
P H YS ICAL REVIE%' VOLUME 128, NUMBER 3 NOVEMBER 1, 1962
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The Sternheimer factors for the ferrous ion are calculated using the free-ion wave functions of Watson and
the variational method of Das and Bersohn. The results of this calculation are R=+0.22 and y„=—10.6.
With these factors and previously published ferrous quadrupole splitting data, the quadrupole moment of
the 6rst excited state of iron-57 is estimated to be +0.15 b.

INTRODUCTION

ECENT Mossbauer experiments' with ferric~'
(Fe~) and ferrous' ' (Fe++) compounds have

provided two different ways of determining the electric
quadrupole moment, Q, of the first excited state of the
iron-57 nucleus. As we shall see, this is because the
relative roles of ionic versus lattice contribution to the
electric field gradient, q, at the iron-57 nucleus (which
must be calculated for each compound), are opposite
in the ferric compounds to those in the ferrous.

In lowest order, the ferric ion is in a spherical 6$
state (3d') so that the field-gradient calculation for
ferric substances involves a lattice sum, '

q&,&. This sum
must then be multiplied by the Sternheimer correction, '
(1—y„), to account for the appreciable first-order
distortion of the ferric core by the lattice':

q= (1—y„)qi.r, .

As shown by Burns, " when such lattice sums are
performed and combined with experimental data of
Wertheim' " the values of Q appear to center around
+0.4 b.

In contrast, the lowest-order state of the ferrous ion
is 'D (3d') which may be pictured as the spherical
ferric-like "core" plus an unpaired 3d "valence"
electron. The ionic contribution to q then contains the
field gradient due to the valence electron, q,l. This in
turn must be multiplied by the Sternheimer correction'
(1—E), to include the polarization of the core by the
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valence electron. The Geld gradient in ferrous substances
is then approximately

q= (1—~)qvai+(1 —
V )qie~. (2)

Several investigators' '" have pointed out that the
lattice term in (2) may be neglected. In addition, if the
factor, R, is assumed to be small compared with unity,
the Geld gradient in ferrous compounds is simply:

q= —((3 cos'e —1)/r')se. (3)

If the restricted Hartree-I'ock free-ion 3d wave function
of Watson" is used to compute the above expectation
value, the quadrupole moment, Q, turns out to be on
the order of +0.1 b.' "'

In view of the surprisingly different values of Q that
one obtains, depending upon which ion is used, and the
various approximations employed, it seems advisable
also to determine the Sternheimer factor, R, in (2).
Such a calculation, using the simple variational
procedure of Das and Bersohn" and the free ferrous
wave functions of Watson, " is reported in this paper.
Since they require very little extra computation, the
main contributions to the factor, y„, in (2) are also
included and compared to the similar factor in (1)
which is calculated by Burns and Wikner. "

METHOD OF CALCULATIO¹6

The factors, R and y„, may be obtained as special
cases of the general quadrupole polarizability, 7(r),
which occurs when a charge, Z, described by the
coordinates, r and 0, perturbs a core electron at r, and
8, through the interaction:

Pi ——',Z(3 cos'e —1)
r, '/r' for r, ~& r

)& (3 cos'ft, —1)
r'/r, ' for r.~& r.

If the zero-order wave function for a core electron is
us(stlrnt), corresponding to the central field Hamiltonian,
Hs, the first-order perturbation, Ni(rttrrtt), caused by
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where

and

(Hp —Ep)up= —(H& —Eg)up,

Ep= (up IHp Iuo) R=(uo I
H&

I up»

(uoIu&)=0.

P~ obeys the 6rst-order wave equation

(6)
v(r) = Z v(r' «~ l'), (13)

"radial, " while those for which l'=1~2 are termed
"angular. "

Inserting (10) into (7) and performing the part of
the core summation which is over nial, one obtains

The quadrupole polarizability is then given by

f 3 cos'8 —1 3 cos gc—1
y(r)=I Z Q 2 up ug . (7)

core r.3r3

The factor, R, is then calculated by letting the perturb-
ing charge be the 3d valence electron and taking the
appropriate expectation value

E=(v() ')./( ').,

while the factor, p„, is obtained by assuming the lattice
ions to be point charges, completely outside the ferrous
ion (r, (r):

(9)y„=lim y(r).

Lup'(nl)]'dr. = 1.

Therefore Fq. (5) is seen to separate if u& is written

ug(r; nlm() =pug(r; nl -+ l', m()

or, more specificially,

u~(r; nlm~) =P Z(3 cos'8 —1)c(l—& l', m~)

X F)."&(Q,)u&'(r; nl & l'). (10)

The coeKcients, c(l-+l', m~), in (10) are obtained
from the expansion

H,up (nlm)) = ——', Q Z(3 cos'8 —1)c(l~ l', m()

or

c(l —+ l', mg)

rP/r' for r, &~r
X I'~. -~(Q,)u, '(«)

r'/r. ' for r, )~ r,

LF~ t (Q,)]*(3cos'8 —1)I'~~&(Q,)dQ„(12)

and the "excitation, " u&'(r; nl —+ l'), is a function of
r, as well as r. Selection rule considerations show that
l'=l or l'=l~2. Excitations for which l'=l are termed

The zero-order wave function for each core electron
may be written

uo(nlm~) =up'(nl) Fg"&(Q.),

where up'(nl), the radial function of r„ is normalized as
follows:

y(r; nl l')

=4C(l & l')r' uo'(nl)u~'(r; nl & l')r, 'dr„(14)
where

C(l —+ l') = Q C c(l —+ l', m))]'.
f»pl= Z

In particular, C(s ~ d) =C(d —& s) =1/5, C(p ~ p)=6/25, C (p —+ f) = 9/25, C (d —+ d) = 2/7, and C(d & g)= 18/35.
For each excita, tion, u~'(r; nl & l'), it is customary to

choose a trial wave function of the form

imax

uq'(r; nl & l') =up'(nl) Q X;(»; nl —& l')r, '+" (15)
i=1

where the Xi are variation parameters and the integer,
k, permits one to vary the start of the series solution.
One then minimizes the second-order energy associated
with each excitation:

Ep(r; nl & l') =y, (r; nl & L')+pp(r; nl —+ l'), (16)

where

P~(r; nl -+ l') = P 2(up(nlm~)
I
Hy(r) I

ml l

and
Xux(r; nl & l', m~)), (17)

yp(r; nl & l') = P (u& (r; nl —+ l', m()
I
Hp —Ep

I

Xu~(r; nl & l', m&)). —(18)

The nl —+ / notation is now deleted and the functions,
p(r), g&(r), and pp(r), associated with each excitation,
u~'(r), are written in matrix notation. " I.et A(r) be a
column matrix composed of the X,(r). In addition,
components of column matrices G and S(r) and the
symmetric matrix T are dehned as follows:

gg= $uo'(nl)]'r '+" 'dr„-
r

s, (r) =2 r ' Luo'(nl)]'»'+p+'dr,

+r'
I ( ulo)]n'r '+'-'dr, , (20)

r
' R. Ingalls, Ph.D. thesis, Department of Physics, Carnegie

Institute of Technology, Pittsburgh, Pennsylvania, May, 1962
(unpublished).
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t;; 2)i'(l'+1) l—(l+1)+(2+Is) (j + Is) j
PNs'(nl)]'r '+&'+'~'dr, . (21)

TmLE I.The partial results which contribute to the Sternheimer
factors for the ferrous ion, R and y . The minimized second-order
energy, Es, (in atomic units), associated with each partial factor
is also given.

and

Pt(r) = CD(8)—S(r)A(r),

y (r) = ',CD(8)X-(r)TA(r),

y (r) =4Cr'GA(r), .

(22)

(23)

(24)

where D(8) = (3 cos'8 —1)'. Minimizing the energy, Es,
with respect to the variation parameters, X;, one obtains
the set of simultaneous equations:

with the solutions

so that

TA(r) =S(r),

h. (r) = T 'S (r),

(25)

(26)

7(r) =4CrCT 'S(r). (2&)

With these delnitions one may derive the matrix
equations"

nl~l'

3fg~d
(a)

3P~P (b)
(c)
(a)

2P~P (b)
(c)

38~g
3d~$
3$~d
3P~f
2P~f
2$~8
1$~d

R(nial')

+0.015
+0.365
+0.073—0.252—0.318—0.201—0.098
+0.018
+0.00
+0.071
+0.042
+0.064
+0.087
+0.050

—1.88X10 3

—1.52X10 4

—2.80X10 4

—3.24X10 4

—0.61X10 4

—0.21X10~
+1.11X10 4

—476X10 3

—2.46X10 4

—4.24X10 3

—4.82X10 3

—2.16X10 4

—2.42X10 4

—3.32X10 ~

Totals

—2.39—5.98—9.98—14.14—0.73
+0.78
+2.07

—3.63X10 '
-2.28X10 2

—2.37X10—2.39X10~
—O.OOX10~
+0.03X10~
+0.11X10~

R(rad) = —0.11b
R(ang) =+0.33

R=+0.22

y„(rad) = —11.6s
y„(ang) =+1.0s

y„=+10.6

(Es(r;nial'))2s y„(nial) Es(r;el~i) Xrs

It should be remarked that not only must the );
satisfy equations (26), but that they must also satisfy
two important orthogonality conditions. Equation (6)
reduces to a restriction on ),(r; nl ~ l):

Ns'(nl)gi'(r; nl ~ l)dr, =0 (28)

This condition must be met for the radial excitations,
2p ~ p, 3p —+ p, and 3d ~ d. The fact that the total
wave function for any two electrons must be orthogonal
connects X,(r;nili~4) with & (r;n24~li) To first
order in the X;

NUMEMCAL RESULTS

The results of the calculations outlined in the
previous section are listed in Table I. Included are the
partial factors, R(nl-+ l'), and also the major contribu-
tions to y„, namely, the radial factors, y„(nl —+ l). In
this table, the ns, summation of (13)has been performed,
that is, (14) has been multiplied by two for every
excitation except 3d —+ g, 3d ~ d and 3d —+ s. Also listed
is the minimized second-order energy, E2 (nl ~ l'),
assciated with each partial factor. The various integrals
which contributed to these results are tabulated in
reference 17.

/NO (nl/1) Nl (r ' n2 l2 ~ ll)

+sso'(n24)gi'(r; nisi ~ ls) jdr, =0. (29)

This equation connects excitations 2p —& p with 3p —+ p,
as well as 3s —+d with ns —& d (n=1, 2, or 3). In
principle, (28) and (29) are equations of constraint, and
each equation should be used to eliminate a variation
parameter before the energy, E2, is minimized.

& Eg(2p —sp) was minimized Grst, then )1(3p—+p) eliminated before
E~(3p —sp) was minimized.

& E~(2p-+p) +E2(3p~p) was minimized as a unit.
Similar to case (a) except that E2(3p-+p) was minimized first, etc.

& See reference 10.

In the above calculations, several values of the
parameter, k, of (15) were tried (%=+1, 0, and —4).
It was found that the results were quite insensitive to
the actual value of k used. In the few instances where
di6erent values of this parameter led to diferent
results, the value of R(nl —& l') or y„(nl ~ l) correspond-
ing to the lowest value of the energy, E2(nl —+ l'), was
adopted. In most cases six or seven variation parameters
were used with the partial results for Es(nl —+l')
converging rather well to a lowest value as the number
of variation parameters was increased.

Although the variation parameters leading to
R(ns-+ d) and R(3d-+ s) are, in principle, related by
(29), this complex condition appeared to have minor
influence on the Anal results and was therefore ignored.
On the contrary, the 2p —+ p and 3p~ p results for
both factors, R and y„, were found to be affected
greatly by (29) and also extremely sensitive to the way
this requirement was satisf1ed. In principle, one may
(a) minimize Es(2p —+ p) and then eliminate one of
the )t;(3p —+ p) before Z2(3p —+ p) is minimized; or
(b) minimize Es(2p ~ p)+Es(3p ~ p) simultaneously
satisfying the constraint imposed by (29); or, finally,
use the method corresponding to (a), except that
Es(3P ~ P) is minimized first, etc. As is evident from
Table I, each method gave a diferent result for R and.
also y„. Although methods (a) and. (c) appeared to
give the same energy, Es (2P ~P)+Es(3P~P), method

(b) gave even lower values for this energy so that the
results adopted here are obtained using (b), that is:
R= +0.22 and y„(rad) = —11.6.

It should be remarked that the much less important
7„(ang) is not included here because the variational
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method appeared to diverge when applied to y„(3s~ d)
for k =+1 or 0 (the integrals involved in this calculation
diverge if k & 0). This was not investigated further, nor
the complicated orthogonality conditions applied, since
the ferric y„(ang), which is expected to be very similar,
had already been calculated via the Thomas-Fermi
method and reported by Burns and Wikner. " Using
their value (y„(ang)=+1.04) the ferrous factor, y„,
may be stated as y„=—10.6.

DISCUSSION

In discussing the above results, one should bear in
mind that free-ion wave functions have been used.
A more detailed treatment should, in any case, include
the crystalline field, so that R (and, perhaps, y„) would
be expected to vary from compound to compound.
There is also the characteristic disadvantage of the
variational method, in that one is at the mercy of a
judicious choice of a trial wave function. It is conceiv-
able that some other choice would provide lower energy
and diGerent Sternheimer factors.

In addition, exchange has been left out of this calcula-
tion, although its relative importance here is not known.
One could perhaps .include exchange with either
the more accurate method of Sternheimer, ' or even
the more preferable general second-order perturbation
treatment of Dalgarno. " Perhaps it would be even
advantageous to start from the beginning and obtain
better free-ion wave functions without the central
field restriction. Watson" and Freeman have, in fact,
carried out m, and ns, m~ unrestricted Hartree-Fock
calculations for the free ferrous ion, obtaining R(rad).
Although their value for R(rad) is negative and in
qualitative agreement with the results in this paper
(R(2p ~ p) negative, R(3p —+ p) and R(3d —+ d)
positivej, the corresponding value of R(ang) is not
contained in their calculation, so that no conclusion
about the accuracy of the present R value may be made.
It may also be noted that the R results here are similar
to the R results for the Cu atom as calculated by
Sternheimer (see page 161 of the last reference in
footnote 9). Thus, for Cu, the factors are R(rad)
= —0.02 and R(ang) =+0.27, so that R=+0.25.
These may be compared with the present ferrous results
of —0.11, +0.33 and +0.22, respectively. Moreover,

' H. M. Foley, R. M. Sternheimer, and D. Tycko, Phys. Rev.
93, 734 (1954); R. M. Sternheimer and H. M. Foley, ibid. 102,
731 (1956).

"A. Da]garno, Proc. Roy. Soc. A251, 282 (1959).
~ R. E. Watson (private communication).

for Cu, R(2p -+ p) also gives antishielding, while

R(3p ~ p) and R(3d-+ d) each give shielding.
In estimating Q, one finds that spin-orbit coupling

and also the lattice contribution generally tend to
reduce the field gradient, q.'~" Therefore, if spin-orbit
coupling and the eBects of the lattice are to be ignored
in (2) and (3), it is advisable to use the largest available
ferrous quadrupole splittings, namely, ~se'qQ~ =0.36
cm/sec for FesSO4 7HsO, ' or 0.37 cm/sec for FeSiFs

6HsO. s In calculating q, t in (3), if one also uses the
free-ion expectation values, "" ~(3cos'8—1)3d~ 4/7
and (r ')sq=5. 1 au, one obtains (1—R)Q=0.12 b or
Q=0.15 b.

In comparing this Q value with the larger one of
Burns, " it should be mentioned that the similar
calculation of the ferric factors, y„(2p —+ p) and

y„(3p —& p) by Burns and Wikner" was done using
method (a) of the last section. " For comparison, the
y„(rad) results for the two ions, using method (a) are

Ion

Ferric
Ferrous

y„(3d~d)
—1.53—2.39

v-(2p~p)
—0.68—0.73

v-(3p p)
—5.00—5.98

Watson'0 mentions that it is reasonable to expect the
more contracted ferric ion (particularly in the 3d wave
function) to give smaller y„values. However, it is
very likely that a method (b) calculation would yield
a better value for the ferric y„, which would probably
be about —8.1 instead of —6.2, thereby reducing the

Q estimate by Burns. Covalent effects in the ferric
compounds would reduce it still more. "' On the other
hand, Burns" remarks that the spin-orbit coupling
constant, which goes roughly as (r ')sq, is somewhat
reduced in going from the free ion to the solid, so that,
therefore, the ferrous estimate of q, & should possibly
also be reduced. This, in turn, would increase the value
of Q as calculated from the ferrous data. Thus, although
there is still much work in order concerning this matter,
the two methods of determining Q show signs of con-
verging, possibly around the value of +0.2 b.
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