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Doppler shift in the Mdssbauer effect is proportional to
the mean-square velocity of the emitting atom. Hence,
measurements of this shift provide, in principle, a means
of obtaining information about the forces acting on a
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surface atom compared to those acting on an interior
atom. However, technical difficulties associated with
preparing samples having the radioactive atoms
localized in the surface layers must be surmounted.
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Kubo’s formula for thermal conductivity is evaluated for the case of an interacting electron gas and
random, fixed, impurities. As in previous work, the theorems proved are exact to all orders in the electron-
electron interactions and to lowest order in the concentration of impurities. The heat flux is examined in
some detail and a Ward’s identity is derived for the associated vertex function. Although the heat flux con-
tains contributions from the interaction energy of pairs (or larger clusters) of correlated quasi-particles, it
is found that these contributions enter the thermal conductivity only to higher orders in the impurity
concentration. In a normal system where the many-body correlations are sufficiently weak, the Wiedemann-

Franz law remains valid.

I. INTRODUCTION

HE purpose of this paper is to demonstrate that
the quasi-particle picture of an interacting Fermi
fluid is rigorously applicable to thermal conductivity
problems. This picture, originally proposed by Landau,’
has turned out to be an exact consequence simply of the
general structure of many-body perturbation theory.
The detailed proof of this fact for various equilibrium
properties of the Fermi fluid may be found in a series of
papers by Luttinger®3; and a discussion of dc electrical
conductivity is contained in previous papers by the
present author.! In this paper we shall apply the
perturbation-theoretic analysis to the calculation of the
heat flux associated with a small temperature gradient.
In particular, we shall show that the Wiedemann-Franz
law remains valid in the presence of interactions be-
tween the electrons.

The model to be used here is precisely the same as in
the previous work.! That is, we consider a system of
interacting electrons in the presence of a small con-
centration of randomly scattered, fixed impurities. The
impurities provide the relaxation mechanism for the
system. Calculations are performed to all orders in the

* Supported in part by the Office of Naval Research.
T National Science Foundation Fellow. Permanent address:
Carnegie Institute of Technology, Pittsburgh, Pennsylvania.
11, D. Landau, Sov. Phys.—JETP 3, 920 (1956); 5, 101 (1957).
2 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
3J. M. Luttinger, Phys. Rev. 119, 1153 (1960); 121, 1251
1961).
( 47. )S Langer, Phys. Rev. 120,714 (1960); 124, 1003*(1961); 127,
5 (1962). We shall refer to these papers as I, TI, and IIT,
respectively,

electron-electron and electron-impurity interactions,
and to lowest order in the concentration of impurities.

As a starting point for this calculation we shall use
Kubo’s formulas for the transport coefficients. Although
several steps in the derivation of these formulas are
rather subtle and difficult to justify rigorously, we shall
proceed on the assumption that the formulas are exact.
We define the transport coefficients as follows?:

v /1 1 1
i= ——Lo<—V#—-VT)—Lr—VT; (1.1)
e \u T T
u /1 1 1
u= ——L1<—Vu————VT>—L2~—V T, (1.2)
e \u T T
where j is the electrical current density and u is the
energy flux. T is the temperature and u the chemical
potential. Then the transport coefficients, L, are given
by the Kubo formulas®:

1 0 B
L°=5s—z.[o dt/o @\ Tr[pod (0)- J (i) T; )
1.3

®I'or a careful discussion of the definition of the transport
coefficients, see H. B. Callen, Thermodynamics (John Wiley &
Sons, Inc., New York, 1960).

8 A complete derivation of these formulas may be found in
Kubo’s lectures at the Summer Institute for Theoretical Physics,
University of Colorado, Boulder, 1958. These notes appear in
Lectures in Theoretical Physics (Interscience Publishers, Inc., New
York, 1959), Vol. I. The original papers are R. Kubo, J. Phys.
Soc. Japan 12, 570 (1957); R. Kubo, M. Yokota, and S. Nakajima,
ibid. 12, 1203 (1957). Also see M. 1. Klinger, Zhur. Tekh. Fiz. 27,
2780 (1957).



THERMAL

{ o 8
Li=— / it / 0\ THLpU(0) - J(4+iN)]
1 o b
- / it / AN TrpJ (0)- UiV T, (1.4)
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L=— / at / \ TeL U (0) - UGtin) . (1.5)

Here, J and U are the Heisenberg operators for the total
electrical and energy currents, respectively. po is the
equilibrium density matrix:

po=(1/Z) exp[—B(H—uN)];

Z=Tr exp[—B(H )], (16)

where H is the Hamiltonian for the system of electrons
and impurities and &V is the number operator. 8=1/k 5T,
kg being Boltzmann’s constant; and @ is the volume of
the system.

In the absence of a temperature gradient, Vu= —¢E,
where E is the external electric field. Thus, we may
identify the dc conductivity ¢ with Ly:

L(): ag. (1.7)
The heat flux q is given by?®
q=u— (u/e)j. (1.8)
Definition of the thermal conductivity, «, by
q=—«VT, 3=0, (1.9)
leads to
1 Ly
K=—(L2————>. (1.10)
T Lo

The major difficulty in the evaluation of the right-
hand side of Eq. (1.10) is that, in order to obtain a non-
vanishing result, we are required to compute the L’s to
order T2 Paper III in this series* was devoted to a dis-
cussion of how such a calculation must be performed;
and we shall use the results of IIT extensively in the
present work. At first glance it would seem that, to order
T2, we should have to include an explicit contribution to
the heat flux due to the interaction energy carried by a
correlated pair of quasi-particles. In fact, we shall see
that such a term does occur; but, as pointed out in IIT,
its contribution to the conductivity does not diverge as
the concentration of impurities goes to zero. Roughly
speaking, in a normal system the transport associated
with a cluster of quasi-particles is limited by the
correlation time of the cluster even in the absence
of relaxation due to impurity scattering. Thus, as long
as the cluster correlation times remain finite—a condi-
tion which must be equivalent to “normality”’—the in-
dependent quasi-particle picture will yield an accurate
transport theory.
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F16. 1. Reduced dia-
grams of orders p=1
and p=2.

The mathematical details of the evaluation of « are
presented here as follows. In Sec. II we review the
scheme developed in III for evaluation of the Kubo
formulas and indicate the minor modifications which
are required when the electric current operator J is
replaced by the energy flux U. The only formal problem
not actually solved in IIT is the proof that the energy
flux associated with a single quasi-particle is given by
the quasi-particle energy multiplied by the group
velocity. This proof is contained in Sec. IIT of the
present paper. Finally, in Sec. IV we exhibit the result-
ing expression for « and discuss the Wiedemann-Franz
law.

II. GRAPHICAL ANALYSIS

According to the discussion in III, any one of the
Kubo formulas (1.3-5) may be evaluated by means of
the same perturbation-theoretic techniques as those
devised by Luttinger and Ward? for the calculation of
the Gibbs potential in equilibrium statistical mechanics.
In particular, a Kubo formula may be written in terms
of the imaginary part of a vacuum-polarization function.
A unitarity relation then expresses this imaginary part
as a sum over energy-conserving intermediate states.
Alarge section of Paper ITI was devoted to a demonstra-
tion that, for a normal metal, this sum over true
intermediate states may be rearranged and labeled
according to the number of quasi-particles and quasi-
holes which appear as intermediate states in what were
referred to as “reduced graphs.” The final form of the
answer might be said to constitute a ‘“quasi-unitarity”
sum. The reader is referred to III for the details of this
formulation.

We start now with the sum over reduced graphs as
given by Eq. (III 4.6). Some sample reduced diagrams
are drawn in Fig. 1. For any one of the transport
coefficients, L, we have an expression of the form:
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Here, p denotes the order of the reduced graph, i.e., the
number of quasi-particle hole pairs which appear. The
£s play the role of energy variables associated with the
2p electron lines (see Fig. 1). The particle or hole nature
of each line is indicated by the Fermi functions, f*(§).
Also associated with each explicit line in the reduced
graph is the spectral function, @(£). This function is
defined to be the discontinuity across the branch cut
of the complete single-particle propagator. (It should be
emphasized that the propagator referred to here is the
analytic continuation of the simple temperature-
dependent function used by Luttinger and Ward. It is
not the more complicated time and temperature de-
pendent Green’s function often used by other authors.)
The A (®’s are the vertex functions indicated by shaded
circles in the diagrams. A always is a “proper”
vertex function; i.e., no self-energy parts occur on the
p ingoing or the p outgoing electron lines. The external
interaction line associated with A indicates an inter-
action with either J or U, depending upon which
coefficient L we are dealing with. The sum over v in
Eq. (2.1) indicates that we are to sum over all combina-
tions of vertex diagrams A;(® - A,* with the proviso
that we never construct a graph in which a self-energy
part has been inserted into one of the electron or hole
lines which comprise the intermediate state. In other
words, if the A(’s are skeleton diagrams, then the
entire reduced graph must remain a skeleton diagram.
The symmetric form in which the A(®’s occur in (2.1)
is strictly necessary only for the coefficient L, where
use of the Onsager symmetry is required in the deriva-
tion of this equation. Finally, the angular brackets in
(2.1) indicate an average over random configurations of
impurities.

The only place in which any of the present analysis
might differ from the previous work is the evaluation
of those vertex diagrams A(® associated with the
energy-flux operator U. In order to complete the

1
e+ / Bx P Yo (X — X0 (W ()= (%),
2m
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%(Al“’)-Az(z’)*+A2(f’)-Al“’)*)(i(fl)~ .. @(&p))aw (2_1)

graphical analysis, then, we must construct an explicit
representation for this operator. We shall not make
direct use of this operator in any detailed calculations in
this paper; but its general form is important.

Let e(x) be the energy-density operator at the position
x. Then the energy flux is any vector u(x) which satisfies
the conservation law

e(x)+v-ux)=0; (2.2)
and the total energy flux is
U= fd% u(x). (2.3)

Equation (2.2) defines u to within a divergenceless
vector, which is sufficient for the calculation of the
conductivity. Now we know that a vector u which
satisfies (2.2) is given to us automatically by the energy-
momentum tensor in the following manner. Consider
the Lagrangian

: 1 1
L= / Ldix= —— / &Bx vyt vp—— / dx (Yhy—yit)
2m 21

1
- / / Badx P W (X — WKW ), (2.4)

where y and ¢ are to be considered independent Heisen-
berg operators. The spin dependence of these operators
is irrelevant for our purposes and has been omitted.
v is the electron-electron interaction “potential. To
lowest order in the concentration of impurities, the
electron-impurity interaction may be omitted in com-
puting the energy flux.

The standard variational procedure applied to (2.4)
yields the equation of motion:

(2.5)

and its Hermitian conjugate. Then, the vector u is given by

oe  ae 1wt o
ey T aoutany —_2;;(6_9::,- +¢Ta—xi>
i oyt
:E;n”;(

1

— Vi /d%’W(x’)v(_x’——x)gb(n:’)\p(x))—kl{.c., (2.6)

2m
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where we have used (2.5) in writing the last line. Direct differentiation of (2.6) verifies Eq. (2.2) with

1 1
e(x)=—VwYt- vy+- / &’ YY) (x—x )Y (X )y (x).
2m 2

Finally, we transform into momentum space via

where ay is the usual annihilation operator for an electron of momentum k. Then we use Eq. (2.3) to find

k &
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(2.7

Y(x) =07 Ty axe™ (2.8)

=y — ———akTak—I~ > ——(k—l—k )2(Q) @xyqfarr_qlaway. (2.9)

k m 2m

The first term on the right-hand side of (2.9) is the
usual expression for the energy flux associated with non-
interacting electrons. The second term is a two-body
operator which expresses the contribution of the inter-
action energy to the total energy flux. The two kinds of
elementary vertex diagrams which now must be associ-
ated with U are drawn in Fig. 2. Notice that the two-

k+k
k K
m 2m

(a

F1c. 2. The two elementary vertex diagrams associated
with the energy flux operator U

body vertex leads to diagrams in the evaluation of L,
and L, of quite a different sort than the diagrams which
occur in Lo. For example, the graph shown in Fig. 3 has
a reduced graph only of order p=2; i.e., it makes a
contribution to Ly at most of order 72

III. ENERGY FLUX OF A QUASI-PARTICLE

Having formulated the general rules for the perturba-
tion-theoretic evaluation of the transport coefficients,
we turn our attention now to a detailed discussion of the
lowest order reduced graph. As pointed out in III, the
p=1term in Eq. (2.1) contains the independent quasi-
particle model of dc transport processes. The crucial
ingredient of this term is the vertex function, A®,
which, apart from a normalization factor, is the current
associated with a single quasi-particle. For the case of
electric current (J) we found previously:

ek 9
AJ(I) (kys)=__85]:2, (k7£)7 (31)

m

where 2’ is the proper self-energy function. When
£= £, such that

k2/2'}'}'l—~ Ek—~2’(k,£k)=0, (32)
then

A ;O (k&)= (¢/Ny) (dtr/dk), (3.3)

Q kXx,q 2m

where d£/dk (or its real part) may be identified as the
group velocity of the quasi-particle and

0%’ (k,£)
A& lpmgy

is the normalization of the quasi-particle wave function.
Thus, the current is given by

Je=A ;D (k,E) N=e(dtx/dk), (3.5)

i.e., the charge times the group velocity. The purpose of
the present section is to derive an analogous expression
for the energy flux.

The reader will recall that, although no impurity
effects appear explicitly, the impurities played an
important role in the derivation of the above formulas.
In particular, the presence of the impurities had the
mathematical effect of allowing differentiation of the
electron propagators with respect to the momentum k,
and thus allowed a simple graphical derivation of (3.1).
Unfortunately, the operator U is considerably more
complicated than J; and the trick of differentiation does
not seem to be applicable. We, therefore, must take a
slightly different approach to the evaluation of Ay®.

In preparation for this calculation, let us return to
A;D and consider the case in which the external
interaction line carries a finite momentum and energy,
say q and », but there are no impurities in the system.
This vertex function is discontinuous at q=0, »=0. In
particular, (see II, Appendix B):

A;D(y=0, ¢— 0)= (¢/Nx)(dtx/dk);

Ny tl=14+—— 3.4)

(3.6)
but
AV (q=0,»—0)=(¢/mk(1/Ny).  (3.7)

The direct analysis in Paper II indicates that we may
get correct results by ignoring the impurities and
choosing (3.6) for the vertex function. This choice may

F16. 3. A diagram con-
tributing to the coeffi-
cient Lo.

/‘\; \\/{\
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be further justified by the following intuitive argument.
Considered as a function of q, A;® is essentially the
Fourier transform of the current density associated with
a quasi-particle wave packet. We know that this wave
packet must be localized within a length of the order of
the mean free path, A=2(kr/m)7 ; thus we must consider
¢’s of the order N"'=2m/kpr. Now the dimensionless
ratio which is relevant to the choice between (3.6) and
3.7 s

my/ qkr=yt, (3.8)
which must be much less than unity under dc conditions.
We conclude that the limits ¢, » — 0 must be taken in
the order indicated in Eq. (3.6).

e(q)= /e (x)eta-*dPx

1
=2 —k- (k+q)axiqfact3
k 2m

In the formalism of Luttinger and Ward? we must con-
sider, instead of the usual Heisenberg operator, the
quantity

e(g\)=eMe(q)e (3.10)

in which case we have
(d/dN)e(q,\) = —ieMe(q)e M =q-u(g)). (3.11)

Equation (3.11) is the desired form of the energy-
conservation equation. Now multiply (3.11) by the
modified Heisenberg operators axyq(\)axt(0) and take
the N-ordered satistical average. We find

;}:(T Larra(N)e(g,N)ax! (0) 1)
—(TLaxra(N)g-ulg,Naxt (0) 1)
=(T{[e(@N),axq(N) Jax' (0)} )6 (A —1N")
H(T{axra(\)e(g,0),axT (0) T})o ().
The angular brackets are defined, for any operator 4, by
(A)=TrpoA. (3.13)

The two terms on the right-hand side of (3.12) occur
because we have taken d/d\ outside of the quantity
subject to the T operation.

The next step is to compute the Fourier coefficients
of Eq. (3.12) via the operation

8 8
/ o f AN N gm=N L
0 0

Si=p+(wi/B) 2H1); vw=2mim/B. (3.14)

In accord with the above discussion, we may im-
mediately set »,,=0. The resulting equation is

7Y. Takahashi, Nuovo cimento 7, 371 (1957).

(3.12)

LANGER

Our procedure now is to compute the energy-flux
vertex Ay® for »=0, ¢ — 01in the absence of impurities.
To do this we adopt a technique devised by Takahashi
for proving and generalizing the Ward identity in
quantum electrodynamics.” This technique is based on
the observation that the Ward identity [both in
electrodynamics and as expressed in Eq. (3.1)] is a
direct result of gauge invariance, which, in turn, is
equivalent to charge conservation. Thus, Takahashi
was able to prove the identity by starting with the
charge-current continuity equation. In direct analogy,
we use Eq. (2.2) for the starting point of our derivation.

Let e(q) be the Fourier transform of the energy-
density operator given by Eq. (2.7). That is,

v(q)

k,k’,q’

3.9)

rtqtq O —q T .

=S5 (k+q,8)q- A5’ (k,$)

B
- / AN NN ra ) T (0)})

B
+/ an e“)\<T{ak+‘!O‘)[é(q)O)ya’kT(O)]}>' (3'15)

The left-hand side of (3.15) has been obtained by means
of the usual diagrammatic interpretation of the A-de-
pendent expectation value which occurs in (3.12). In
this way we have passed from the energy-conservation
equation to a relation which contains the desired
vertex function Ay®.

It remains to find a diagrammatic interpretation of
the right-hand side of (3.15). The commutators which
appear there are

1
Le(@),axq]=——k- (k+q)ax—A—B; (3.16)
2m ,
v(q)
A=3 Twrqrtq O Grerars  (3.17)
klyql
()
B=3 2 Qg fwaryy; (3.18)
k,q"
1
[e (q),ak”]=2—k' (k+a)aw+C+D; (3.19)
m
(@)
C=3 2 Crrqi@r—qrqla; (3.20)
k"q’
o(q’)
D=3 X Citqrq O g liaw. (3.21)
K.q
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The first terms in (3.16) and (3.19), i.e., the kinetic energy terms, may be inserted into (3.15) to give

1 B 1
——k- (k+q) / d\ NT{ac(Na! (0)})=——k- (k+q)S" (k,51); (3.22)
d 2m 0 2m
an

1 B 1
—k- (k+q) / A\ NI {arrq V@it (0)})=—k- (k+¢)5" (k+q,52). (3.23)
2m 0 2m

The interaction terms 4 through D are slightly more difficult, however. By suitably relabeling the variables of
summation, we may rewrite (3.17) and (3.20):

1
A=B+3 2 —[v(@'—@)—v(q) Jow o fowaxie

ok
dv
SB—— T g —tise Oty (3.24)
20 %, 9q’

and

1
C=D4o & [0/ +0) @) Jowrusalen—y o
kl’q,

dv
=D4— 3 Q@ —GkiqitqlO—g Taxr. (3.25)
20w, 9q

The operators B and D are illustrated graphically in Fig. 4. The correction terms, A — B and C— D, may be inter-
preted similarly except that, to first order in q, we must replace v(q") by q-9v/dq’. Now we may identify

B
h / ANENT[2B(N)axt(0) )= —2" (k,¢1).S" (k,$); (3.26)
and .

B
/ NN Tty (W)2D(0)]) =S (k0,62 (k-0,80)- (3.27)

Exactly the same equations pertain for the correction terms except that we must replace = by, say, q-II where
q-IT is obtained by replacing the first interaction »(q’) in = by q- dv/dq’. Notice, however, that the sign of this term
is different in Egs. (3.24) and (3.25).

The resulting form of Eq. (3.15) is

1
=8 (k+q,5)q- Av DS (k¢ ) =2—‘k‘ k+q)[S" (k+q,5)— S (k¢ ) J+S" (k+a,5 )2 (k+q,8) — 2 (k) S (ki)
"

+38" (k+a,0)q M (k+q,8)+3q Wk, )S (ko). (3.28)

This equation may be solved easily for q- Ay®. We use

k 9
the relation AyD (k)= E(;" az' (k,f))
SI (kyg‘l) =

; (3.29) k k2
B2/ 2m—¢i—2' (k,5) +(—+n(k,g))(——g—z’(k,g)). (3.31)
and keep only terms to first order in q. Then " 2m
This is the desired analog of Eq. (3.1).

k 9
q.AU<1><k,n>=m-(———z’(k,m)
m Ok

k¢q'| k+q14q.
k 2 F1G. 4. Diagran;matﬁc
interpretation of the
+(I‘<—‘+n(k,g'l))(_—fl_zl(k)fl))- (3'30) oper’ftors B and D ap- viq) k k'~q! via)
m 2m pearing in Egs. (3.18)
. . . and (321) (W] i
Finally, let q go to zero and analytically continue {; to g k

real £ as discussed in ITI. We have B D
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Notice the following properties of Eq. (3.31). If the
electron-electron interaction vanishes, then

Av® (k,£) = (k/m) (k*/2m),

which is the correct energy flux for a free electron, i.e.,
the vertex drawn in Fig. 2(a). For a real quasi-particle,
on the other hand, #= £ according to Eq. (3.2) and the
complicated second term in (3.31) vanishes. In this case,

U= Av® (k£ Ni= £ (dEw/dk) ; (3.33)

(3.32)

i.e., the energy flux is equal to the energy £x times the
group velocity déi/dk.

IV. THE WIEDEMANN-FRANZ LAW

It is now a fairly simple matter to deduce the
Wiedemann-Franz law. In the standard treatment of
the transport coefficients, the quantities L; may be
written in the form:

1 = df(§)
dg

e J»

i=0,1,2. (4.1)

Then the electrical conductivity is =g (u); and the

Lwﬁg M OF Q) T Re(Ar A

—0
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thermal conductivity « turns out to be
k=mkg*Tao/3¢. (4.2)

Equation (4.2) is obtained by expanding (4.1) to order
T? and using Eq. (1.10). It follows that, in order to
prove the Wiedemann-Franz law (4.2), we need only
show that, to order 72 the L; may be written in the
form (4.1).

Recall first some results of the analysis described in
Paper III. Near zero temperature, a reduced graph of
order p was found to behave like 72(»=V_ Thus, to order
T2 we need consider reduced graphs of order p=1 and
p=2. For p=1 we have from (2.1):

Bm
me~/'@ﬁ@ﬁ@
32/ o

X( 2 Re(A®-A;W%G(E)Q(E) a-

mom. spins

(4.3)

Here, we have summed over all proper vertex functions
A ; and the subscripts 1, 2 serve only to remind us that
we must insert Ay or Ay depending upon which of the
L’s we are calculating. Next, to lowest order in the
concentration of impurities, we may write

1 1 xr k?
2 Timp+To(k,2) L2m

s—N&@} (4.4)

A’ and T, are the real and imaginary parts, respectively, of the electron self-energy function computed in the
absence of impurities. All of the impurity effects are contained in I'imp, which may be written in the form

I‘imp(k; £= Ek)z

2

Here, o (k,0) is the differential cross section for scattering
of a single quasi-particle by an isolated impurity. 7 is
the associated relaxation time. The derivation of (4.5)
may be found in I, Sec. VIII, and II, Sec. IIT A.

I', is of order T2; thus, for our purposes we may

approximate
1 1 T,

= . (4.6)
I‘e"_]--‘imp

Timp Timp®

It was shown in IIT that the second term on the right-
hand side of (4.6) cancels against a class of diagrams of
order p=2. We know a priori that this cancellation must
occur because the presence of I', in the denominator in
(4.4) would imply a current relaxation via electron-
electron collisions. The desired cancellation follows
from the fact that electric current is conserved in such
collisions. [See Eq. (5.19) in III.] The same argument
applies to the energy flux despite the fact that energy
flux is not generally conserved in collisions. To order
T? the scattering events are confined to the Fermi
surface, and energy flux is conserved in an elastic

n; déx T .
o / o (k,6) (1—cos) 2 sinfdf = —.
Ny dk Jo

1

(4.5)

Nyrx

collision between two particles of the same energy. The
remaining terms of order p=2 were shown in III to be
negligibly small in the sense that they remain finite in
the limit of vanishing impurity concentration.

We now have

1 = df-
L=—— _ Z Re(Al(I) 'AQ(I)*)
) ., dt k
! a[ il kg | @7
X ——t—A' (kD) | (&
Timp(k,£) L2m : ( £:|

The spin sum has been replaced by a factor 2. Referring
to the expression for the energy-flux vertex given in
Eq. (3.31), we see that we may write

AU(k:E) = (E/e)AJ(k;E)’

by virtue of the delta function which appears in (4.7).
Again we have made approximations to order 7%; i.e.,
we have neglected the imaginary parts of 2’ and II.
Notice that, in the case of L; taking the real part of the

(4.8)
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combination of vertex functions is absolutely essential
at this point, We have now proven Eq. (4.1) by explicit
construction of the function ¢ (£):

1
c(®=—2|As(kb)|*
3Q x

1 k?
— 5 —— Ak | (49
o Bt

As mentioned above, the Wiedemann-Franz law follows
immediately.

It should be emphasized that the Wiedemann-Franz
law has been proved here only in the limit of zero
temperature and very small concentration of impurities.
The important criterion is that the relaxation time
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associated with impurity scattering be much longer than
the correlation time for any cluster of quasi-particles.
This consideration makes it seem unlikely that the law
is of any more general validity.® For example, we have
seen that to the next higher order in the impurity con-
centration, i.e., the zeroth order, we must include in the
heat flux the correlation energy carried by a pair of
interacting quasi-particles. No analogous term occurs
in the electrical conductivity; thus, it seems that the
Wiedemann-Franz law must fail when the impurities
become sufficiently dense or the many-body correlations
sufficiently strong.

8 G. V. Chester and A. Thellung [ Proc. Phys. Soc. (London), 77,
1005 (1961)7] have shown that, in the case of noninteracting elec-
trons, the Wiedemann-Franz law is correct for all concentrations

of impurities. Apparently introduction of the electron-electron
interactions destroys this result.



