McCarthy, Nuclear Phys. 31, 678
(1962).

at low energies and that large differences in angular
distributions are to be expected between surface and
volume-interaction theories.

To put the rather pictorial idea of the focal contribu-
tion to direct reactions into partial wave language, we

may say that the partial waves with l=kR (where R
is the nuclear radius, k the exterior wave number),
which are the ones which contribute principally to the
distorted-wave overlap integral, are also the ones which
are related to each other least like the partial waves
of a plane wave. In the optical-model wave function
this special phase relationship leads to constructive
interference which produces the focus. This relationship
can also lead to large differences between the distorted-
wave overlap integrals for the surface- and volume-
interaction cases when the wavelength of a partial wave
is larger than the surface thickness, i.e., in the 5-MeV
energy region. This is the case that was specifically ex-
cluded in Austern's paper' on optical-model wave func-
tions. This paper will be referred to throughout the
present work.

It may, of course, be true that the surface-reaction
theory is true for reasons connected with the reaction
mechanism rather than the optical model. For example,
the surface-reaction theory is on a very sound basis for
reactions which excite collective states where it pre-
dicts the right total cross section for the reaction. ' It
is also likely that for a two-body mechanism the two-
body force is less in the nuclear interior than on the
surface, because the Pauli principle inhibits collisions
which lead to filled states. ' Once the surface-reaction
theory is shown to be wholly or partially true in a case
where it is not a necessary consequence of the optical
model, then the reaction can be used to get information,
for example, about the relative strength of the two-
body force in the surface and the interior.

Section 2 is a discussion of the phase relationships
between partial waves in the optical model showing how

they can be understood in general, and how they result
in focusing effects.

In Sec. 3 a detailed calculation is made of the inte-
grands of the overlap integrals for various combina-
tions of partial waves using the optical-model wave
function computed numerically for 5-MeV protons on
C". The phase considerations of Sec. 2 are extended to
the distorted-wave Born approximation case and it is
shown how gross features of angular distributions may
be understood without detailed calculations at low

energy.
In Sec. 4 these considerations are shown to apply in

an experimental case and the type of experiment re-
quired to distinguish surface from volume interaction
is discussed.

The considerations are not regarded as applying

specifically to any particular reaction, or to C", since

'E. Rost and N. Austern, Phys. Rev. 120, 1375 (1960).' N. K. Glendenning, Phys. Rev. 114, 1297 (1959).
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small changes in energy and nuclear radius do not
appreciably change the phase relationships of the par-
tial waves. Also, the Coulomb phase shifts are not very
large for low values of /, although the Coulomb poten-
tial causes a difference in magnitude between proton
and neutron partial waves.

2. GENERAL BEHAVIOR OF PARTIAL WAVES IN
THE OPTICAL MODEL

If we neglect the spin of the incident particle, the
optical-model wave function may be written as

where
p=kr,

0.
~ is the Coulomb phase shift. For large values of p,

f&(p) is given by

fi(p)=p '(Fi(m, p)+Ci[G((e,p)+iFt(rs, p) 1). (4)

F~ and G~ are the Coulomb functions, regular and
irregular at the origin, respectively; n is the Coulomb
parameter

e=ZZ'e'/Av

C& is related to the nuclear phase shift 5& by

gi ——exp(2i5t) =2iCi+1

For uncharged particles the Coulomb functions become
spherical Bessel functions, and fi(p) may be written

high energies, of course, the potential becomes negli-
gible and g~~ 1.

Intermediate partial waves have intermediate values
of g~. These are the ones which sample the nuclear
surface and give rise to the dependence of the scattering
amplitude on the details of the potential.

In this section, we will be concerned with the phase
of each partial wave.

argP( (p) =hr/2+arg fi (p)
=~~/2+ ~i(p).

We will develop a general understanding of the behavior
of yi(p) for small (((kR), large ())kR), and intermediate
values of l and p. In order to understand the interference
of different partial waves we must remember that the
magnitude of the /th partial wave is largest for p—1,
and for a particular p the partial waves which contribute
most to the wave function y'+& (r) are those for t~p+1,
p and p —1. This will give us sufFicient accuracy for
general understanding. For the purposes of this section
we will be concerned, except where it is stated other-
wise, with &pi(p) only for values of p less than the first
zero of the corresponding standing wave. In the stand-
ing wave there is a sudden phase change of m at the
zeros. We will contrast the interference of the partial
waves Pi(p) in the optical-model case with that in the
plane-wave case.

In the plane-wave case,

~i(p) =o

for all /, and successive partial waves are 90' apart.
This is also true for large / in the uncharged case. For
large / in the charged case,

f~(p)=—kLhi"'(p)+ni&i"'(p) j, (7) v t(p)=«,

where h& "& and h&('' are, respectively, the incoming and
outgoing spherical Handsel functions. In (7), q& may be
regarded as the reaction coefficient for the 3th partial
wave. For a complex potential,

~ gt ~

is smalP for small
values of /, and approximately unity for large values
of l. This means that at some radius outside the nuclear
potential we have approximately inward traveling
waves for small l, and standing waves reQected from the
centrifugal barrier for large /. For large l,

just as for plane waves.
The smallness of ~g&~ for small t is due mainly to a

phase averaging effect in the nuclear interior rather
than to absorption of the outgoing wave by the poten-
tial. This has been shown in the WEB approximation
by Austern. ' This effect is more pronounced for large
nuclei and high energies where the wavelength of the
partial wave is small compared to the nuclear surface
thickness and several wavelengths contribute to the
integrand of the WEB expression for q~, so that the
oscillations have a chance to average to zero. At very

whose value is given for m&1 and large 1 by

o-)—e lnl.

For small t and large p, fi(p) is approximately an
incoming traveling wave whose phase is given if
in, f

—0 by

yi(p)= —(p n ln2p ——ln./2+0 i). (12)

If )gi) is not very small, qi(p) may still be expected. to
decrease for large p. For small l and a value of p well
inside the nucleus but outside the centrifugal barrier,
the phase of fi(p) is shifted from the plane-wave value
by the nuclear potential. ' Since ~pt~ is small in this
case, this phase shift is given quite accurately by the
lowest WEB approximation. In this approximation

~i(p) = L&'( )—&]~p,

where k' is the internal wave number. In this case, the
outside traveling wave joins smoothly through the
nuclear surface region to the inside wave function,
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which foi. p—0 must be proportional to the regular
spherical Bessel function j&(p') apart from a phase
factor. p' is a complex number

p'= p'(p) r.

V= —40 MeV, 8"=—8 MeV,

lt
j&~p ~ is approximately real for smallma p, so we expect
q~ p to be close to the value given by the h hfy e p ase shift

ero o a va ue out-in e potential as p increases from zero t 1

side the centrifugal barrier. Here z~ q ~ bere, z ~ qp~ egins to assume
e orm o an inward traveling wave th e outward

will be in
p en eing reduced by phase averagin s

g' to decrease as p increases with a very ra id
decrease at the zeros of ji(p').

These properties of q ~ are illustrated in Figs. 1 and 2
for the scattering of 30-MeV neutrons (case 1) and
5-MeV protons (case 2) from C" Th e optical-model

(14)

In the case of nucleon scattering where the real and
imaginary parts of the optical-model potential are
something like

parameters are in both cases:

V= —40 MeV, 5"=—8 MeV, rp= 1.2 F a=0.5 F7

Comparison of Figs. 1(a) and 2(a) with 1(b) and
2(b), respectively, will show that the magnitude of the
Lth partia wave becomes insignifica t '

n in comparison
with that of higher waves by th te ime q~ p begins to
decrease rapidly with p for small L. Wa . e may say that
the effective value of q~ for small L

'
th 1is e va ue given by

the phase shift in the potential.
InFi. 1'g. the inside partial waves are L=O, 1, 2 the

outside ones are L= 4 5
) )

wave L=3 has
, etc. The intermediate partial

as values of Ipi(p) intermediate between
ou si e partial waves.t e values for the inside and t 'd

n 'ig. 2 the inside partial waves are L=O, 1, /=2 is
intermediate and L=3 4 5 etc d tial, e c. are outside artial
waves. Notice that fo

'
sesa q~ or the outside ones increases

slowly with L because of the Coulomb phase shift in
this case. Note also that in ne'thnei er case is the nucleus

200

180-

160-

100—

80-

60—

40-

20-
Vl
Ol
Es

h 0-
cs

Cl

e. -20-

"40—

-60—

)s0 I 0) IsO. 623

Fio. l. (a) The phase
angles ip&(p) and (b) the
magnitudes (if i(p) ~

of
the erst few partial
waves for the elastic
scattering of 30-MeV
neutrons on C". The
optical-model potentials
are given in the text.

140-

100-

~ 80-
esI
esl

g" 60=
'&

40-

0-

I I I I I

1

[=0
&[

=O.SS

Fto. 2. (a) The phase
angles ip&(p) and (b) the
magnitudes ~pi (p) ~

of
the first few partial
waves for the elastic ~

scattering of 5-MeV pro-
tons on C".The optical-
model parameters are
given in. the text.

lsl

t, s2
i=2 ~



OPTI CAL MODEL I N I NTERIOR OF NUCLEUS 1241

very "black" to any of the partial waves. The inside
partial waves have important characteristics of both
standing and traveling waves. There is a strong vestige
of the abrupt phase change at the zeros of the standing
wave component, but the magnitude is not particularly
small where the phase is changing rapidly. This pro-
vides a key to the understanding of the next section
where we are concerned with products of pairs of partial
waves and cannot confine ourselves to consideration
only of the phases at values of p before the first zero of
the standing wave component.

Now that we have seen the behavior of y~(p), in
general, we are in a position to discuss the interference
of partial waves. For a given p, we are only interested
in the partial waves / —1, / and 1+1, where t is the
nearest integer to p, because the others will not be
large enough in magnitude to effect the gross con-
siderations in which we are interested.

%e are mainly interested in whether these partial
waves interfere constructively or destructively, i.e.,
whether successive f~(p) have a phase difference less
than or greater than 90'. This property, together with
the question of whether a partial wave is an inside,
outside, or intermediate one will not vary much with
changes of radius or internal wave number of the order
of 10'Po; so the computed cases are typical of quite a
wide range of energies and nuclei.

In the plane wave case, successive partial waves are
90' apart. 'I'he wave function in the forward (8 -n/2)
hemisphere is the complex conjugate of that in the
backward hemisphere, since

P~(cos8) = (—1) 'Pi f cos(m —8)).

i.e., one obtains the forward wave function from the
backward wave function by reversing the odd partial
waves. The effect of the phase shift y~(p) on each f~(p)
is to rotate it in the positive direction. Different f~(p)
are rotated by different amounts so that they are no
longer at right angles to each other. This produces a
forward-backward asymmetry in ~x&+'(r) ~.

Ke will be mainly concerned with the forward-
backward asymmetry of ~y&+'(r)

~
on the axis where

Pt(cos0)=1, P~(cosm)= (—1)'. The magnitude of. the
wave function off the axis can easily be understood by
an extension of our considerations.

If successive q ~(p) (regarded now as practically inde-

pendent of p where ~P~(p) ~
is large enough to be effec-

tive) are different, then the corresponding partial waves
will contribute differently to

~

g'+~(r)
~

at 8=0 and ~.
The rule for this is as follows.

If qq+~(pq then f~ and f&+& interfere constructively
at 0 and destructively at ~. Since the major contribu-
tion to

~

x'+'(r)
~

at a particular value of p comes from
only three or four successive partial waves, this rule
enables us to tell from the phase diagram whether we
have large or small values of

~

y&+& (r) ~.
Consider the forward direction, tI=O. Then q~ for

inside partial waves are all very similar. This can be
seen in the %KB approximation where the classical
rays corresponding to them all go near the center. In
the uncharged case we always have p&+j&p&, so for
small p we will always have slight constructive inter-
ference. The value of

~

x&+& (r)
~

will be somewhere near
1 but decreased by the attenuation due to the absorp-
tion. In the charged case the Coulomb phase shift
may reverse the situation giving p~q. .j+(p~ and slight
destructive interference.

For outside partial waves in the uncharged case at
0=0, p& is always near zero. Any interference will be
constructive. In the charged case the phase shift is a~

which increases slowly with l, so we will have slight
destructive interference corresponding to the bending
of the rays away from the nucleus by the Coulomb
potential.

The intermediate case is more interesting. Here, the
values of pE are intermediate between the large values
for small / and the small values for large l. Ke always
have y~+~&yE and. the difference amounts to a large
angle, sometimes as much as 90'. This results in ex-
tremely strong constructive interference at 8=0 and
strong destructive interference at 0=x.

At 0=~ the strong destructive interference for /—kR
allows other partial waves to contribute a higher pro-
portion to ~y&+'(r) ~.

For other angles the important, angular factor near
8=0 is P~(cos8) where l=kR. This decreases rapidly as
0 increases so the strong constructive interference
exists for a small range of Ig near 0 and a small range of

p near the surface. It appears as an intense spot in
~x'+&(r) ~. Near 8=~ lower values of t contribute to
the angular factor and the falloff of ~x&+'(r) ~, with 8,
is not so steep.

All these properties of
~

g&+& (r)
~

are illustrated in the
calculations of the divergence of the probability Qux
factually W(r) ~z'+&(r) ~'-) performed by Eisberg, Mc-
Carthy, and Spurrier" and McCarthy. '

In classical language, constructive interference in the
forward hemisphere between successive partial waves
can be described as focusing, destructive interference
(such a,s occurs outside the nucleus in the charged case)
as defocusing. The focusing effect is most prominent for
the intermediate values of l (i.e. , the last ones whose
classical rays do not miss the nucleus) as is shown in the
detailed comparison of quantal and classical calcu). a-
tions in reference 6.

Austern' prefers to regard the intense spot on the
forward surface in the case of 40-MeV o.—particle
scattering, when the nucleus is more "black, " as due
to diffraction of the wave function round the nucleus
rather than refraction. Of course, it is rather arbitrary
to distinguish diffraction from refraction in a complex
potential, but the reason for the intense spot can be

"R. M. Eisberg, I. E. McCarthy, R. A. Spurrier, nuclear
Phys. 10, 571 (1959).
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seen here. It is due to different partial waves having
phase differences less than 90' which is in turn due to the
fact that the nucleus has a surface. The phase is deter-
mined mainly by the real part of the potential, so the
term "focus" seems appropriate.

At very low energies, the wavelength of each partial
wave is long compared to the nuclear surface and the
last nonexternal partial wave has its maximum magni-
tude well inside the surface so that the focus is in the
interior. In case 2 the relevant interfering partial waves
are those for /= l and 2 and the focus occurs where the
sum of their magnitudes is largest in the region where

yi —ps=90'. This is at the first peak of ~Pi
~

)see Fig.
2(b)$ which occurs well inside the nucleus. The focus
occurs well inside as can be seen from the plot of

~

yt+& (r)
~

on the axis in Fig. 4. The focus in case 1 can
be seen in Fig. 3 to be nearer the surface.

The reason why the focus is much smaller in magni-
tude for the o.-particle case, in which many partial waves
are in the surface, can be seen. There are many values
of y~ intermediate between the inside and outside values,
so successive q ~ are not so far apart and the interference
is not so strong. This is also the reason for the small
focal intensity for high-energy nucleons. In this case
the inside value of p~ is not very different from the
outside value, so again the interference is not so strong.

The smaller focus in the case of heavier particles is
associated with their shorter mean free path. The small
focus is due to the large number of partial waves in the
surface which varies as the square root of the mass
number. The mean free path varies inversely as the
square root of the mass number. "This is a property to
be expected if the focus corresponds to the classical
refraction effect.

The focus for charged particles is smaller than that
for uncharged particles of the same energy and mass
because yg for the 6rst outside partial wave is closer
to the inside value in the charged case because of the
Coulomb phase shift. Hence, the successive intermediate
partial waves are not so far from 90' apart in phase in
the charged case. This effect would again be expected
from classical considerations.

3. THE DISTORTED WAVE BORN APPROXIMATION
AT EXTREME ANGLES

It was seen in the last section that for very low energy
the optical-model wave function focuses in the interior
of the nucleus. It would be expected that the overlap
integral involved in the distorted wave Born approxi-
mation would have a large contribution from the in-
terior of the nucleus at scattering angles where the
entrance and exit channel wave functions are so oriented
that the focus in one of them overlaps a part of the
other where the magnitude is large, either the rear
surface or the focus. This occurs at scattering angles
0'= 0 and ir, respectively.

In this section the overlap integral I of the wave
function in case 2 in both entrance and exit channels
with a 1p wave function for C" in both channels is
computed. The contributions I~~ for different combina-
tions (l,l') of partial waves are illustrated in detail for
I.= 1 and 2, where I.is the angular momentum transfer.

For cases involving many partial waves it has been
shown by Austern' that phase averaging due to the
oscillations of the product of partial waves for small l

e=o

Fro, 4. The square of the magnitude of the optical-model wave
function ~x&+&(r) ~' on the axis of scattering in case 2.

and l' within the region of integration reduces the con-
tribution from the inside partial waves almost to zero.
The surface partial waves are the ones which contribute
most to the integral. In case 2, as far as the focus is
concerned, we have already seen that Po can be re-
garded as an inside partial wave but that i/i gives the
main contribution to the focus and must be regarded
as a "surface" partial wave in this sense although it
contributes mainly to the interior.

We will first compute the overlap integral for a par-
ticular (fictitious) reaction and use the computation as
an example to show how considerations obtained from
the phase diagrams may be used to understand low-
energy reactions on light nuclei, in general.

For 0'=0 and 7r, the distorted wave overlap integral
is extremely simplified and quite easy to compute be-
cause it has axial symmetry. For many reactions on
light nuclei only one angular momentum transfer L, is
allowed by the selection rules. This is true, in general,
for a 0+ initial state and we will use this case as an
example. A zero-range interaction will be assumed for
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simplicity. In this case the overlap integral is

I= y&
—&*(k',r)x&+& (k, r) rp, (r) &pr*(r) YJ.~(0,)d'r, (16)

(0,2)
(2,

Im

where x'+'(k, r) and y& &*(k',r) are, respectively, the
entrance and exit (time-reversed) channel wave func-
tions defined in Sec. 2. k and k' are the momenta of the
incident and outgoing particles in the center of mass
system. p, (r) and p~(r) are, respectively, the radial
parts of the initial and final bound-state wave func-
tions. M is the magnetic quantum number associated
with L. 0„ is measured from k.

For 0=m and 0, respectively, we may write

y~+& (k, r) =pili(p)Pi(cos8),
x' '*(k,r) =Zv(~1)'Vi (p)Pi («»8),

A

where 8 is measured from k. (Here, we are considering
(2, 2)

Re

TABLE I. The signi6cant contributions I« to the overlap
integral I at 0=0 and x for L=2.

Im

Iii (0=0)
Re Im

I«(0=7r)
Re Im

Re

Total

—0.11
0.54
0.06—0.11—0.00
0.06

—0,15—1.39—0.00—0.15
0.13—0.00

—1.57

—0.11—0.54—0.06—0.11—0.00—0.06

—0.90
2.35

—0.15
1.39
0.00—0.15
0.13
0.00

FIG. 5. The integrands Jn (p) of the signiiicant contributions I&~

to the overlap integral I for L=2.

In the present calculation y(r) was computed in a
Woods-Saxon potential specified by the parameters:

V= —42 8 MeV, &o= & ~ F, a=0.69 F.

an artificial case where k'=k. ) The integral becomes

I=+(&1)' r'dr Pi(kr)Pr (kr)&p;(r)qr*(r)

dQ„Pi(cos8)Pi (cos8) Yr,~(Q,). (18)

The angular part of (18) reduces to

P4~/(2L+1) jl(Ci)'j )

where C~~ l."is a Clebsch-Gordan coefficient, giving

I=+ Ii) +dr Jt( (r)——

=$4~/(2L+1)g» P(&1)'(Cii 1. )' r'dr/i(kr)Pi (kr)

X (p, (r) yr*(r), (20)

for 0~=~ and 0~=0, respectively.
For an initial state whose spin and parity are other

than 0+ there is a term similar to (20) for each L
allowed by the selection rules.

Figure 5 shows the contributions to the integrand
Jii (r) for the combinations (l,l') of partial waves
which are allowed by the selection rules and which give
significant contributions in the case L=2. The values
of Iii at 0'=0 and rr are shown in Table I.

Since only the overlap integrals for forward and
backward scattering have been computed, it is difficult
to see whether they are large or small compared with
the integrals for other scattering angles. A complete
calculation of the angular distribution has not been
carried out, but a good idea of the importance of the
values at 0'=0 and m can be obtained by comparing
them with the value of the integral at the maximum in
the angular distribution using plane waves instead of
y&+&(r). This value is about 3.5. Since the total cross
sections in distorted wave theory are generally less
than those in plane-wave theory, it is clear that the
values 2.66 and 2.35 for 0~=0 and m, respectively, are
very significant.

We can now check the idea that the interior of the
nucleus plays an important part in the scattering at
0~=0 and x. The term I» is by far the most important
in the present case. It contains the main contribution
to the focus in each channel. About 60% of the total
overlap integral I comes from radii less than R for the
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FIG. 6. The integrands J«(p) of the significant contributions I«
to the overlap integral I for L=1. .

entrance and exit channel optical models. If the radial
integration is cut off at E., we have values 0.81 and 0.69
for ~I~' at 0'=0 and m, respectively. These are about
one third of the values for the volume-interaction model.
In this case, although the interior contributes a large
amount to I, the forward and backward cross sections
are cut down roughly proportionally by cutting off the
integration. This is hardly likely to be true for all angles,
but, since angular distributions due to direct inter-
actions at low energies are difficult to measure owing
to compound nucleus interference, we would like to be
able to see a gross difference in the angular distributions.

The case I.=1 is shown in Fig. 6. Here, the forward
cross section is zero owing to the parity rule. The over-
lap integrals are much smaller in this case, because
there are no contributions I«which are always larger
than those for /'Wl. The value of ~1~' at 0=7r for
integration over the whole volume is 0.087, which

possibly corresponds to a backward peak, whereas for
a cutofI' at R it is only 0.006 which is much less than
one-third of the volume-interaction value and may cor-
respond to an angular distribution without a backward
peak.

Some generalizations about extreme angle inelastic
scattering can now be made using the ideas of Sec. 2.
If the Q value for the reaction is not too large compared
with the incident energy, we may get reliable informa-
tion about the general behavior of I~I. from the magni-
tude and phase diagrams for one optical-model wave
function which is assumed to represent both entrance
and exit channels.

In general, we cannot con6ne ourselves to consider-

ing f&(p) only where its magnitude is near its maximum

value because Pp (p) may have its maximum at another

value of p so that their product is significant over a

larger range of p, including places where the phase is
changing rapidly.

From the phase diagram, Fig. 1, for higher energy
reactions it may be seen that for low values of / or /'

the phase of P&(p)Pp (p) decreases rapidly over the range
of p which contributes most to the integral I«, thus
giving rise to the phase-averaging effect noted by
Austern' which makes I«small. The terms I«are an
exception to this.

For low energies and surface partial waves, the phase
of Jn (p) can change by more than 90' over the overlap
region, thus giving the possibility of a large difference
between the values of I~~ for the volume-integration
and cutoG models.

As an example, consider the terms J~~ (p) in Fig. 5.
I02 and I20 are severely reduced by phase averaging.
Figure 2 explains this. go+ +2 decreases by about 180'
over the overlap region, This is not true, however, for
I». The odd-parity case I-= j. shown in Fig. 6 is dif-
ferent in that only combinations I« for 1'&t are allowed
so there must be quite a large change in the phase of
J~~ (p) over the overlap region. Note that in both cases
P~(p), the partial wave which contributes most to the
focus, is the dominant partial wave.

The case I.=O is particularly simple. Here, the only
contributors to I are I~g. The large ones, Ioo and I» are
added at O=n. , subtracted at 0=0.

4. CONCI USIONS

It has been shown that the partial waves which give
the greatest contribution to the overlap integral in the
distorted-wave Born approximation for a single-particle
excitation mechanism are the same ones which con-
tribute to the focus in each optical-model wave func-
tion. This is true whether the incident energy is high
or low. In the vicinity of 5-MeV incident and outgoing
energy this means that the overlap integral receives a
large part of its value at scattering angles of 0 and z
from the nuclear interior. Hence, it is clear that, if
direct interactions at these energies sample only the
nuclear surface, one must look beyond opticaI-model
eGects to establish the reason.

There can be such a large difference between the
angular distributions including and excluding the in-
terior, that there should be no difhculty in deciding
from a well-chosen experiment whether the interior does
in fact play an important part in the reaction.

The necessary experimental conditions are as follows.
Firstly, k and k' must be sufficiently similar for roughly
the same partial waves to be important in each at a
particular value of r. Secondly, we should choose a re-
action which we expect to be due to a single-particle
excitation. Compound nucleus effects are, of course,
important at low energies, but they can be roughly
separated out by doing one of two things. A poor-
resolution experiment can be used in a case where the
compound nucleus has enough levels in the relevant
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energy region for the statistical model to apply, in which
case the compound nucleus angular distribution is
approximately isotropic and can be subtracted inco-
herently. Otherwise, one could perform a good resolu-
tion experiment at different energies and distinguish
over-all trends in the angular distribution, ignoring
fluctuations due to interference of compound and direct
processes.

The second method may be applied to analyze the
C"(p, zs) N" experiment of Dagley et a/. " In this experi-
ment the Q value is 3.237 MeV, and the conditions on k

and k' are roughly satisfied for incident energies above
about 6 MeV. Apart from Quctuations, angular dis-
tributions in the incident energy range 5 to 8 MeV are
characterized by a, small cross section at 0~=0, and a
large peak at 0'=zr.

Because of the half-integral spin of the initial and
final states, the analysis of this case is a little more
complicated than the one we have considered, but it
may be seen that it reduces to an L=O transition in
which the relevant Clebsch-Gordan coeScient is
Cll'0 &ll"00

Let us consider the case of proton energy —6 MeV,
neutron energy =3 MeV. The approximation of Eq.
(13) gives phases 9zz(0) for l=0 and 1 which difFer by
only 10% for the entrance and exit channel. The
Coulomb phase shift is also not large, so we may roughly
consider Ps(p) and Pt(p) to be 90' apart for small p.

Although the proton and neutron energies are not the
same, we may still use the phase diagram of Fig. 3 to
give us a rough idea of how the contributions I00, I&~,
and I» interfere. In this case I» is not reduced by having
a much smaller Clebsch-Gordan coeKcient as it was
for L=2.

Let us 6rst consider the case where we integrate from
p=0. Ipo changes in phase by about 2m over the region
where vz(r) is large, so we may say that it averages to
zero approximately. y~ —p2 is about 90' over this re-
gion, so we have

algIrr —algIss=zl +2(&pt itts):2zl .

This means that I» and I» interfere destructively at
0=0 and constructively at O~=zr in accordance with
the experiment.

"P. Dagley, W. Haeberli, J. X. Saladin, and R. R. Borchers,
in Proceedzzzgs of the Irzterrzatiorzal Cozzfererzce ozz Nuclear Strzzctzzre,
Ezngstozz (University of Toronto Press, Toronto, 1960), p. 359.

If we integrate only from p=kR, we find I» and I»
having roughly the same relationship to each other. Ioo
is not now zero, but it is about 90' apart from the
others and contributes roughly equal amounts to both
forward and backward scattering. Backward peaking
was found in the 5-MeV range in a calculation of the
same reaction by Albert, Bloom, and Glendenning"
which used a surface approximation.

Consideration of the magnitude and phase diagrams
evidently is capable of giving a rough idea of one major
feature of an angular distribution for energies about 5
MeV, namely, whether it is peaked forward or back-
ward, or whether the cross sections at 0 and x are
similar. The phase diagrams can be drawn to a good
enough approximation from the general considerations
of Sec. 2.

Although the nuclear interior contributes a very
large proportion of the direct interaction cross section
at 0 and m at these energies assuming a volume inter-
action, it is not clear that merely looking at extreme
angles can distinguish surface from volume interaction
in the cases L=O and 2. The case L= 1 is more hopeful.
The backward cross section in this case is very much
larger for volume interaction than surface interaction.
Since the interior plays such a large part in the volume-
interaction calculation, it is reasonable to expect that
exact calculations over the whole angular distribution
will reveal gross differences between surface and volume
interaction in certain cases which would enable an ex-
periment to be performed to distinguish one from the
other.
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