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Crystal Dynamics of Sodium at 90'K
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The frequency jwave vector dispersion relations for the lattice vibrations of sodium have been measured

by neutron spectrometry along the symmetric lines (001j, Pf'$0$, t 1 ffj, L-,' —,
' rg, and Q'r1$ and at several

nonsymmetric points in the reduced zone. The measurements were made at 90'K using the triple-axis crystal
spectrometer in the constant Q mode of operation. The results can be qualitatively described by a erst- and
second-neighbor force model but detailed analysis shows that fourth- and fifth-neighbor forces are probably
signihcant. The calculated force constants for fifth neighbors are about 1 or 2% of those for erst neighbors.
Discontinuities in the slopes of the dispersion curves due to the Fermi surface (the Kohn effect) were not
observed.

I. INTRODUCTION symmetry modes from intensity measurements. Meas-
urements were also made at 215 and 296'K. The fre-
quencies were, in general, a few percent lower at the
higher temperatures than at 90'K. The widths of the
neutron groups increased with increased temperature
suggesting, as in the case of lead, that at temperatures
approaching the melting point phonon lifetimes in
sodium are very short. This aspect of the experiments
will be discussed in more detail in a separate paper.

A S part of the program for investigating the proper-
ties of lattice waves and interatomic forces in

metals a detailed study has been made of the frequency
wave vector dispersion relations in sodium. A similar
study of lead was described in the preceding paper. '
Many of the experimental details and other pertinent
considerations were discussed in detail there and need
only be described briefly in this paper. Preliminary re-
sults on the dispersion relations in the symmetry
directions in sodium have already been published' but
no quantitative conclusions concerning the interatomic
force constants were reached.

The relationship between the Born-von Karman
theory of lattice dynamics' and the scattering of slow
neutrons' is discussed in the preceding paper. ' The
changes in wavelength of the scattered neutrons lead
directly to the dispersion relations between the frequen-
cies and wave vectors of normal modes of vibration of
the crystal.

The present paper is concerned mainly with the ex-
perimental determination of the dispersion relations
for the lattice vibrations in sodium at 90'K and the
analysis of these results to obtain interatomic force
constants. The analysis shows that long-range inter-
actions between the metallic ions are important al-
though not so important as in lead. ' An attempt was
also made to determine the polarizations of some oG-

II. THEORY OF THE LATTICE
DYNAMICS OF SODIUM

1. Previous Work

The lattice dynamics for a body-centered cubic
crystal, and in particular for sodium, have been dis-
cussed extensively in the literature. Fine' and Bauer'
made calculations in which they took into account cen-
tral forces between erst and second neighbors. Fine ap-
plied his calculations to tungsten, Bauer to sodium.
Bhatia' used a model for sodium which took account of
the direct influence of the conduction electrons but in
such a way that they affected only the longitudinal
vibrations. Thus, his dispersion curves were not periodic
in the reciprocal lattice, a condition which is required
by symmetry.

More recently, Toya' has calculated the dispersion
curves for the lattice vibrations of sodium in a more
fundamental way. The agreement between his calcula-
tions and the experimental results has already been
shown to be quite good. '
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England.

f Summer visitor (1961) from University of North Carolina,
Chapel Hill, North Carolina.

f Supported in part by U. S. Atomic Energy Commission.' B.N. Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and A. D.
B. Woods, preceding paper LPhys. Rev. 128, 1099 (1962)j.

2A. D. B. Woods, B. N. Brockhouse, R. H. March, and R.
Bowers, Proc. Phys. Soc. (London) 79, 440 (1962) and Bul
Am. Phys. Soc. 6, 261 (1961).

3 M. Born and K. Huang, Dynamica/ Theory of Crystal Lattice
(Oxford University Press, New York, 1954).

4 R. Weinstock, Phys. Rev. 65, 1 (1944).

2. Born-von Ka.rman Theory

In this section the Born-von Karman theory for a
body-centered cubic lattice with interactions out to
fifth neighbors will be considered, In the harmonic
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approximation the equation of motion for a system with
one atom per unit cell is

MN'. (l) =Pp P( C.p(ll')up(t'), (1)

where M is the mass of the atom, u is the displacement
from equilibrium, t indicates the cell position, ~, P are
directions in the crystal, and C,p(l, /') is the force in the
o; direction on the atom in the /th cell when the atom
in cell l is moved unit distance in the P direction. This
is called the force constant. The solution of the equation
can be written in terms of plane waves of frequency v

and wave vector q. These are the normal modes of
vibration. This solution leads to the set of equations

4n'v'(q)M(. (q) =Qp C.p(q)&p(q), (2)

where $, (p are components of the polarization vector
( of the mode and

C.p(q) =Pg C.p(l, l') exp{iq [R(t) —R(t') 1}
= —P(.' C.p(t') {1—cos[q R(l') j}, (3)

where the 1th unit cell has been taken as the origin and
the summation is over values of /'WO. The imaginary

terms sum to zero because of the crystal symmetry.
The frequencies of the normal modes of vibration are
given by solutions of the determinantal equation

~

4~ ~ (qySS.,—C.p(q) ~
=0.

Under special conditions this 3)&3 determinant reduces
to a set of linear equations. For a body-centered cubic
crystal this occurs for

Waves propagating in the three directions of
highest symmetry: [00{],[i{0),and [g{j In. these
cases the determinant factors into three linear equations.

2. %aves with the terminus of q lying on the lines

[~ j' {] and [g1j.These waves are neither longitudinal
nor transverse but their polarization vectors are com-
pletely determined from symmetry.

3. %aves propagating in a mirror plane. In this case
two of the polarization vectors are in the mirror plane
and the third is perpendicular to it. Correspondingly,
the 3&(3 determinant becomes a product of a linear
equation (in v') and a 2X2 determinant. This 2X2
determinant becomes a linear equation in the sum of

TABLE I. Interatomic force constant composition of interplanar force constants 4 for symmetry branches
in a body-centered cubic crystal.

Branch

LOOBY] L 1 1
2
3

1 1
2
3
1
2
1
2

2

1 1
2
3

5
6

1 1
2
3

5
6

1 0
2

1 0
1
2
3
0
1
2

0
1
2

L001] 2'

Ln01 L 0.5

910]&

L110]T.

0.5

0.5

Em] 2'

Lrl-1] n, 0.5

[1.(-1]11, 0.5

Position of atom —+ —,'a(1,1,1)
PI

(x,x) (x,y)

16

16—4

g'a(2, 0,0)
n2 P2

(x,x) (y,y)

2 2

2 2

2 2

—,'a(2, 2,0)
os Pa

(x,x) (sp) (x,y)

16—8
8

8 16

8 16 8 —16
16

16 32—4 —8
4

16 32—4 —8—8

kx(5, »1) —,'u(2, 2,2)
~4 p4 y4 &4 ~5 p5

(x,x) (y,y) (y,s) (x,y) (x,x) (x,y)

16
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To@LE II. Interatomic force constant composition of C„ for the sums of squares of the frequencies for nonsymmetric
branches in a (110) plane of a body-centered cubic crystal.

Position of atom ~
Branch f,„, n

Lf.f. 21-$ 05 1
2
3
4

(ff 1-2f.g 0.5 0
1
2
3
4

Cf.f -'j

2
0.5 0

1
2

Ll-f. —.'3
1
2

1
2
3

L-: —:f.]
1
2
3

El ll-3
1
2
3

—',a(2,2,2)
54 n5 pg

(x,y) (x,x) (x,y)

—,'a(3, 1,1)
p4 p4

(y,y) (y,s)

—', a(2, 2,0)
pg

(s,s)

kC, 2 0 0)
o2 p2

(*,x) (y,y)

-', o(1,1,1)
P1

(~a)
73 O'4

(x,y) (x,x)(x,x)(x,x)

8

32—8

16—8424'
16

16+8&2—4'
8—4&2
8+4V2

6
8

10
2

64—6—8—10—2

32—892
442
6V2

32

2 6
2 2

4
4

2

6
2

32—2

—6—2

16

—2

—2

12 —2' —4'
442

242
2&2

16
2

24—12
2

12

2

8—4
2

32+8&2—492
—6v2

28 —8%2
642

—2C2 4'
4—2' 4'—4&2

2 2 2 —2%2

4—242 2 —W2 6—342 14—6%2 6—2&2 2 12—442—4+242 2v2
6v2 2V2

4+2v2 4+2%2 —4+2&2
16 40 4—4 —12

4+2U2 —4&2
4@2

4+242 2+&2 6+3v2 14+6V2 6+242 2 12+4%2 28+892—4—2v2 —2v2 —6v2
2 2 —6v2 —2@2

4—2%2 4—2%2 —4—2%2

4 2

4
16

32

—8 —4
16

8 —4

16 8

8 —4

the squares of the frequencies of the two normal modes
at any given value of q.

In what follows, the elements of the force constant
matrices, C,s(l'), will be denoted by small Greek letters
with subscripts to indicate the appropriate neighbor.
Thus, rii—=4 ii(111) denotes the force on the atom at
the origin in direction i when the nearest-neighbor atom
(at position 1, 1, 1 in units of a/2) is moved unit
distance in direction 1. Similarly, C is(111)=Pi,
C ii(200) =rrs, etc.

The solution of Eq. (4) for the three cases discussed
above leads to an equation in v' of the form

4s'Mvs=g C„(1—cosemf/f .„),
where C is a linear combination of the force constants
ni, Pi, rrs, etc. , the coefficients of these force constants
being a function of the particular direction and branch
which is under consideration. Table I summarizes
completely the lattice dynamics in the symmetric direc-
tions for a body-centered cubic crystal on the assump-
tion of harmonic restoring forces out to fifth neighbors.
The extension to the sums of the squares of the fre-
quencies of the two modes vibrating in the (110)
mirror plane is given in Table II. The determination
of the interplanar force constants, C„, and the inter-
atomic force constants, e„, etc. , from the experimental
dispersion curves is discussed in Sec. V.

III. SPECIMEN PREPARATION

Single crystals of sodium, approximately 2 in. in
diameter and 4 in. long, were grown by a modification
of the Bridgman method due to Daniels. "This method
uses a stationary vertical tube of stainless steel on
which is wound a heating coil with a variable spacing
such that the top of the tube is heated more than the
bottom. The bottom of the tube is closed by a stainless
steel plug to which is attached a coil. of copper tubing
through which air is passed for cooling. Sodium is
melted in the tube under mineral oil and by control
of the heating and cooling it is possible to solidify the
sodium in a directional manner, the solid interface
moving from the bottom to the top. With cooling times
of 1 or 2 h, most of the resulting boules were single
crystals. The crystals were etched in xylene containing
one part in 50 of isopropyl alcohol; preliminary cleaning
was done in methyl and isopropyl alcohol. The sodium

Our techniques for growing, cutting, and etching single
crystals of sodium have been described in detail in a report:
"Single Crystals of Sodium and Lithium, " by R. Bowers, D.
I'innow, and S. Tallman, Report No. 3, Materials Science Center,
Cornell University (unpublished). Copies of this report can be
obtained from the Materials Science Center, Cornell University,
Ithaca, New York. In view of the availability of this report, our
description of crystal-growing techniques in the present paper will
be limited to a brief outline.

's W. B. Daniels, Phys. Rev. 119, 1246 (1960).
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TYPICAL NE UT RON GROUPS
FROM SODIUM AT 90'K
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F&G. 1(a) Typical neutron dIstribu-
tions plotted as a function of fre-
quency. Curves A and B have a fast
neutron background, ~150 counts per
point, subtracted. The fast neutron
background for Curve C, 30 'counts
per point, has not been subtracted.
(b) The (110) plane of the reciprocal
lattice for a bcc structure. The points
marked A, B, and C indicate, re-
spectively, the 0 positions for the
neutron groups marked A, B, and C
on the left-hand side. The light solid
lines indicate zone boundaries. The
heavy dashed lines show the lines in
the reciprocal lattice on which most of
the measurements were made. The
rectangle FgPÃ'III is the irreducible
zone which contains all frequencies
observable in this plane. The line
re=—
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used for the neutron work was Mallinckrodt analytical
grade material for the specimen with its (110) plane
horizontal and Dupont reactor grade material for the
specimen which had its (001) plane horizontal (see
Sec. IV). These materials have a chemical purity exceed-
ing 99.99%.Their residual resistance ratios (p30o K/p4 K)
are approximately i000 in each case.

Sections of length i4 in. were cut from the single-
crystal boules using a string saw of cotton thread charged
with a 50% methanol —50% water mixture. The ends
and sides were lapped smooth using a cotton cloth
charged with methanol. The resulting smooth cylindri-
cal specimen was sealed in a thin-walled aluminum can
whose dimensions were only slightly larger than the
crystal. The cylindrical side and Rat top of this can
had been spun to the correct shape from a single sheet
of i0-mil aluminum and hence there were no soldered
joints. A much thicker aluminum base was fitted into
the bottom of this cylinder. The base was equipped with
side arms for attaching the specimen to the spectrometer
crystal holder. The cylindrical sodium crystal, finally
having a length and diameter of about i 4 in. , was cleaned
with alcohol, placed without delay inside the close fitting
thin-walled aluminum cylinder and the base was sealed
in an airtight manner onto this cylinder by means of
glue. There is probably a thin superficial layer of hy-
droxide on the sodium crystal but this is not expected
to be detectable in the neutron data. No further con-
tamination of the specimen is expected inside the sealed
can. The form of the final specimen is such that for a
wide range of directions, the neutron beam passes
through approximately 2 in. of sodium and two 10-mil
walls of aluminum, the scattering due to the latter
being inconsequential.

IV. EXPERIMENTS AND RESULTS

I. Dispersion Curves at 90'K

The specimen was mounted inside an aluminum
radiation shield, placed in a large vacuum chamber,
and cooled from above with liquid nitrogen. The tem-
perature was measured with a copper constantan ther-
mocouple and was continuously recorded. For most of
the experiments the crystal was mounted so that its
(110) plane was horizontal. Less extensive measure-
ments were made with a (001) plane horizontal.

The experiment consisted in measuring the energy
distributions of neutrons scattered from the specimen.
This was done using the triple axis crystal spectrometer
in the "constant Q" mode' " of operation. Neutron
energy loss and variable input energy were used ex-
clusively. Several typical distributions are shown in
Fig. 1(a) as a function of the frequency of the phonon
excited in the crystal. The (110) plane of the reciprocal
lattice is shown in Fig. 1(b) and the positions of the
three neutron groups in Fig. 1(a) are indicated by the
letters 3,8, and C. Most of the experiments were carried
out along the heavy dashed lines in Fig. 1(b).

Measurements were made at 90'K for q on the sym-
metric lines [00(], [g0], [gf'], [-,' —,

' f'1, and [g1]
and for several values of q in nonsymmetry directions.
Table III lists the observed phonons and the results
for the symmetric directions at 90'K are shown in
Fig. 2.

It is interesting to observe how the various symmetry
properties of the bcc structure are illustrated by these
results. At the zone boundary for the [00/] direction

"For a detailed discussion of this method, see B.N. Brockhouse,
Inelastic Scattering of Eeutronsin Solids and Liquids (International
Atomic Energy Agency, Vienna, 1961), p. 113.
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TABLE III. Frequencies (units 10~ cps) of normal modes on symmetric branches in sodium at 90'K. The modes marked
with an asterisk are included on more than one branch.

f= aq/2~

0.20
0.30
0.40
0.45
0.50
0.55
0.60
0.65
0.68
0.70
0.72
0.74
0.75
0.76
0.80
0.85
0.90
1.00*

0.1.8
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.50
0.60
0.70
0.75
0.80
0.90
1.00*

[OOI.]L
1.43+0.07
1.94+0.06
2.44+0.05
2.68&0.1
2.78~0.06
2.91+0.07
3.01+0.07
3.19~0.07
3.14+0.1
3.24+0.06
3.25w0. 08
3.31+0.08
3.36&0.1
3.36~0.07
3.44~0.05
3.53~0.06
3.55+0.05
3.58+0.04

[Oof-] T

0.97~0.03
1.09&0.04
1.18+0.04
1.29~0.04
1.42~0.04
1..52~0,04
1.64~0.03
1.74+0.05
1.83+0.04
1.94~0.05
2.07~0.05
2.17+0.04
2.25~0,05
2.32~0.04
2.59&0.05
2.96+0.03
3.23~0.04
3.35~0.04
3.45+0.05
3.57+0.06
3.58~0.04

0.14
0.21
0.28
0.35
0.42
0.50'

0.15
0.20
0.25
0.28
0.30
0.35
0.40
0.45
0.50*

D«] T.

0.43&0.03
0.61&0.03
0.76&0.03
0.87w0.03
0.92~0.04
0.93+0.02

[g0] T,

1.16~0.04
1.52~0.04
1.81~0.03
1.97+0.03
2.09&0.03
2.27&0.04
2.47+0.04
2.52+0.06
2.56~0.05

I' = (1/K2) (aq/2m-) v

[ufo] L
0.10 1.25+0.04
0.20 2.32+0.03
0.25 2.77+0.05
0.30 3.17~0.05
0.35 3.46~0.06
0.40 3,67+0.05
0.45 3.75~0.09
0.50* 3.82+0.07

0.10
0.20
0.25
0.30
0.35
0.40
0.45
0.50*
0.55
0.60
0.62
0.64
0.65
0.66
0,68
0.70
0.72
0.725
0.74
0.75
0.76
0.78
0.80
0.82
0.84
0.85
0.90
1.00*

0.20
0.30
0.40
0 50"
0.60
0.70
0.72
0.74
0.75
0.76
0.78
0.80
0.82
0.84
0.86
0.90
1,00*

[Il.f]L
1.53+0.05
2.72 &0.06
3.16+0.06
3.38~0.06
3.44+0.05
3.42+0,06
3.22 &0.06
2.88&0.04
2.48+0.05
2.06+0,04
1.90+0.04
1.78&0.04
1.74&0.03
1.71%0.04
1.67&0.04
1.68+0.03
1.78+0.05
1.77+0.05
1.89+0.05
1.94&0.04
2.04+0.04
2.22&0.05
2.43+0.04
2.64+0.07
2.82&0.09
2.87~0.05
3.28+0,06
3.58+0.04

[m]T
1.28+0.06
1.92&0.06
2.47+0.05
2.88&0.04
3.21+0.06
3.42 +0.06
3.44+0.09
3.46%0.09
3.46+0.05
3.44+0.09
3.44+0.09
3.48+0.05
3.48w0, 09
3.54+0.09
3.52+0.09
3.56+0.05
3.58+0.04

1'= (I/v2)(aq/2~)

of
0.125
0.25
0.375
0.50*
0.625
0.75
1.00~

0+
0.25
0.50*
0.625
0.75
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00*

0'
0.125
0.25
0.375
0.50*

og
0.125
0.25
0.375
0.50*

[2k/']~
2.56+0.05
2.62~0.06
2.74a0.06
2.92a0.07
2.88~0.04
2.80+0.08
2.73~0.07
2.56~0.05

3.82~0.07
3.57&0.08
2.88~0.04
2.38+0.06
1.81&0.05
1.28+0.04
1.23+0.04
1.14&0.03
1.07+0.03
1.01&0.03
0.96~0.04
0.93+0.03
0.93+0.02

[ffI] II,

3.58~0.04
3.33~0.07
2.50~0.05
1.49+0.04
0.93+0.02

[H I] 11~

3.58+0.04
3.48+0.07
3.14+0.06
2.75+0.06
2.56&0.05

)the point (0,0,1)) the longitudinal and transverse
branches are degenerate by symmetry. The longitudinal
and transverse modes are degenerate, also by symmetry,
at the point (s,s,s). This is illustrated in the curves
D'gjand (s '—, i $. The upper curves show the frequen-
cies of phonons whose coordinates in the reduced zone
of the reciprocal lattice on the perimeter of the rectangle
F/VPiV'HF in Fig. 1. The line (1"gj and its mirror re-
Rection in the upper half of the reduced zone make con-
tact with this rectangle at the points (0,0,0), (s, st, ts)

and (0,0,1). At the point (—,', ts, l) it is possible to deter-
mine the frequency of the zone boundary mode for the
second transverse branch in the Lgof direction. This
point is on the zone boundary for the (I,O, I) reciprocal
lattice point which is not in the (110) plane. By sym-

metry the polarizations of the two modes vibrating in

the (110) plane at this point are both transverse. One
of these transverse modes is just the endpoint of the
LgOj Tt branch. The complete t t|OJ Tt branch has
been determined by using a (different) specimen which
had its (001) plane horizontal. With this specimen
more measurements were also made in the L00$)
direction which verified the earlier results.

In the course of the measurements, particularly those
along the LODE j I. branch, peaks in the neutron distribu-
tion corresponding to lower energy transfer were ob-
served. These peaks have been attributed to multiple
(elastic plus inelastic) scattering' in the crystal. The
mosaic spread of the (002) plane of the sodium crystal
was about 0.14 deg, and thus such multiple scattering
events are not expected to be frequent. Hence, their ap-
pearance was surprising, especially since their energy
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FIG. 2. The dispersion curves
for sodium at 90'K. The solid
lines have been calculated from
the best available values of the
elastic constants at 90'K (refer-
ence 1/). The abscissa for the

i'i'7 'direction has been stretched
to emphasize the equivalence of
the points I

rs s' —',7 and D117 with
the corresponding points for
Lmr sr i 7 and L00$7 shown above.
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did not correspond exactly with that of the transverse
branch. However, in every case examined, such multiple
scatterings were possible and usually involved two wave
vectors out of the horizontal plane. In these cases other
considerations can change the apparent value of v for
the phonon. This contaminant intensity had consider-
able effect only on the

I Oofj l. branch. For all other
branches conditions were arranged so that sharp and
apparently uncontaminated groups could be obtained.

2. Measurements of Polarization Vectors

Besides the measurements of the dispersion curves for
vibrations in the symmetry directions in the crystal
several oB-symmetry modes were also measured. The
frequencies of these modes are shown in Table IV. In
the irreducible rectangle in Fig. 3 the approximate
polarization directions are indicated by the arrow heads;
the directions were inferred from continuity with the
symmetry directions and from intensity observations.

The relative integrated intensities of two modes of
unknown, but mutually perpendicular, polarizations
were measured by plotting the neutron distributions on
an energy scale and correcting for the difference in
frequency between the two modes. No other corrections
were necessary since the factors k'/kII and 1/I JI in

QO, O, Ij =-
C. I, I, I j ~(e

l-,'-,'Ij;=, (kr O1

the one-phonon intensity formula" were automatically
included.

The factor k'/kII was eliminated because variable input
energy was used" in the experiment and the monitor
counter in the diffracted beam had a 1/e sensitivity.
Because of the constant Q method of making measure-
ments the factor 1/III =1 for all phonons. The chief

difficulty in deducing intensities is in deciding just where
to draw the background level under each peak. For
sodium this background is large because of the large
incoherent scattering cross section. The experiments
will be discussed in more detail elsewhere. "

TABLE IV. Frequencies (units 10"cps) of some
nonsymmetric modes at 90'K.

Mode

1.68%0.05
2.50+0.05
3.32&0.07
3.59+0.06
3.56+0.05
3.49&0.05
3,36&0.05
3.04&0.06
3.65&0.06

V2

0.93&0.03
1.88&0.04
2.76&0.05
1.54&0.04
2.43~0.05
2.12+0.05
1.64%0.05

to,o,o]

FIG. 3. The approximate polarization directions for the high-
frequency mode in the {110)plane. These were deduced from
symmetry considerations, intensity measurements, dispersion
curve continuity, and the values of the force constants for the
fifth neighbor model.

"I.Wailer and P. O. Froman, Arkiv Fysik 4, 183 (1952).' B. N. Brockhouse, L. N. Becka, K. R. Rao, and A. D. B.
Woods, I.A.E.A. Symposium on Inelastic Scattering of Neutrons
in Solids and Liquids, Chalk River, Ont. , Sept. 10—14, 1962. Also
issued as Chalk River Report, AECL-1572.



TABLE V, Interplanar force constants C„ for sodium at 90'K
in units of 10' dyn/cm. Only those contributed to by five neighbors
are included. The errors shown are those incurred in Gtting. Abso-
lute errors are somewhat larger.

4 g gg error
lA

O

O
2

$00/7 L
$00/7 T
BÃ7 I-
Q'$07 T1
Ln07»
tm7L
LI7 T
Pkkt7~
P: y07n
//f17 II&

Bg17 n2

8.7
2.1
3.1
0.1

—0.03
13.4
15.3
13.6
4.2

—3.8
1.3

93.6
98.2

110.7
6.7

49.8
17.5
97.5

3.4 +0.6
~0.3
~0.5
~0, 1

~0.4
1.7 0.8 &0.4
1.1 —1.3 &0.7

+1.5
~0.4
~2.0
&1.0

C3

LLI

77.8
—1.6

—4.3
—0.2

99.1
220.2
194.1
194.0

---- 3 TERMS (I" and 2" Neighbor)—

5 TERMS (O'" Neighbor)

—102.4
—91.0
—47.7

1Q2

0 1 1 1 1 1 1 1 '1 1

0 .j .2 .3 .0 .5 .6 .7 .8 .9 l.0
$ =

oq/rising

symmetry directions are linear combinations of the
force constants between atoms (see Table II). Further-
more, it has been shown that these linear combinations
of interatomic force constants are just the force con-
stants between corresponding planes of atoms. Thus, a
Fourier series analysis"' for the squares of the measured
frequencies on the dispersion curves will yield the inter-
planar force constants; the number of terms in the Four-
ier series required to fit the data gives the range of the
interplanar force constants and hence the minimum
range for the interatomic force constants. Accordingly,
a least-squares Fourier fit of the form,

FIG. 4. Fourier series fits to the pfff'7 L branch of sodium. A
three-term Gt is not quite adequate quantitatively although it
represents a good qualitative description.

3. Search for Kohn Effect

Kohn' has predicted that there will be a kink in the
dispersion curves for a metal when the wave vector,
q, of the phonon plus any reciprocal lattice vector
(2rr~) is equal to the diameter (in the spherical case)
of the Fermi surface. Such effects have been observed
in lead" and are discussed in detail in the preceding
paper. ' Considerable effort was spent to see if the effect
couM be observed in sodium at 90'K. Four regions of
reciprocal space were investigated which corresponded
to a free electron spherical Fermi surface of radius
0.146 A '. The range of iI studied allowed for a variation
of &5% in the Fermi radius. The branches studied were
LOOfj T near /=0 3, LOOBY]. L near /=0. 75, (s s 1]sr

near $= 1, and D'g j I.near $=0.7. The measured points
are included in Figs. 2 and 4 and show no evidence of
any anomaly within an accuracy 1%. The only case
of doubt is the L00$7 I. branch where, as explained
earlier, it was not possible to obtain sharp uncontami-
nated neutron groups. The close proximity (in fre-
quency) of the transverse branch probably complicates
the situation still further.

Thus, we have no evidence for the existence of well-
marked Kohn anomalies in sodium; nor are they ex-
pected' to be large since, compared with lead, the
electron-phonon interaction is very small.

47r'Mv'= P C (1—cosrtsrf/f, „),
n=l

was made for different values of e up to /=12 in some
cases. Each phonon used in the fit was assigned a weight
depending on its estimated error. The best values of the
elastic constants available'7 were also included in the
fit with a variety of weights. The values of the inter-
planar force constants for interactions out to fifth
neighbors are listed in Table V. As in the case of lead,
it was found that the wieght attached to the ejastic
constants had little effect upon the calculated values of
the interplanar force constants. This fact attested to
the consistency of the neutron data with the elastic
constants.

The results of such fits to the data for the Qffj I
branch are shown in Fig. 4. For this branch, three terms

"A, J. E. Foreman and W. M. Lomer, Proc. Phys. Soc.
(London) B70, 1143 (1957).

'7 The low-temperature elastic constants for sodium are rather
poorly known. The results of O. Bender t Ann. Physik 34, 359
(1939)j, as quoted by J. de Launay, in Solid State Physks-
Pedited by F. Seitz and D. Turnbull (Academic Press Inc. , New
York, 1956), Vol. 2g are in serious disagreement with those of
S. L. Quimby and S. Siegel LPhys. Rev. 54, 293 (1938)j. The
recent results of Daniels (reference 10) at room temperature sup-
port the values given for the shear constants by Quimby and
Siegel but not their value for f."11.Thus for the shear constants the
values given by Quimby and Siegel were used. Following the sug-
gestion of C. S. Smith (private communication) the value used for
c11 was a composite one, combining Daniels' room temperature
value with the temperature variation given by Quimby and Siegel.

V. ANALYSIS OF EXPERIMENTAL RESULTS

I. Fourier Analysis

In the Born-von Karman theory, the coeKcients
of the sinusoidal terms in the expressions for v' in

ie W. Kohn, Phys. Rev. Letters 2, 393 (1959).
'~B. N. Brockhouse, K. R. Rao, and A. D. B. Woods, Phys.

Rev. Letters 7, 530 (1961).
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CRYSTAL DYNAM I CS OF Na AT 90'K

in the series are almost but not quite adequate to 6t
the data. This means (see Table I) that first- and second-
neighbor interaction, even assuming general forces, are
insufFicient; the necessity for five terms in the 6t implies
at least fourth-neighbor interaction, if we are to remain
within the framework of the Born-von Karman theory.
Similar fits have been obtained for the other branches
at 90'K and support the conclusion that a force model
which includes only first- and second-neighbor central
forces is quite inadequate quantitatively; qualitatively,
however, a first- and second-neighbor central force
model does appear to give a reasonable description of
the dispersion relations.

The sums of the squares of the frequencies of the two
nonsymmetric modes at a given q in a mirror plane can
be considered in much the same way as the individual
modes in the symmetric directions as discussed in Sec.
II. Hence, these data can be used, in conjunction with
those in the symmetric directions, for force constant
analysis.

2. Interatomic Force Constants

The values of C, determined from Fourier analysis
of the dispersion curves, are linear combinations of the
interatomic force constants. A least-squares fit for the
force constants out to fifth neighbors was performed on
the Chalk River datatron; the "best" values are given
in Table VI together with an estimated "error". The
error given has been deduced partly from the calculated
error in the fits and partly by the spread in force con-
stant values which result when the values of C„ for
different groups of dispersion curves are used. The
amount of information contained in the measured dis-
persion curves is more than sufticient to permit the
determination of unique values of the force constants
out to fifth neighbors. The sums of squares of the fre-
quencies at off-symmetry points were also included in
some of the fits. They were not used in the final force
constant determination but, instead, the individual non-
symmetric modes were used as a check on the calculated
force constants.

I-east-squares 6ts were also carried out under theas-
sumption of central forces between the ions. This as-
sumption leads to the following relations between the
force constants:

1. The equilibrium condition for the crystal,

~i Pi+Ps+4Ps+1—1P4 11m4+4o s 4Ps—=o, —

2. The conditions when more than two force constants
per atom are involved,

os—Ps-Vs=0,
64 3+4—Op

n4 —Ps —Sys ——0.

With these auxiliary conditions the fits were very nearly
as "good" and the values of most of the calculated
force constants did not change signi6cantly. The values
of ns, Ps, and Ps showed changes which were probably
rather more than expected; 30 dyn/cm in each case.
This change may reQect the poorness of the data in some
regions, e.g. , $00i] 1.) or it may be areal measure of the
departure from central forces. (It is known that the
forces cannot be truly central as the elastic constants
fail to satisfy the Cauchy relation; the values of ci2
and c44 differ by about 15% at this temperature. "

The qualitative features of the behavior of the force
constants are the same whether or not the central force
model is used. The force constants for fifth neighbors
are about 1 or 2% of those for first neighbors. It
is dificult to tell if the values for the fifth-neighbor force
constants are really significantly diferent from zero;
but all 6ts indicate that they are. If this is the case it is

probably worthwhile to extend the analysis beyond 6fth
neighbors; the ring of eighth neighbors is the next
logical stopping place. Sufficient information appears to
exist to make this analysis possible but it has not been
done at the present time.

VI. CONCLUSIONS

The measurements of the dispersion curves for the
lattice vibrations in sodium at 90'K lead to several
interesting qualitative and quantitative conclusions:

1. In contrast with lead, the results appear to be
describable by the Born-von Karman theory which

requires long-range forces only to Gt the finer details of
the curves. First- and second-neighbor central forces
give a good qualitative description; this is true of no
other substance studied so far.

2. There are no apparent Kohn anomalies in the dis-

persion curves; they were looked for specifically at
certain places at which they wouM be expected for a
spherical Fermi surface.

3. Off-symmetry modes appear to be nearly longi-
tudinal or transverse except near zone boundaries.

Tanrx VI. Force constants (units dynes/cm) calculated from observed frequencies.
Estimated probable error is &10 except where indicated.

Pe
(z,z)

0,1 P1
Force constant (x,x) (x,r) (x,x)

A2 C13 Vs CZ4

(x,x) (x,r) (x,x)

General forces 1178 1320 472%30 104+30 —38 —0.4+30 -65 52+20
Central forces 1173 1319 431&20 119&20 —47 20 —67 44

I84 y4 84 a4 Py

(rr& (r,z) (xr& &x,*& &*,r&

3 14 17 33
0.5 5 16 17 17



VVOODS, BROCKHOUS I'. , MA. RCH, S I'ELVA. Pi T, AND BOWERS

4. Although a short-range model gives an adequate
qualitative picture, there is little doubt that forces out
to fourth or fifth neighbors and possibly beyond, play
a significant role in the determining of the details of
the lattice dynamics of sodium.

5. There are still several aspects of the problem to be
considered: (i) the abnormal behavior of the LOOBY] I.
branch, (ii) extension of the analysis to more distant
neighbors, (iii) the possibility of deriving an inter-

atomic potential. , and (iv) the temperature behavior
of the phonons.
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Lattice Vibrations in Pyrolitic Graphite
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The dispersion relation for the longitudinal acoustic lattice waves propagating in the direction of the
hexad axis in (pyrolitic) graphite, at room temperature, has been determined by neutron spectrometry. The
dispersion curve has very closely the form of a sine curve, with a maximum frequency of (3.84+0.06)X 10"
cps, for the zone-boundary phonon of wavelength c=6.70 A..The transverse acoustic lattice waves were less
well determined, but show roughly similar behavior with a maximum frequency at the zone boundary of
(1.3+0.3)X10"cps. Values for certain elastic constants have been deduced from the measurements: in units
of 10"dyn/cm', C33 3.9+0.4, and C44=0.42+0.2.

INTRODUCTION

HE lattice dynamics of graphite has been dis-
cussed theoretically by a number of authors. '

The consensus of these discussions is that the lattice
modes can be approximately divided into vibrations (a)
with atomic motions in the hexagonal planes of atoms
and (b) with motions normal to the planes. Because the
binding of the planes to each other is very much weaker
than the binding of the atoms in the planes, motions of
the planes with respect to one another have little in-
Quence upon the frequencies except for those relatively
few modes in which the planes move substantially as
rigid units. Thus, only at very low temperatures does
the speci6c heat of graphite' " have the familiar T'

*Present address: Physics Department, McMaster University,
Hamilton, Ontario, Canada.

' K. Komatsu and T. Nagamiya, J. Phys. Soc. Japan 6, 438
(1951).

~ J. A. Krumhansl and H. Brooks, J. Chem. Phys. 21, 1663
(1953).

~T. Nagamiya and K. Komatsu, J. Chem. Phys. 22, 1457
(1954).

4 K. Komatsu, J. Phys. Soc. Japan 10, 346 (1955).
~ G. F. Newell, J. Chem. Phys. 23, 2431 (1955).
6A. Yoshimori and Y. Kitano, J. Phys. Soc. Japan 11, 352

(1956).
7 G. R. Baldock, Phil. Mag. 1, 789 (1956).
J. C. Bowman and J. A. Krumhansl, J.Phys. Chem. Solids 6,

367, (1958).' K. Komatsu, J. Phys. Chem. Solids 6, 380 (1958).
"W. De Sorbo and W. W. Tyler, J. Chem. Phys. 21, 1660

(1953).
"W.De Sorbo and G. E. Nichols, J.Phys. Chem. Solids 6, 352

(1958).

dependence; at intermediate temperatures it tends to
display the 1' dependence characteristic of a plane
lattice. The transition between these two types of
behavior is determined by the modes for which the
hexagonal planes move as units; in this paper we present
an experimental study of the dispersion relation for
these modes at room temperature, by neutron spec-
trometry.

The dispersion relation between the frequency (o)
and the wave vector (q) for the normal modes of vibra-
tion of a crystal lattice may be obtained by a study of
the coherent one-phonon scattering of slow neutrons
from a single-crystal specimen. '2 These scattering proc-
esses are governed by equations expressing conserva-
tion of energy and "crystal momentum":

+0 + =+hP)

Q =ks- k'= 2sr~-q,

(1a)

(1b)

"See B.N. Brockhouse and A. T. Stewart, Revs. Modern Phys.
BO, 236 (1958).

where Eo, Z' are the energies, and ke, k' the wave
vectors, of the incident and scattered neutrons, respec-
tively; Q is the momentum transfer vector, ~ is a
reciprocal lattice vector, and h is Planck's constant.

The study of the lattice vibrations of graphite by
means of slow neutron scattering has so far been pre-
vented by the lack of sufficiently large single-crystal
specimens. Recently, however, the production has been


