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the incident neutron beam in the graphite. The interest-
ing feature of Fig. 4 is the significant rise in scattered
intensity at the point A, which is well resolved from the
pseudo-elastic peak. It seems reasonable to identify the
increased scattered intensity as being associated with
low-frequency transverse modes propagated along or
nearly along the [001) axis, and to assign them fre-
quencies of the order of 1.0X10" cps. Other, similar
experiments which we have performed support this
explanation, but do not fully conhrm it.

Assuming our interpretation is correct, then a con-
sideration of the data obtained leads to a frequency at
the zone boundary of (1.3+0.3)&(10" cps for the
transverse mode with wave vector parallel to the [001)
axis. On the further assumption that the dispersion
curve is a simple sine curve, as in the L[001) case, we
can deduce a rough value for the elastic constant C44.
This is listed in Table I together with previous esti-
mates of this quantity.

DISCUSSION

In the previous section measurements were presented
of those vibrations of the graphite lattice in which
undistorted hexagonal planes of carbon atoms moved
relative to each other in two distinct modes, longi-
tudinal and transverse. The dispersion relation for the
longitudinal, L[001),modes (involving variation of the
interplanar spacing) has been completely and unam-
biguously measured. The dispersion curve is very well
fitted by a two-term Fourier series of the form" "

"A. J. E. Foreman and W. M. Lomer, Proc. Phys. Soc. (Lon-
don) 870, 1143 (1957)."B.N. Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and
A. D. B.Woods, Phys. Rev. 128, 1099 (1962).

4s'M p'= 3 r (1—cos-', cq)+2 s (1—coscq),

where M is the mass of the carbon atom, and the
coeflicient (or force constant) As is 1.6%%uz of At. Addi-
tional Fourier terms do not signidcantly improve the fit
to the experimental results. The least-squares Fourier
analysis was performed using the Datatron computer.
The solid line in Fig. 3 is the best 6t to the results if only
one Fourier component is employed. In this L[001)
mode of vibration, the individual sheets of carbon atoms
remain undistorted while the interplanar distance is
varying. The forces involved are thus purely inter-
planar, and the excellent fit displayed in Fig. 3, indi-

cates that these interplanar forces are almost entirely
between nearest-neighbor planes.

The observation of the transverse modes (involving
sliding motions of the plans of atoms) is necessarily
more tentative, but we feel the interpretation given in
the previous section is probably correct. The first-
neighbor interplanar force constant relating to these
transverse modes is about 10%of the analogous I.[001)
force constant. This is substantially higher than would

be expected on the basis of a model of the graphite
lattice involving simple r " short-range repulsive, and

Van der Waals r ' attractive, interatomic forces.
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A simplified theory for the motion of secondary electrons produced inside a solid by electron bombardment
is proposed. The Boltzmann transport equation is solved for scattering due to electron-phonon collisions.
Forward scattering is found to be very predominant, and accordingly the scattering integral is greatly
simplified if, further, a constant energy loss per collision can be assumed. Postulating also a form for the
internal excitation function, the solution is obtained and applied to calculate the energy distribution, the
angular dependence, and the dependence of the total external current on the electron affinity. Despite the
oversimplified assumptions the model clearly shows the difference with the theories given for metals by
Wol8 and others. Several experimental features as observed. on MgO are compatible with the theory.

l. INTRODUCTION
' 'N the theory of secondary emission of electrons from

- a solid usually two steps are distinguished. The first
one is concerned with the production of secondary

*This research was supported by the United States Air Force,
AFSC, Aeronautical Systems Division, Contract Nos. 33(616)-
6239 and 33 I'657)-8040.

electrons inside the material resulting from the bom-
bardment by the primary electron source. Basically a
computation of this nature requires a knowledge of the
electron wave functions in the solid, its band structure,
and. the matrix elements for the interacting potential.
Such theories have been given by several authors and
have been summarized in papers by IDekker and van
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der Ziel' and Streitwolf. ' The second phase in the
calculation of the secondary emission coeKcient 8—
which is defined as the ratio of the secondaries emerging
from the solid to the number of primaries incident on
the crystal —involves the consideration of the transport
of internally created secondaries to the surface of the
sample. In the most simple phenomenological theories
a mere exponential or Gaussian escape function is
employed to that effect, utilizing an effective escape
depth that may range from 20A in metals to about
1000 A in insulators. Obviously, the transport processes
in both classes of materials are quite different; in metals
the main source of scattering and slowing down of the
internal electrons is caused by electron-electron scat-
tering, whereas in insulators scattering with lattice
vibrations prevails. A theory of the escape in metals
has been given before by Wolfp based on the slowing-
down equation well known in neutron physics as
formulated by Marshak and others. ' An extension of
this work is to be found in a survey paper by Hachen-
berg and Brauer. ' An attempt at a theory for insulators
will be given here, based on the Boltzmann transport
equation. However, greatly simplifying assumptions
will be made in order to arrive at some general con-
clusions concerning the energy distribution, angular
dependence, and work-function dependence for the
secondary emission from insulators —like Mgo and
alkali halides —and in order to stress the difference
with scattering processes in metals. In the present
paper it will be assumed that the electrons move in the
absence of external force fields. In a forthcoming paper
the e6'ect of an electric Geld on the motion of the
secondaries to the surface and the enhancement or
dehancement of the secondary-yield coefIicient 8 caused

by such a 6eld will be investigated.
The assumptions made in the present article can be

summarized as follows:

(1) The incidence of the primary-electron beam is

such that the spatial dependence of the internal sec-
ondary-electron distribution is one-dimensional.

(2) The secondary electrons move in a simple con-
duction band where the energy is measured relative to
the bottom of the conduction band, i.e., e=it, 'k'/2m*,
where m* is the isotropic effective mass.

(3) The electrons interact only with the lattice
vibrations. For ionic crystals the further simplification
can be made that only the optical polar modes are of
interest, to which modes we assign the same frequency
coqp q ranging in the first Brillouin zone.

(4) The mean free path X depends only on
~
k

~

and
not on the direction of motion.

' A. J. Delimiter and A. van der Ziel, Phys. Rev. 86, 755 (1952}.
2 M. W. Streitwolf, Ann. Physik 3, 183 (1959).
3P. A. Wo18, Phys. Rev. 95, 56 (1954).
4 R. E. Marshak. , Revs. Modern Phys. 19, 185 (1947).
'O. Hachenberg and W. Brauer, in Advuncesin Electron& s and

Electron Physics, edited by I, . Marton (Academic Press Inc. , New
York, 1959), Vol. 11.

2. THE TRANSPORT EQUATION

Let f(r,k)drdk be the probability of finding the
electron at position between r and r+dr with crystal
momentum between k and k+dk. The equation govern-
ing f(r,k) in the presence of scattering and in the
presence of external forces is

v grad, f(r,k)+is—'F grad|, f(r,k)

f(r,k')L1 —f(r,k) jP(k' —+ k)dk'

f(r,k) $1—f(r,k') jP (k —+ k') dk'+S (r,k). (1)

Here v is the velocity of the particle, F is the force
on the part;icle, P(k' —+ k) is the probability per unit
time that an electron goes from an occupied state k'

to an unoccupied state k and similarly for P(k ~ k');
S(r,k) is the source of the electrons. Further, at more
remote points there will be a drain of electrons to make
the distribution stationary. Ke shall assume that there
is a large number of vacant states in the conduction
band. So 1—f(r,k) can be approximated to 1. Further,
let

f(r,k)P(k —+ k')dk'= f(r,k)v(k)/X(k) (2)

define a mean free path X(k). Also, the second integral
in the collision term will be modified by changing the
transition rate per unit time to the probability per
scattering process

P(1 '~ k) =Q(1 '~ k)v(k')/X(1 '),

where Q(k' ~ k) is proportional to the differential cross
section. Further, as usual, the variable k will be repre-
sented by e and 0, where Q is a unit vector in the
scattering direction. Then the Boltzmann equation
becomes

v(e)
v gradF (r, e,Q)+ F (r, e,A)

X (e)

v(e'),
F(r, e,a')Q(e', Q'~ e, a) de'de)'

X (e')

+S(r...a), (4)

where F= f(2e)l(nz/h')i refers to the distribution per
unit energy interval per unit solid angle.

The scattering function Q can be obtained from the
theory of optical phonon scattering, as, e.g. , given by
Dekker. ' For most of the energy range of interest

6 A. J. Dekker, Second Quarterly Report Secondary Emission
Project No. DA 36-039 sc-42561, June 1, 1953 to Sept. 1, 1953
(unpublished), p. 35. See also J.M. Ziman, Electrons and Phonons
(Oxford University Press, New York, 1960), Chap. 5.
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(except for very low energies) one finds that Q can be
split into an angular dependent part Qi(Q'-+ 0) and
an energy dependent part Qm(e' ~ e); the angular part
is proportional to (sinzp) ', where p=cos '(O'. Q).
Let P and 8 represent the polar angles for Q, with the
x direction chosen normal to the surface as polar axis,
(see Fig. 1) and let p= cos8, then from simple
geometry:

o p=»'+(1 I ')'*(—1 I ")"—o (4 4') — (~)

FIG. 1. Geometry em-
ployed in model. At
x=0, there is a surface,
and at g0 there is a plane
source.

SURFAGF

X" AXIS = POLAR AXIS

I — x
xo

Since we have a plane source, Ii will be independent
of P. Hence the integration in (4) over )t) can be carried
out yielding

Qi(Q'~ Q)~~ (sin~p) '~= (6)

This result strictly does not hold for p, =p', since the
approximate form (sinlp) ' for the scattering function
does not hold for extremely small scattering angles.
From (6) it can be expected, however, that for g —+ p',
Qi has a strong maximum, though the integral of Qi
over dQ' should remain finite Pand equal to 1, according
to (2) and (3)j. In order to continue the problem
rigorously, we should employ more details about
the scattering function; the use of (6) will lead to
an integro-partial-differential equation, which with
suitable transform methods can be reduced to a
Fredholm-type integral equation, the Kernel of which
shows a singularity for p= p,'. Though this problem is
being further investigated, in the present paper we
shall drastically simplify the solution by replacing the
approximate scattering function (6) by 5(p—p, ), indi-
cating strongly forward scattering. This way we shall
be led to a simple analytical solution. Even though the
percentage error due to this approximation cannot be
estimated until the problem is solved more rigorously,
it should be noted that this theory will clearly reveal
the difference with the behavior in metals, for which
the scattering function is usually approximated by the
other extreme possibility of nearly spherically sym-
metric scattering (compare WolfP).

Further, it is shown in the paper on electron-phonon
scattering' that, on the average, energy is lost per
collision, i.e., phonon emissive processes are much more
abundant than phonon absorptive processes, such that
the average loss per collision is given by

a(e) =A(u, tanh(her, /2kT). (7)

This expression for a(e) is particularly simple for optical
phonon scattering in ionic crystals in the sense that it
is independent of the electron energy e. This approxi-
mation is justified for electrons, say, above 1 eU, as
u(e) is about 0.1 eV for MgO at room temperature and
decreases to 0.06 eV at 740'C. Again, since the com-
plete expression for the energy loss distribution is quite
involved we shall approximate by

Q2(e' —) e) =bt e'—e—a(e)j.

With these functions for Qi and Q2, the Eq. (4)
results in

Ke can think of the energy-loss process as a con-
tinuous one. Since a(&~ for the range of energies of
interest, we can use the following approximation to
Eq. (9):

BP(x,e,p) 8 (v(e)—a—
~

P(x,e,l ) ~+S(x,e,p).
Bx 86 ili (6) )

Putting
v(e)

P(x)&)IJ)=4'(x)~)p))
X(e)

we finally get

8$ Bf
X(c)p (x 6,p) 0 (x 6 p) =S(x E,p) ~

gx Bc

This equation can be further simplified by introducing
the new variable

X (e')d~'.

Putting also for the source

S(x,q, y)/l) (g) = 0 (x,q, lj),
we obtain

BP 8$
(xpl, lJ) & —(x,n, w) =—& (x—,)t,w)

Bx 8$

3. SOLUTION OF THE TRANSPORT EQUATION

A general solution of Eq. (11) is easily obtained
providing )T(x,q, p) behaves suitably at x= & 00. In the
Appendix the solution is shown to be

1
4(xn~)=-

8

p
dg'0 x+—(g —g'), g', p . (12)

Dekker' has shown that for the energy range con-

BP(x c p) 'v(6) 'v(e+o)
i)(e)/4 + P( x)6 p)) = P(x) c+0) p)

Bx X(e) lI (a+a)

+S(x,e,p). (9)
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cerned with, k(e) may be approximated as

&(e)= ce,
where o. is a positive number ranging between 0.5 and
1.0. More exact expressions have also been given by
Frohlich. ' From Eq. (12) then

/( +~)l" "
pc

f(x,e,lr) = de'S x+-
tc/(a+I) lc""' — 0'(n+ 1)

X (e~' —e'"+') e', v (14)

To discuss the solution, the source function S(x,e,p)
must be known. Various approximating theories have
been given for the production of secondaries in
metals, ' "but little work has been done with respect
to insulators. In order to determine the spatial dis-
tribution of the produced secondaries, it has been
assumed in most theories that the production is pro-
portional to the energy dissipation. Recent experiments
by Arntz and van Vliet' indicate that this may not be
the case. Thus, several semiempirical theories are not
applicable. Experimentally, information on the pro-
duction function is available in papers by Young on
the transmission of electrons in A1203,' and from
coloration in KCl single crystals after bombarding
with electrons. ' The interpretation of these data is not
unambiguous. Often, Young's data have been inter-
preted in terms of a uniform excitation of secondaries
over a depth d from the surface (so-called "constant-
loss" theory, compare Dekker)"; a recent reinter-
pretation of these data by Arntz indicates a maximum
occurring near the end of the primary track, especially
for higher primary energies. Lacking detailed infor-
mation, we shall presently restrict ourselves to an

SURFACE

where S is the number of ion pairs per unit volume,
G is the valency, ~ is the dielectric constant, E„ is the
primary energy, DE, is the bandgap, and Ii is a "form
factor, " involving the Bloch wave functions of the
material. The angular dependence of secondaries
produced in insulators is another point that needs
more investigation.

In view of these remarks, we shall represent the
source function in this paper by

S(x,e,p) =Ah(x —xs)e
—"g(p).

Some more specific restrictions will be made later.
Due to the scattering processes assumed we expect

symmetry of the solution about x=xs. The Eq. (11)
shows that (x—xs)/lr is always positive as 1)lr) 0 for
x& x~ and —1(p (0 for x(xo. For this case the solution
becomes

gr(p)( g
)t

+ )ltw. l)

P(x, e,p) =
pc n+1

—(x—xp)a c
X — -+ e +'

n+1

——(»+ex) /(~+&)

where eo has been chosen infinity indicating that no
electrons of infi.nite energy occur. More strictly, one
should impose a maximum energy eo at the source. The
maximum energy at any point x, es(x) is then found
to be a decreasing function of x—xo due to slowing
down by the scattering.

extreme model in which production of secondaries
occurs at x= xp only. It will be assumed that the depth
xo is of the order of the range d of the primaries. Next,
in deciding on the energy dependence of the source, we
shall take a general power law S~ e ", where e is a
small positive number. Under very simplifying assump-
tions, an exact square law is found' (i.e. , m= 2):

.4Xs~v)sG (~Z )s
S(e)=

16IE„e' 4E~

4. ESCAPE MECHANISM

X AXIS = POLAR AXIS

k SIN g = k'SIN 6

FIG. 2. The eRect of the surface potential barrier
on the crystal momentum.

~ H, I'rohlich, Proc. Roy. Soc. {London) l60, 230 I,1937); 172,
94 (1939)

8 F. 0. Arntz and K. M. van Vliet, J. Appl. Phys. 33, 1563
{196i).' J.R Young, Phys. Rev. 103, 292 (19S6).IA. J. Dekker, in Solid-State Physics, edited by F. Seitz and
D. Turnhull (Academic Press Inc. , New York, 1958), Vol. 6.

Ke consider a semi-infinite slab of material lying to
the right of the x= 0 plane (Fig. 2). A potential barrier
of aeV exists at the boundary at x=0. For —,m~ '&co
most electrons will escape; we shall neglect the few
electrons which are rejected back into the material
for +2m' '&co. For smaller energies there is a marked
eGect on the internal energy distribution but since
these electrons do not escape we are not interested in
this group. The current density coming out of the
material within the range dedlr (of internal energy and
angle parameters) is

j (e,Ir)dedlr=nIIF(0, e,lr)dedlr, =pk(e)P(0, e,lr)dedIr. (17)
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bounded by the following region:Here e and p are now oun

(mt), '& o),

«(0)=—.„&e& ~/~',

( / oo)'«1
The total current is given by

0

/total
6) /400) 1/2

&00

dy deg (e,p)

d) j(e,u)

Hence the energy distribution is found as
FIG. 3. Energy angular distribution of outcoming

secondaries for various e'/ca.

j(e)= j(c,p) dp,
zero to infinity after substituting for

d 1 th energy angular distribution j(e', cos8' .irect y e e

'l be converted to the external energywhich can easi y
distribution, replacing e by e= e co.

distribution is found to be

j(f )=
&00

j(e,p) de.
/v'

(21)

low co this result will resembleHowever, only for very ow co,

measured angular distri ution.the externally measure
generally, one has to proceed as o ows:
and energy conservation lead to

e= e'+o) or A'ks = )))'k"+2mo),

k sino= k' sino', (22)

+
-e +o) e +Q)

cos'0'

Further, since the Jacobian is

cos8

8 (e', cos8') p, e'+o)
(24)

Ie external parameters Ethe distribution in terms of the ex
and coso' becomes

J (e q
cos8 )de d(cos8 )

=X(e'+o))&[0, e'+o), p(e', cos8')j
Xcos8'de'd (cos8'). (25)

The distribution j(cos8') is found by integrating

where 8' is the external polar angle.e. Inversion of Eq.
(22) yields

e= e +o)q

5. EXAMPLE

coda c
f (0, ,)r) = — —+—e'

l)lc 2 p
(26)

where d is t e is ancew
'

n d' t of the source from the surface,
ic rou hl may ei en ib 'd ntihed with the range of the

ided most secondaries arerimar electrons provi e mos
d f the range for which there isroduced at the en o e

'd '
roduction theories); hence it is oam le evidence in pro u

rder of 500 A for 1-keV electrons in MgO. The
about O.i eV for internal sec-average energy loss is a out . e

ondaries of energies above i eV.

&. Energy Angular Deyendence

We find from Eq. (26) for e«(2da/c)1~7 equi)', y is
l '* Converting to the cos8' distributionproportional to p*. onve

we obtain [Eq. (25)]:

j(e, cos8 ) o)

j(e',1) -e +CO e' +G)
cos'8' cos8'. (27)

suits are lotted in Fig. 3.The resu
r extremely low e, this is a cos

ll b ok" d lultdalso observed experimenta y y on

"J.L. H. Jonker, Philips Research epRe ts. 12, 249(1957.)

YVe apply the a oveb theory to an ionic crysta, for
obtainle M O. From reference (6), we o ain

V for a range from i toX(e)=1.6e A, where e is in e or a
i0 eV.

il eThe exponent in e ex
'

ilth xcitation function e will b
)s=2. For g(p) we shall tentatively take an

—i The constant 3 ofisotro ic distribution, i.e., g p = . e co
the internal source unc iof tion depends on the primary
energy, (see below).

Hence, for this case Eq. y'i5 ields
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theoretically by Stolz~ for metals. For insulators on
measurements have been reported to the knowledge of
the authors.

2.4,

3. Angular Dependence

The integral (21) is found to be

2A (c
j(1)= I

—
I I

—
I I

(2&)
c (21 dais'+c&u'/2) kcepp'Is/2+da1

The result is plotted in Fig. 4 where we took 8=300 A,
a=0.1 eV, c=1.6, ~=0.5, and 1.0 eV; the choice of
epp is somewhat arbitrary. For e«= 10 eV (corresponding
to a cutoG of about 15 eV at the source), the dependence
as shown in the 6gure resembles a linear p relationship.
A higher happ makes the curves more convex.

Figure 4 indicates further that the electrons escape
only when their direction cosine p is more than a
certain value, being (po/epp)'. E.g. , for to=0.5 eV and
epp=10 eV, this "escape cone" has an apex angle of
77'. Electrons coming out in directions with 8)77'
cannot escape.

As stated earlier, the dependence of j on p, =cos8
will be similar to the dependence of the external angle
coso if ~ is small. This was veri&ed by integrating Eq.
(25) over de', employing an ERA 1103 computer. The
results are shown in Fig. 5. For epp= 10 eV, the variation
of j with cos8' is even closer to linear than before. If
happ ~ ao, the curves become again convex.

2.
CDI-

4j

I.S
cf

LU

K

FIG. 5. Angular dis-
tribution of external
secondaries normalized
to unity for cos8'= 1,
co =0.5 eV and too = 10
eV.

.8

.2

C. Energy Distribution

From Eq. (20) we obtain with a=1:

j(e') = 1+
C 0 M

20

l.6 + 1+-
cu

FzG. 4. Angular dis-
tribution of internal
secondaries at the sur-
face normalized to unity
for p, =1, co=0.5 eV and
&oo= 10 eV.

2ad e'+co
1+.~, +.)( . )

2ad—i.:.i+(i+ )C(e +M)

This result is plotted in Fig. 6 normalized to j(e ) = 1
at the maximum, for co=0.5 eV and also for co= 1 eV."

0

"M. Stolz, Ann. Physik 3, 197 (1959l.

'3The electron affinity for most insulators is not well known.
For MgO values, as lovr as 0.3 eV have been quoted; compare
W. G. Shepherd, Wright Air Development Center Technical
Report 57-760, Astia Doc. No. AD155852 (unpublished), p. 37.
For alkali halides, values of the order of,0.8 eV have been calcu-
lated; compare P. Seitz, The Modore Theory of Solids (McGraw-
Hill Book Company, Inc. , New York, 1940), Chap. XI.
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The curve is bell-shaped as is always found experi-
mentally; for the data chosen the maximum occurs at
3 eV for d=100 A and 5 eV for d=300 A. The shape
of the curve is not too diGerent from the experimental
measurements on MgO by Whetten and. Laponsky. "
In Fig. 6wehave plotted j(e')/j(e, ) vs e'/e, (where
c refers to the maximum in the energy distribution)
and the data of these experiments for a primary
excitation of 800 eV. The fit is reasonably close. How-

ever, the following differences should. be noted: (1) The
posi ionosition of the maximum observed at 800-eV primary
energy is 1.2 eV which is smaller than the value for
e,„in Fig. 6. Here it should be borne in mind that the
parameters c and a given before are only estimated
up to the order of magnitude and can easily be adjusted
to yield smaller values of e,„, ; (2) exp'erimentally in

MgO the position of the maximum is independent of
primary excitation energy. The present result does not
have this feature, which may be attributed to the
assumption of a localized. source at xo. It is to be ex-

pected that a "constant loss" theory" including a
uniform distribution of production sources over
a certain depth considerably modifies the result in
this respect. Also a much more accurate expression for
the source function as dependent on primary energy

V)l-,7
x

6

I-
~5

K

,4

.2

0
0 .l .2 .4,5 .7

Fro. 7. Variation of total secondary emission coefFicient wit
the electron afiinity. Curve A is for ppp/py= pp ' curve 8 ls for
ppp/pl= 1.63.

l.2

l.o

W

W "o~o

C- W=l,

cme=5
Cnex =&

Cmox =So

d~500
4I= LOO

d= 500

would be required to explain the primary energy
dependence of the curves as observed by Khetten and
I.apon sky.

D. The Total Secondary Emission
CoeKcient 6

The total current is found to be from Eq. (19):

AC t'o& )*
(op+~') &—

~

—
~

e,s+ ~s3'
l
l

t
l

I
I
I
I

~R

I

I
I

p

&4fiea

FIG. 6. Energy distribution of external secondaries for various
values of electron affinity and range of primaries. Curves A and C

l d ith respect to the maximum for co = . eV,
d=300A, and for co=i.O eV. Curve 3 is normalize wi p

the experimental curve obtained by Whetten and Lapons y or
800-eV primary energy.

'4 N. R. VPhetten and A. B. Laponsky, Phys. Rev.ev. 107 i52i
(1957l.

A ( e' & op ep ) et'—I1+ ——+ -i
&oo ~ coo coo coo~ eoo—

A ex' 1+(1+eP/coo') '
30

oooo (~/coo)'+L(~/coo) +et /coo g
s

Figure 7 gives the relative 8 values as a function of
op/or for various values of the parameter ooo/et where
or= (2ad/c)&. No measurements on the dependence on
electron amenity for insulators are known to date. Such
measurements should be carried out on the same ma-
terial; the electron affinity might be changed by putting
suitable overlayers on the crystals, as is presently
being undertaken at the University of Minnesota.

6. CONCLUSIONS

The above theory which is based on very simplifying
assumptions concerning scattering and the source
distribution, nevertheless, shows clearly the difference
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with transport in metals in which different excitation
and slowing down processes prevail.

The distribution function can be given in closed form
with x, e, p, , range d, electron amenity co, and scattering
parameters a and X(e) as variables.

The resulting energy dependence is roughly in accord
with the experimentally observed bell-shaped curves.
However, the dependence of the curves on primary
energy is not contained in the model. A more sophisti-
cated excitation function is needed.

The energy angular dependence seems to be some-
what deviating from the cosg' law, being elongated to
the polar axis for energies of the order of the electron

affinity.
The dependence of the total secondary emission

coeKcient on electron afFinity co is calculated and found
to resemble a linear decreasing function for not too
high co.

The present calculations neglect the eGect of an
electric held which might a6ect the motion of the
secondaries. Calculations, when such a field is present,
have now been carried out and will be reported in the
future.
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APPENDIX

~ (x,g,p) =S(x,q,p)/X(g). (A2)

We take the I'ourier transform with respect to x:

P(x,q,y) = 2 (k,g,p)e'"*dk
(2m)'

(A3)

0 (x,g,p) = B(k,g,p)e*"*dk.
(2n.)&

This yields the transformed equation

dA (k,g,y) iyk 1
2 (k,q, p) = B(k,—g, p—)

8 8

Hence,

g (k ~ ~) —~~pkgs

8
B(k,q', I )e '"~'~ dq' (A6)

Here, go is chosen so that A(k, q,p) and therefore,
f(x,g,p) vanishes at go.

If the source function S( xk,y) and hence 0 (x,g,y) is
such that the inversion integral given by (A3) con-
verges uniformly for all g, we can interchange the order
of integration over q' and the integration for inversion.
Then we get

The equation to be solved after the transformations
mentioned in the text is

Xexp ik x+-(q —q') dk. (A7)

8$ BP
p (xp,p) a —(x,q, lj) =—0 (x—,q,p),

Bx 8$

where we recall

Recognizing o (x,g,p) from (A4), we obtain
(A1)

1
P(x,q,p) = ox+ (g -q'), g', p d—g'. —(AS)


