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Lifetime of a Quasi-Particle in a Superconductor at Finite Temperatures
and Ayylication to the Problem of Therirral Conductivity*
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The theory of the lifetime of a quasi-particle at 6nite temperatures is developed by using a generalization
of the Green s function formalism of Nambu. The explicit results for the lifetime, as a function of the excita-
tion energy and the temperature, are applied to the problem of electronic thermal conductivity when inter-
action with the phonons is the limiting mechanism for the heat Rux. The lifetime appears in a general expres-
sion for the thermal conductivity which is derived from the corresponding Boltzmann equation by making
a relaxation-time approximation. The resulting curve for the ratio of the thermal conductivity in the super-
conducting state to that in the normal state versus the reduced temperature is found to decrease mono-
tonically and to have a slope of about 2 at the transition temperature.

I. INTRODUCTION

'N a foregoing article' we determined the lifetime of a
~ - quasi-particle in a superconductor at zero tempera-
ture by using the Green's function formalism of Nambu. '
In the present work we extend this theory from zero to
finite temperatures. The generalization of Nambu's
(2X2)-matrix propagator for a quasi-particle is ob-
tained by replacing the expectation value in the ground
state of the 2 product of the two-component electron-
hole operators by an average over the grand canonical
ensemble. According to the procedure developed by
Abrikosov, Gor'kov, and Dzyaloshinskii' this propa-
gator can be constructed by means of a diagrammatic
analysis from the propagators of the noninteracting
system in a way which is quite analogous to that used
for zero temperature. Thus, the generalized self-con-

sistency condition of Nambu is obtained, as for zero
temperature, by equating an Ansatz for the self-energy
part to the self-energy amplitude arising from the
lowest order diagram in the dressed particle and inter-
action picture. The imaginary part of the pole of the
particle propagator in its complex energy variable,
which yields the inverse lifetime, can be determined
with the help of this self-consistency condition.

However, the mathematical procedure has to be
modified since the previous integration in the self-

consistency condition over the energy variable of the
intermediate state is now replaced by a sum over dis-

crete imaginary values in the energy variable. The main
problem is to carry out this sum and then to continue
analytically the result for the sum, which is obtained as
a function of imaginary values in the energy variable,
from the imaginary to the real axis. The difference in the
procedure of the calculation is a consequence of the
boundary conditions which apply to the thermal Green's
functions when they are considered for imaginary values
of their time variables. These boundary conditions
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follow directly from the cyclic invariance of the trace
appearing in the definition of the thermal Green's
functions.

Since we have found that at zero temperature the
decay of a particle is caused overwhelmingly by its
interaction with single phonons, we shall consider here
only this contribution to the decay rate. One expects
intuitively that the decay rate consists of the sum of
transition probabilities for all the particle-phonon
processes allowed by energy and momentum conserva-
tion. At zero temperature there can only occur processes
where the particle is scattered with the emission of a
phonon. However, at finite temperatures processes where
the particle is scattered with the absorption of a phonon
and processes where the particle, together with a second
particle of opposite spin, is annihilated with the creation
of a phonon are also possible. One expects also that the
transition probability contains the coherence factor
which applies for the process in question, and that it is
multiplied by the appropriate Fermi and Planck factors
which take into account the occupation of states by
particles and phonons.

The explicit results for the decay rate of a quasi-
particle, obtained as a function of its excitation energy
and the temperature, will enable us to develop a refined
theory of the thermal conductivity when the interaction
with phonons is the limiting mechanism for the heat
Aux. So far the corresponding experimental data have
not been well understood. Bardeen, Rickayzen, and the
author4 treated this problem by considering the full
Boltzmann equation for the deviation in the distribution
function of quasi-particles from the equilibrium value.
From an approximate solution of this transport equa-
tion they obtained a negative value for the slope of the
ratio of the thermal conductivity in the superconducting
state, ~„ to that in the normal state, ~, vs reduced
temperature, T/T„at the transition temperature T,.
This result disagrees with measurements made on pure
tin' and mercury' which show a positive limiting slope

4 J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113,
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~ A. M. Guenault, International Conference on Supercon-
ductivity, Cambridge, 1959 (unpublished).

J. K. Hulm, Proc. Roy. Soc. (London) A204, 98 (1950).
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of about unity and five, respectively. Kadanoff and
Martin~ treated the problem of thermal conductivity
anew by the method of thermal Green's functions. Their
first basic assumption is that a replacement of the
transport cross section by the scattering cross section
does not lead to a significant error in the case of the
thermal conductivity. In this work we shall assume this
approximation to be valid, and we shall make the
corresponding simplification in the Boltzmann equation
of BRT. We shall see that this approximation leads to
exactly the same general expression for the thermal
conductivity as that obtained by KM. This expression
consists essentially of an integral over the excitation
energy of the particle where the integrand contains the
lifetime of the particle as a factor. In evaluating this
expression KM made two further approximations. They
neglected the dependence of the lifetime on the excita-
tion energy, and they assumed that the lifetimes of the
excitations in the superconducting and the normal state
are the same. Under these approximations the lifetimes,
which are unknown parameters in the work of KM,
drop out of the expression for the ratio ii,/ii„, and the
temperature dependence of this ratio can easily be
calculated.

However, from our results for zero temperature it
seems likely that the lifetimes do strongly depend on the
excitation energy, and further, that the occurrence of
the gap and the coherence factors does markedly alter
the lifetime of a quasi-particle in comparison to that of
a normal state excitation. Therefore, it seems desirable
to calculate explicitly the lifetimes in both states and,
if necessary, to modify Kadanoff and Martin's calcula-
tion of the temperature dependence of «,,/» by inserting
these quantities into the expressions for K and K„.

II. GENERAL THEORY OF LIFETIMES AT
FINITE TEMPERATURES

The generalization of Nambu's one-particle matrix
Green's function from zero to finite temperatures is
obtained by replacing the ground-state expectation

where
P (p ])—eiKty(y)e

—iKi (2 2)

f c„t
4 (P) = I , 4 t(p) = (e»t, ~te ,i). (2.3)

EGC „i,t

The c~ and c„.~ are annihilation and creation operators
for electrons with momentum p and spin compo-
nent 0 along the axis of quantization. The operator
a= C P c~&c „isubtracts two electrons from the system
without changing its total momentum and spin. ~

The analytic properties of the thermal Green's func-
tion G,, (P,I) can be derived from a spectral representa-
tion. Denoting by I e) the eigenstates of the operator E
and by E„the eigenvalues, we obtain

G* (P,I)= —~ de e '"f„(p,e),
—for I&0,

d»e —'"l, (p, e), for I(0, (2.4)

where the two spectral weight functions for f&0 and
t (0 are connected through the relationship

l „'(p, )= e e'j „(p, ) . (2-~)

If terms of order 1/X are neglected, the matrix |,;(p, e),
for instance, is given by

value of the T product by an average over the grand
canonical ensemble, i.e.,

G,, (p,~) = —~ »e"" x'l(4'(p ~)~t i'(p 0)) (2 I)
The operator E is equal to II—pS, where H is the
Hamiltonian of the system, E is the electron-number
operator, and p is the chemical potential. The quantity
exp( —PQ), with P= (k~T) ', is the grand partition sum.
If we measure the one-particle energies from the energy
p, then the old Hamiltonian H is replaced by the new
one E=H pX, a—nd the Heisenberg operators f and P
develop in time according to

I&~I "t'I»&I' &~I "t l~)&~l~'e-. i I~))
f' (p, ~)d~= e" eZ e '«"I

(&nice, itin)&mlc„ttle) l&mlate „pie)I' I

with the restriction

t( (E~ E~) (f+dE.
Following the procedure introduced by Abrikosov et

at. ,' and presented in a convenient form by Schultz, ' we
define still another one-particle matrix Green's function
by

g';(p, )= —»e"" 'T(4'(p, )4 '(p,0)), (2 7)

L. P. KadanoB and P. Martin, Phys. Rev. 124, 6/0 {1961),
hereafter referred to as KM.

T. D. Schultz, Quantum Field Theory and the Many-j3ody
Problem (Space Technology Laboratories, Inc. , Los Angeles,
1960).

where

P(P,7) e"'P(y)e "—' etc. — (2.8)

Now the T product is understood to order the operators
according to the relative sizes of the ~'s. One can show
that the new Green's function satisfies the following
boundary conditions

g"(P,r) = —g' (P, ~ P)- (2.9)
Thus, g,;; is periodic with period 2P. If we expand
g;, (P,7) in a Fourier series,

g' (p,~)=P ' 2 e ''"'g'~(p, ~l'--), (2 &0)
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we must require that

iE„=i(2m+1)m-P '„n integer. (2.11)

g'~ (y,iE-)= (' (y, o)(1+e ')
de

iE„—e
(2.13)

where the matrix („(p,o) is given by Eq. (2.6). The
function g, , (y, s), defined by the integral representation
in Eq. (2.13) and iE„set equal to s, is analytic in the
upper and lower half of the complex s plane and has a
branch cut running along the real axis. g(p, s) goes over
into its complex conjugate value if s crosses the branch
cut. The spectral weight function, („(p,o), can be ob-
tained by taking the imaginary part of g;, (p; o+it),
where q is a positive infinitesimal:

(' (y, e)=—(1+e ') '
2'

X[g., (y; +i"t) t.",*(y; —+i"t)] (2 14)

A simple physical interpretation of the propagator
G,, (y, t) is possible only if all four components of the
spectral weight function ( „are strongly peaked around
the same excitation energy, say ~=E,„, with the same
half-width, I' We shall assume in the following that
this peak is due to a simple pole of g;, (p,s) at
s=(E, —iI'„), with real residue 3,, Note that this
pole belongs to the analytic continuation of g, , (p, s)
from the upper right into the lower right plane. If one
inserts g;,=2,,/[o —(E,„—iI'„)] into Eq. (2.14), one
obtains from Eq. (2.4) in the case t) 0 the following ex-
pression for G,, (p, t):

The expansion coeKcients in Eq. (2.10) are given by

+p

g, , (y,iE„)=— dr exp(iE„r)g(p, r). (2.12)
2 p

If we make a spectral representation of g;, (p, r) in terms
of eigenstates ~e) of E and calculate the Fourier trans-
form according to Eq. (2.12), we obtain with the help of
the Eqs. (2.11) and (2.5)

iv„=i2nwp ', e integer.

(3) Each vertex carries the matrix factor

(2.19)

rob(y —O'Wq)8(E„—E +vi), (2.20)

the pole of the analytic continuation of g(p, s) from the
lower left into the upper left s plane determines the
inverse decay time of a quasi-particle (—p, &).

The rules for obtaining g(p, iE„) by a diagrammatic
analysis are completely analogous to those valid for the
zero temperature case if the appropriate modifications
are made. In the dressed particle and interaction picture
these prescriptions turn out to be the following

(1) Each directed particle line carries a matrix factor
—g(p, iE„).This complete propagator can be obtained
from the proper irreducible self-energy part, P(p, iE„),
and the propagator for the noninteracting system,
go(p, iE„), by means of Dyson's equation:

g(»iE-) = Lgo '(y, iE-)—Z(y, iE-)] '. (2.16)

go(p, iE„) is easily calculated from Eqs. (2.7) and (2.12)
and found to be

2E"+ovro
go(p, iE„)=

(iE )'—o„'

The quantity e„denotes the one-electron energy meas-
ured from p. 7.; are the usual Pauli spin matrices. '

(2) Each phonon plus Coulomb interaction line carries
a factor —d(q, iv ). This complete interaction propa, —

gator is determined by
1/2~ 2

d(q, iv„,)=
E,(iv„)

(0pl
X (iv.)'— + . (2.1&)

E,(iv.) E,(iv.)
Here &v» denotes the ion-plasma frequency, E,(iv„) is
the analog to the dielectric constant, and v, =4vre'/q' is
the Fourier transform of the Coulomb potential. From
the boundary conditions valid for the boson propagators
one finds that i v„, can take on only the values

where the first delta stands for the delta function and
the second one for the Kronecker symbol.

(4) One has to integrate over all internal three-
momenta and to sum over all internal energy values.

G,, (p, t) = —iA „[1+exp(—PE„,)]—'

Xexp[—(iE„„+I'„)t]
2I'„exp[—(2m+ 1)vrP 't]

(2.15)
=o P([E„„+i(2m+1)~P ']'+F„')-Using these rules we obtain the following analog to

the Nambu self-consistency condition for the self-energy
part of a quasi-particle:

—A;;

+Oo

P ' 2 rog(y —q, iE»)
(2g)' m—"

Xrod(q, iE„—iE ).

Z(y, iE-)=—

(2.21)
' The notation is:

0 i 2 ' 0 ~ ~ 0

One recognizes that the second term on the right-hand
side of Eq. (2.1S) can be neglected in comparison to the
first term if the conditions Fv((E,v and I'„p ~ are
fulfilled. From the definition of G,, (p, t) and from the
time dependence of the first term in Eq. (2.15), we see
then that 2F „has to be identified with the inverse decay
time of a quasi-particle (p, 'l). An analogous considera-
tion for the case t - 0 reveals that the imaginary part of
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P(p, iE„)=iE„&,(iE„)+x,(iE„)rg+y„, (iF )ri. (2.22)

Inserting Eqs. (2.17) and (2.22) into Eq. (2.16) one
obtains

with

a(p, iE-)=zZ„(z)+e, (z)rs+y, (z)ri
(2.23)

z'[Z. (z)j'—[E~(z)j'

Nambu's Ansatz for the self-energy part generalizes now
to

FIG. 1. Integration contours
CI, C2, and C3 and branch cuts I
and II in the complex s plane.
The contours encircle the
poles z =i(2m+I)mP ' (m
all integers) of the function
PI+exp( —Ps)3 '.

C

t (

&m ir" ii
&i

I

z-plane

E,( )= &[ .( )j'+[~.( )7)"',
4(z) = e.+x.(z), Z.(z) =1—k.(z).

(2.24) of the function o (iE„)which is determined by the sum

Ke have seen that, in general, the energy E„„and the
half-width I'„for a quasi-particle (p, g) are given by the
real and imaginary parts, respectively, of the pole of
the analytic continuation of g(p, z) from the upper
into the lower right plane. From the particular expres-
sion for the particle propagator given by Eq. (2.23), we
obtain in this way the following approximate expressions
for E„„and F~:

o(iE„).=P ' Q H(iE )L(iE„iE ).—(2.29)

The functions H(z) and L(z) are defined by

E,zZ„,(z)+.-,e„,(z) -y,y„,(z)
H (z)=,(2.30)

E.{"[Z.,(z)7-[E.—,(z)7)

E„„=Re[E,(z)/Z„(z)].=z„„+,„, (2.25) L(z)=[X,(z)j ' z'-

I „=—Z Im zj, (z)+ x, (z)
E„

+ y, (z) . (2.26)1

Ey g=Ez @+ig

The quantity p is a positive in6nitesimal. The functions

&~(z), X„(z), and @„(z)are the analytic continuations
of the corresponding quantities given originally for the
argument s=iE . The other quantities appearing in
Eqs. (2.25) and (2.26) are defined by

e„=e„jReX„(E,„+ill), p =Re& (E„„+irl),
E„=(e '+y ')'" Z„=1—Re)„(E„+iil).

d g 'V~I &

Imrr (E,„+irl).
(2ir)' Z„

(2.28)

Here we have denoted by o (z) the analytic continuation.

It should be remarked that a consideration of the s
dependence of E„(z)/Z„(z) would yield a correction
factor on the right-hand side of Eq. (2.26). (This factor
has been denoted by A „'in reference 1.) Since we do
not evaluate this term explicitly, we neglect it here and
in the sequel in order to simplify the notation.

The quantities $„(iE„), X~(iE„), and p~(iE ) are
obtainable from the self-consistency condition in Eq.
(2.21). Comparing coefficients of the matrices 1, rs, and
ri in Eq. (2.21), one deduces three coupled integral
equations for these quantities. From these integral
equations and from Eq. (2.26), we derive the following
expression for the half-width F„:

III. PARTICLE DAMPING DUE TO PHONON
EMISSION AND ABSORPTION

In this section we will evaluate the damping of a
particle caused by the interaction with phonons. This
contribution to the damping, denoted by I'„I'", can be
obtained from the general expression which has been
derived in the last section and is given by the Eqs.
(2.28), (2.29), (2.30), and (2.31). Since we do not con-
sider here the damping due to Coulomb interaction, we
neglect the second term on the right-hand side of the
Eq. (2.31) for L(z).

First we carry out the summation over all integers m
in the expression for o (iE„) in Eq. (2.29). This is done
by considering the expression H(z)L(iE„—z) as a func-
tion of the complex variable s, multiplying it by the
function [1+exp(—Pz)] ', and integrating the re-
sulting product along appropriate contours which en-
close the poles z =iE =i(2m+1)irP ' of the latter
function. These contours are then deformed in such a
way that the integrals can be evaluated. In order to
choose the right contours, we have to consider the
analytic properties of the function H(z)L(iE„—z).
From the spectral representation of the particle propa-
gator we know that g(p, z), and accordingly H(z), has a
branch cut, I, running along the real axis of the s plane
and is analytic in the upper and lower half plane. One
can derive the spectral representation for the phonon
propagator in a way quite analogous to the procedure
used in the case of the particle propagator, and one sees
from this that d(q, z) also has a branch cut running
along the real axis and is otherwise analytic. Therefore,
the function L(iE„z) must possess a bran—ch cut, II,
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running along the axis Im(s) =iE . According to these
general analytic properties we choose three diferent
contours, C~, C~, and C3, where C~ encircles the poles of
the function [1+exp(—Ps)] ' which lie below I, C2
encircles the poles which lie between I and II, and C~
encloses the poles lying above the branch cut II. The
contours C~, C~, and C3 and the branch cuts I and II
are shown in Fig. 1. From the above consideration
o(iE„) is equal t.o

(iE-) = (2 i)-'I + +
cg cg cs )

H(s)I. (iE —s)
ds. (3.1)

(1+o ')
These three closed contours can be deformed in such

a way that C~ runs just below I, C2 runs just above I and
just below II, and C3 runs just above II. The contribu-
tions from those parts of the contours which lie at
infinity vanish. If we use the fact that the function II
has a discontinuity equal to 2i ImJI on I, and that the
function L (iE —s) has a discontinuity equal to

2i ImL (iE,„—s) on II, we obtain from Eq. (3.1)

+" L(iE„—x) ImH(x+9)
o (iE„)=s—' Cx

[1+exp(—Px)]
+" H(iE„—x) ImL(x+i8)

ds (3.2)
[1+exp(Px) exp( iP—E„)]

The quantity 6 is a positive infinitesimal. The func-
tion H(s) is given by Eq. (2.30), and L(s) is given
by the first term of Eq. (2.31). We can assume,
in a first-order approximation, that the quantities
—Im[E„,(x)/Z„, (x)]=a(x) and —Im[o~oi2/&, (x)]
=P(x) occuring in the denominators of the functions H
and L are infinitesimals. From the general results for
the analytic properties of H(s) and L(s), one sees that
the signs of 0.(x) and P(x) must be identical to that of x.
With the help of the delta functions arising from the
terms ImH(x) and ImL(x), the integrations in Eq. (3.2)
can be carried out. We also consider that the term
exp( —iE„P) in the denominator of the second integrand
is equal to —1, since iE takes on the discrete values
given by Eq. (2.11).Then we find approximately from
Eq. (3.2)

o (iE„)=—w(E, i) L(iE„—E„i) w( —E,i) L(iE„+E,i)
2E,i [1+ exp (—PE„i)] 2E,i [1+exp (PE,i)]

H(iE„+0)H(iE„—0)
(3.3)

20IE,(0) I'[1—exp(pQ)] 20IE, (0) I'[1—exp( —pQ)]

Here the zeros of the functions {x&Re[E~,(x)/Z~, (x)]}are denoted by x= &E,i= &Er~ „and the zero. s of the
functions {x+[oi,i(ReE, (x) )'i'/I E,(x) I ]}are denoted by x= &0=&0„.In deriving Eq. (33), we have used the
abbreviation w(s) defined by

w(s) = {s'—[E.i(s)/Zi(s)]}H(s).

If we continue analytically the function o. in the s plane from s= iE„ to s= (E„i,+inst), and if we take thereafter the
imaginary part, of o, we obtaill once more delta functions from the terllis 1 aild H in Eq. (3.3).The result turns out
to be

7r w(E„i)
Imo (E,o+ ig) = P (E„„—E„—0)—b(E„—E„+0)]

4E iQIZ. (0) I' [&+exp( PE i)]

w( —Ki)
g (E„„+E„,+0) S(E„+E„0)]- —

[1+exp(PE ))

w(E,„—0)
P (E„—0+E„,)—h (E„„—0—E,i)]

[1—exp (PQ)]

w (E,„+0)
[h(E„+Q-E„)-~(E,y+0+E.i)] . (3.4)

[1—exp( —PQ)]

expression in Fq. (3.4) can be simpli6ed by rewriting it in terms of Fermi functio» f„=f(PK,)
= [1+exp(pE, )]—' and piancir functions &,=E(80,)= [exp(pQ, )—1] ' and by adding together the terms w»ch
belong to the same delta function. Introduction of the result into the Eq. (2.28) yields the following expression for
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the inverse decay time of a particle:

2I'„"=(1—f )
—'

X'&
qGOp & 44 p-4n4'r p)—— 1+

(2~)s Z,Z„pnplZp(n, ) I& 2 Z„Z, ,
Xk(1+&p)(1 f~ —.)o(&,~.+II p I"-"—)+» p(1—f. p)o(&—" . f-lp —&"—)7

-~~ 1— )(1+/ )j„,5(p,„,+s, p) . —(35)
Z,E, ,

The physical meaning of the three di6erent terms in the
integrand of Eq. (3.5) becomes obvious if one examines
the arguments of the delta functions, the statistical
factors, and the coherence factors. The first and second
terms correspond to particle scattering from the state y
into the state y—q with the emission of a phonon q or,
absorption of a phonon —q, respectively. The third
term corresponds to the destruction of a pair of particles
in states (p, f) and —(p—q), g with the simultaneous
creation of a phonon q.

The physical meaning of the statistical factor

(1—f„) ' in front of the whole expression in Eq. (3.5)
is not so obvious. A simple explanation for the origin of
this statistical factor can be obtained, as has been
pointed out by Kadanoff, "by considering the Boltzmann
equation which governs the decay of a deviation from
the equilibrium distribution. This Boltzmann equation
has been set up by BRT4 in order to develop the theory
of the electronic thermal conductivity, when the heat
current is limited solely by phonon scattering. The rate
of change of the nonequilibrium distribution f„for the
particles due to collisions with phonons is found to be

dg 1 ee ep))
l

P', l' — 1+ !!f'(1—f) (1+Iv)—f(1—f')»7)8(I"—E—0)
(2)

'
2 ZZ' )

1 ee —ep ))+- 1+, !Lf'(1—f)»' —f(1—f' )( 1+»')7~«' —L:+II)ze i
1 ee —ep)+- 1— !L(1—f')(1—f)»)'—f'f(1+»)7 h(&'+&—~I) (3 6)
2 EE' 3

It has been assumed that one can neglect the departure
from the equilibrium distribution 37=/q=E q of the
phonons. The matrix element for a process involving a
phonon with momentum ~q is denoted by V„ the
unprimed and primed quantities f, e, and E designate
arguments p and p—q, respectively; the abbreviation
f'stands for f „+, Hone sets .f= fp+Af, where fpis the
equilibrium distribution and Af is a small deviation
from equilibrium, and if one neglects higher than first
order terms in hf, one obtains two different contribu-
tions to (Bf„/rlt)poii from the right-hand side of Eq.
(3.6). One verifies easily that the first contribution is

equal to 2F„»Af~, w—here 21'„» is identical to the
expression which has been obtained here from first
principles and is presented in Eq. (3.5). The second
contribution is given by an integral over d'q containing
the deviation Af„p as a factor in the integrand. If
initially If~ is different from zero only around a point
y in momentum space, then the second contribution will

always be negligible, and one is left with the differential
equation

(3.7)

Hence, according to this consideration, one must iden-

tify the quantity 2F„p" as the inverse decay time for a
quasi-particle. We can now see the origin of the sta-
tistical factor (1—f„) '. Consider, for instance, the
contributions to (Bf~/rII)„ii coming from the terms
with delta functions 8(E'—8+0) in the integrand of
Eq. (3.6). First we have the ordinary term, proportional
to hf„(1 f„,)(—1+1V,),—which corresponds to the
scattering from the state y into the state y—q with the
emission of a phonon q. But there is also a second term,
proportional to 5f,f„,N„wh—ich corresponds to the
scattering from the state y—q into the state p with the
absorption of a phonon q. The reason for the negative
sign of this second contribution is that for a positive Af„
the number of empty states around p and accordingly
the backscattering is reduced in comparison to the
equilibrium value. By making use of the delta function
which multiplies both contributions one can transform
the sum according to

d f„f(1 f„,) (1+—X,)+f„—,E,7
~fp(1 f. p) (1+&—p) (1 -f.) ' (3 8)— .

"L. P. KadanoII (private communication). See also L. P.
Kadanoff and G. Bayrn, Quantum Statzstica/ Mecl~aeics (W. A.
Benjamin, Inc. , ¹wYork, 1962).
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We now see that the enhancement of the decay due to
the reduced backscattering is included in the factor
(1—fv) ' which is greater than one. It is interesting to
note that this result has been obtained quite auto-
matically by employing thermal Green's functions.

The expression for 21'„v", presented in Eq. (3.5), is
evaluated by approximating the energy gap parameter
p~ by the constant BCS value" eo valid for the given
temperature, and further, by setting e„=e„, E„„=E~,
and Z„=1 in a lowest order approximation. The inte-
grations over the wave number

l q l
and the polar angle

6 = g (p,q) are transformed into integrations over
dQ= dQ, and dE'= dE~„respectively.

Let us consider separately the three contributions
which arise from the three delta functions in the
integrand of Eq. (3.5):

(1) One can show from the argument of the first delta
function, 8(Ev,+0, Ev), that —0,((E„—eo) is a
necessary and 0,)2(c/v+) (Ev eo) is a su%—cient condi-
tion for the integral over E' to be different from zero.
Here we have denoted by c the velocity of sound, and by
v& the velocity of electrons at the Fermi surface. We
shall neglect the second condition since c/v~ is much
smaller than one. Accordingly the limits of the dQ

integration, which remains after the dE' integration has
been carried out with the help of the delta function, are
set equal to 0 and (E„co). —

(2) A rough estimate of the limits of the arguments of
the second delta function, 8(E~, 0,—E~—), reveals
that for all 0, which meet the condition 0,)4(c/vv)E„
the dE' integral will be diferent from zero. Neglecting
also this restriction put on 0„we integrate over 0 from 0
to0,where 0 denotes the maximum phonon frequency.

(3) In the case of the delta function 8(Ev,+Ev 0,)—
one finds that 0,) (Ev+eo) is a necessary and 0,)2(c/v~) (Ev eo) is —a sufhcient condition for the inte-
gral over E' to be different from zero. Thus, we have to
integrate over 0 from (Ev+ co) to Q„.

All the terms with e~, in the coherence factors drop
out in the result for the E' integration because both
signs of e„,are encountered. The absolute square of the
dielectric constant in the integrand of Eq. (3.5) can be
approximated by the square of the Fermi-Thomas value,
[1+(~,i/0, )']', and this expression can be approxi-
mated further by (cv»/0, )' if the conditions E„((Q and
k~T((Q are fulfilled. The 6rst condition results from
the fact that the dQ integral (1) has an upper limit
(E„eo),and the—second condition arises from the fact
that the integrands of the dQ integrals (2) and (3) con-
tain the statistical factors X(») and fg(0—E„)],re-
spectively. Also, we can replace the upper limits 0 of
the dQ integrals (2) and (3) by ~ if these condition. s are
fulfilled. Then the final expression for 21 „I'" turns out
to be

e'tN )
, lLf( —PE.)] '

p~pl ~

x,—~o CQ 02 (E 0)
f[—tt(J-'. —0)][1+&(»)]

[(E„—0)'—.,2]iI2 E„(E„—0)

dQ 0'(E„+0) 2

lf[—0(E„+0)]&(»)
[(F.„+0)'—eo']"' F.,(E„+0)i

dQ 0'(0—E„) ~ 2

1+ lf[&(0—E.)]L1+&(»)] (3 9)
[(0 E )2 ~2]i/2 E (0 E )j

It is convenient to consider I'„I'" as a function of the parameters x and y defined by

and to set
x=E„/e , o y= epP, (3.10)

8 5$
I'„&"= g031', (x,y).

2pM&i
(3.11)

From Eqs. (3.9) and (3.11) one obtains, after some transformations have been carried out,

r, (*,y) =
-' Ch t2(x—

h
—x-')

{(1+e "'* ") '+(e"'—1) '}
[(x—t)' —1]'h' "

Ch t2(x+t —x-')
"') ' —(1+ "'*'") '}

[(x+t)' —1]il' " Cht'(t x+x ')—
{(1+e""') '+(e"'—1) '} (3.12)

~i [(t—*)'—1l'"
"J.Bardeen, L. N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, I175 (1957), referred to as BCS.
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8 fS
p h p-sp (s)

2 cop]

where the function F„(s) is given by

(3.13)

The normal state values for the damping, denoted by
I'„,„'",are obtained from the expression in Eq. (3.9) if
~0 is set equal to zero and E„is replaced by e„.The result
can be written in the form

~ph
P

mph
Pzn

).0

F„(s)=(8/3)F (0)+F (s)+F (—s), (3.14)
0.0—

0.0 2.0 4.0 6.0
ep/tc T

8.0 l0.0

with

Fs(rt)= dt t'(1+e' &) '

(3.15)

(3 Ie

FH:. 2. The ratio of the inverse lifetime of a quasi-particle,
2I'„zs, to that of a normal-state excitation, 2F„,„z", vs z„/kT for
different reduced temperatures t=T/T, The qu.antity zz is the
energy of the normal-state excitation, measured from the Fermi
energy.

The integral operator A is defined by the identity
The function Fs(—rt) has been tabulated by Rhodes. "-

We have evaluated I', (x,y), as a function of x,
numerically for a number of different parameter values
y. We compare the decay rate of a quasi-particle, 2r „p',
with that of a normal-state excitation, 2I'„, p', by
plotting the ratio of these quantities vs s= e~P. From the
Eqs. (3.11), (3.13), and (3.10) we obtain for this ra, tio
the expression

(4.3)

From the definition of the Kernel W(p, p') in BRT one
finds that the integral over d'p' of this quantity is con-
nected with the decay rate 21'„'" )Eq (3.5)$ bv the
relation

ph/r ph —ypr (y 1(ss+y2)1/2 y)/r (s) (3 ] 7)
y

+'(ii v')d'p'=
dE„

(4 4)

In Fig. 2 the results are shown for some parameter
values of y. The corresponding reduced temperatures,
T/T„are obtained by writing y= [ep(0)/kgTz][ep(T)/
ep(0) $(T,/T) and by using the results of the BCS theory
for the ratio ep(T)/ep(0) and the BCS relation 2ep(0)
=3 52k~Tc

IV. ELECTRONIC THERMAL CONDUCTIVITY OF
A PURE SUPERCONDUCTOR

In this section we will use the results which have been
obtained for the lifetime of a quasi-particle at finite
temperatures in order to determine the thermal elec-
tronic conductivity in the case where the interaction
with the phonons dominates over that with the im-
purities. In the earlier theory presented by Bardeen,
Rickayzen, and Tewordt4 this problem has been attacked
by setting up the corresponding Boltzmann equation.
The resulting integral equation which determines the
deviation, tt f„ from the equilibrium distribution f„= f(PE~) of the quasi-particles in the presence of a,

temperature gradient has been written as

(
Pz en )lTE@ de dT

=AX„.
m E,) T dE„ds

dT) i p, e„)
2 E~'„——jh f„d'p

dsj mE„i
(46)

If one determines d f~ from Eqs. (4.1) and (4.5) and
inserts the result into Eq. (4.6), one obtains

Kadanoff and Martin' have argued that there is little
point for our crude model of a superconductor to con-
sider that instead of the scattering cross section the
transport cross section enters the conductivity theory.
The difference between these two cross sections is
represented by the term I„ in the integrand of Eq. (4.3),
and one sees that this term gives rise to a reduction of
the forward scattering. We follow here the simplifying
assumption made by KM and accordingly neglect the
term with X~ in Eq. (4.3). Then the integral operator
is replaced simply by a factor, and we can write with the
help of Eqs. (4.4) and (4.2)

(4.5)

Using the formula v= V„E„ofBRT for the group
velocity of quasi-particles one finds that the thermal
conductivity, ~„ is determined by the expression

The z axis is taken along the direction V T. The quantity
X„ is connected with Af„ through the relation 2P ph

n " e~' sech'PPE )
IrzT= sP de@

te
(4 7)

Af„=—(df„/dE„)x„.
I~ P. Rhodes, Proc. Roy. Soc. (London) A204, 396 (1950).

4.2
where e is the density and m the mass of the electrons.
Thi.s is exactly the expression which has been derived
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FIG. 3. The ratio of
the electronic thermal
conductivity in the su-
perconductor, It„ to that
in the normal metal, a„,
when interaction of the
quasi-particles with the
phonons is predominant.
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Ch x(x'—1)'"sech'(islay)LF, (x,y) j '

dss'sech'( —,'s)LF„(s)j '
(4 g)

This expression depends on the temperature only
through the parameter y= pp(T)/kiiT Therefore. , the
plot of the ratio N, /ii„vs the reduced temperature de-
pends on pp(T)/pp(0) as a function of the reduced tem-
perature and on the value of the ratio pp(0)/ksT, . If we
use the results of the SCS theory then we obtain the

by K.M by using thermal Green's functions. The normal
state value of the thermal conductivity, ~„, is obtained
from the right-hand side of Eq. (4.7) by letting pp go to
zero.

While KM have neglected the dependence of the
decay rates 2I'„I'" and 2I'~ „I'" on the excitation ener-

gies, and have even set these two quantities equal to
each other, we insert the actual values for the decay
rates which have been determined in the last section,
and we evaluate the resulting integrals numerically. In
order to bring these integrals into a convenient form we
transform in Eq. (4.7) to the integration variable

& = Ei /pp and in the corresponding expression for z„T to
the integration variable s= p„P, and we introduce the
functions F, (x,y) and F„(s) which are related to I'„'"
and F„,„p" via Eqs. (3.11) and (3.13), respectively.
Then we obtain for the ratio of the thermal conduc-
tivities, a,/~, the final expression

plot shown in I'ig. 3. This curve has a positive limiting
slope at T/T, = 1 and decreases monotonically with de-
creasing T/T, . For comparison we have included in this
figure measurements of «,/a„obtained for pure tin, '
mercury, ' and lead.

V. CONCLUDING REMARKS

Our calculation of the lifetime of a quasi-particle in a
superconductor at finite temperatures provides one
more example of the power of the thermodynamic
Green s functions in describing the properties of many-
particle systems. In this specific example it is especially
satisfactory, in that this method leads quite auto-
matically to a certain statistical correction factor to the
expression for the inverse lifetime which is anticipated
from a more naive calculation. This correction factor,
(1—f„) ', has been verified later with the help of the
Boltzmann equation. The explicit calculations show
that the lifetimes of a quasi-particle and a normal-state
excitation depend strongly on the excitation energy, and
that the ratio of these quantities differs markedly from
one, for most excitation energies and for temperatures
not to close to the transition temperature (see Fig. 2).

The application of the results for the lifetimes to the
problem of electronic thermal conductivity, as limited
by lattice scattering, leads to a fair agreement with the
experimental data obtained for the "weak" supercon-
ductor tin (see Fig. 3). In future work we intend (a) to
solve the Boltzmann integral equation numerically in
order to make certain that the relaxation-time treat-
ment of this equation is justified, and (b) to take into
account the dependence of the energy gap parameter on
the excitation energy in the case of the "strong"
superconductors mercury and lead.
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