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Crystal Dynamics of Lead. I. Disyersion Curves at 100'K

B. N. BROCKHousE, * T. AnAsz, t G. CAoLrorr, f K. R. RAo, ) ANn A. D. B. Woons
Neutron Physics Branch, Atomic Energy of Canada Limited, Chalk River, Onturio, Canada

(Received June 4, 1962)

Frequency/wave vector v(q) dispersion curves for lead at 100'K have been measured by neutron spec-
trometry along the lines L+0), ffffj, and $1 10]in the reduced zone. The experiments were performed with
the triple-axis crystal spectrometer, making extensive use of the "constant Q" method. The results show
many interesting features. The dispersion relations have local mieinza at the point (1,0,0), leading to extra
critical points in the frequency distribution. The dispersion curves are analyzed into Fourier components
(within the estimated errors), according to the equation 3IIco'=Z„PC' L1—cos(xag/gv)j with X(12.
The existence of high Fourier components is definitely established. These high Fourier components imply
the existence of very long range forces between the atoms in lead. In some cases the forces are of alternating
sign. The dispersion curves show small anomalies which are believed to arise from the eGect predicted by
Kohn. The positions in reciprocal space at which these anomalies occur agree well with the quasi-free model
for the electrons in lead, proposed by Gold. In the $111$direction (extended zone scheme) the Fermi radius
is less than 1%greater than the free electron value of 1.24(2x/a); in the L110$ direction the Fermi radius is
(1.19&0.01)(2x/a). The Kohn effect is discussed in terms of theoretical work of Bardeen and Toys and the
reasons for its observability in Pb are elucidated.

I. INTRODUCTION In the course of the work, it was discovered' that
the neutron groups at the higher temperatures are
markedly energy broadened. (The effect was inde-
pendently discovered in aluminium by Larsson, Dahl-
borg, and Holmryd). s This broadening was interpreted"
as arising from the lifetimes of the phonons via the
uncertainty principle. On this interpretation the lifetimes
turn out to be remarkably short, of the order of a
vibrational period at the higher temperatures. This
work will be discussed in a succeeding paper. '

The dispersion curves depend rather directly on the
harmonic forces existing between ions in the crystal,
while the phonon lifetimes depend on the anharmonic
forces. For a sufficiently simple crystal it is possible to
deduce the harmonic forces from the dispersion curves
by use of the Born-von Karman theory" of crystal
dynamics.

In the Born-von Karman theory" the atomic motions
in a crystal are described by lattice waves which are
considered to be uncoupled harmonic oscillators
(normal modes). The frequencies of the oscillators are
related to their wave vectors q (of magnitude 2z./wave-
length) by the dispersion relation

'HE frequency/wave vector dispersion relations of
the lattice vibrations in lead have been studied

extensively at this laboratory' ' using neutron spec-
trometry. ' The work forms part of a program on the
crystal dynamics of metals in which two elements
which are strictly metallic but of very different proper-
ties have been examined, sodium' and lead.

In this paper we summarize the measurements on
lead described earlier, ' ' and present new experimental
results. The results show that the frequency/wave
vector dispersion relation for the lattice vibrations

depends sensitively on the detailed electronic structure
of the metal. In particular an eGect predicted by Kohn'
was found3 for the 6rst time: Anomalies in the dispersion

curves were observed which can be related to the Fermi
surface. In the paper some implications of the results

for the Fermi surface of lead are discussed.
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v= v, (q),

where the j signifies the branch and takes on three
values in the case of lead, a face-centered cubic crystal.
The dispersion relation can be determined directly by
means of neutron spectrometry, by study of the process
in which neutrons interact with the crystal by creation
or annihilation of a single phonon (quantum of a
normal mode). The frequency and wave vector of the
particular normal mode are determined from conser-
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vation of energy and quasi-momentum between the
neutron and the phonon. The incoming and outgoing
neutron wave vectors (kp, k') and energies (Ep,E') are
related to the phonon wave vector and energy by
means of the equations, "

Q=kp —k'= 2sr c—q,

Eo—If. =&hv= +hM,

(2a)

(2b)

where ~=a '(k, k, l) is a vector of the reciprocal lattice,
a is the cubic lattice constant (4.924 A for Pb at 100'K),
and (h, k, l) are a set of Xliller indices. Thus, scattered
neutrons occur as groups in the energy distribution
which, neglecting resolution, are ideally sharp. The
centers of the neutron groups, when used with Eq. (2),
give values for the frequency v and wave vector q of
the phonons with which the neutrons interacted.

The integrated intensities of these neutron groups
are proportional to the expression

(Q ()'
& exp( —Q'tt')

kp 1V,+1 v&'

(3)

where g, is the polarization vector of the normal mode,

exp( —Q'u') is the Debye-Wailer factor, and tt' is the
mean-square displacement of the atoms from their
equilibrium positions in the direction of Q. The popu-
lation factor 1V, = Lexp (kt, /ktt T)—1] ' is used for
phonon annihilation (neutron energy gain), and cV,+1
for phonon creation (neutron energy loss).

Lead was chosen as the material for study for several
reasons.

"R.Weinstock, Phys. Rev. 6S, 1 (1944).
"B.N. Brockhouse and N. K. Pope, Phys. Rev. Letters 8, 259

(~959}.
'3N. F. Mott and H. Jones, The Theory of the Properties of

tVetals artd Alloys (Oxford University Press, New York, 1936),
Chap. 4.

' H. C. %hite, Phys. Rev. 112, 1092 (1958).

i. It has good nuclear and chemical properties and

large single crystals are available.
2. The Debye temperature is very small (about 1/7

of the melting temperature), and hence there is a large
region of temperature in which anharmonic eRects can
be studied.

3. The entire temperature range in which the crystal
exists is easily accessible, and the melting temperature
is conveniently located for study of both crystalline
and liquid" lead.

4. The lattice vibrations in lead are almost entirely
determined by the strictly metallic forces. This is not.

true of all metals, for example in copper the overlap
forces between ions play a crucial role.""

5. Lead is a superconductor with a comparatively
high transition temperature. It is therefore a good
material in which to study any possible eRects of
superconductivity on the lattice vibrations. ' ' The high

transition temperature and other superconducting and
electrical properties indicate that electron-phonon inter-
action is especially large in lead, and this made it an
interesting material for study at higher temperatures.
In particular it seemed a suitable material in which to
look for the Kohn eRect. ' '

It has one disadvantage as a material for study in
that the frequencies are inconveniently small, without
however being small enough so that much advantage
can be taken of the beryllium cutoff for order elimina-
tion, etc. '" Nevertheless, it has been possible to measure
the frequencies to an accuracy of 1 to 2%%u~, and this
accuracy has proved adequate to delineate the quali-
tative features of the lattice dynamics.

II. THE EXPERIMENTS

1. Experimental Details

Two of the lead single crystals' were in the form of
spheres cut from large ingots which were grown from
the melt by the Bridgeman method in graphite crucibles
in a vertical furnace. Specimen A was about 6 cm in
diameter after a light etch in dilute nitric acid. Specimen
8 was about 5 cm in diameter after a very heavy etch
in dilute nitric acid. Both specimens showed lineage
structure in the characteristic single-crystal sheen of
the etched surface. The rocking curves of specimen 3
were about 2 deg full width at half-maximum, and
those of specimen 8 were i.3 deg. The third specimen
(C) was a rectangular crystal about 1.6 cmX3.5 crn
X5 cm which was cut from the interior of an ingot.
The exterior of the ingot showed lineage structure as
usual, but an irregularly shaped region in the interior
was unusually good, with a rocking curve whose width
was only a few minutes of arc. This crystal was used
for the new measurements described in this paper.
The crystals were aligned ie situ using neutrons. The
alignment was probably good to a few minutes of arc.

The experiments were carried out using the triple
axis crystal spectrometer' at the N. R.U. reactor.
(Some preliminary measurements using the rotating
crystal spectrometer' were described in reference 1.)
A schematic diagram of the apparatus is shown in Fig. i.
Neutrons from the reactor are Bragg reAected by the
monochromating crystal Xi through an angle 20,»,
thus determining Ep and ~kp~. The monoenergetic
neutrons incident on the specimen crystal 5 are observed
at an a,ngle of scattering P by the analyzing spectrom-
eter. The scattered neutrons are -Bragg reflected by the
analyzing crystal X2 through the angle 28&, thus
determining E' and ~k'~. The specimen crystal 5 is
oriented with a principal plane in the plane of the
spectrometers, and aligned in the plane with respect to
the neutron beam (kp) by changing the angle P. The
four angles 28pr, 28~, p and P are all continuously
variable and electrically controlled.

The measurements could be carried out in the
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conventional way with a fixed incoming energy, Eo, by
measuring the energy distribution of the outgoing
neutrons by varying the angle 28&. In this method the
frequency for a desired q is obtained by repeated
experiments using successive approximations.

A more sophisticated method, called the "constant
momentum transfer method" or "constant Q" method, '
is generally employed. With a fixed incoming energy,
the angle of scattering P and crystal orientation P are
varied nonlinearly in step with the angle 20& of the
analyzing spectrometer (and thus with

~

k'~ ), in such a
way as to keep the vector Q=ks —k' constant. Thus
by Eq. (2a) any neutron group which appears in the
energy distribution gives the frequency of a phonon
with wave vector q in the reduced zone. The increments
in the angles required to accomplish this are calculated
on a digital computer, and the instructions transmitted
to the spectrometer by means of a punched paper tape. '
Figure 2 shows the limits of a typical experiment
designed to determine the frequency of the longitudinal
phonon at the point (a/2s)Q= (0,0,3), that is, with q
at the zone boundary in the [00(7 direction" of the
reduced zone.

For technical reasons it is often desirable to use
another mode of operation in which 20~ (and therefore

~

k'~) is kept fixed and the incoming energy varied by
means of 20sr. In the constant Q method g and f are
then changed nonlinearly in step with 20~, in such a
way as to keep Q fixed. The limits of a typical experi-
ment designed to determine the frequency of the
longitudinal phonon at the point aQ/2z-= (3/2, 3/2, 3/2),
that is at the zone boundary of the [fg] direction in
the reduced zone, are shown in Fig. 3.

Measurements were made along the symmetric lines
[$00], [gi], [g0], and [$10] of the reduced. zone at
temperatures within ten degrees of 100'K. (Measure-
ments were also made along the zone boundary in a
(110}plane, a nonsymmetric direction. )

's This would ordinarily be termed the L001] direction, but
the present notation is used since we will also discuss lines in
reciprocal space in which one component or more is constant,
with others varying,

Fio. 2. The (100) plane of the reciprocal lattice with a typical
"constant Q" experiment designed to measure the frequency of
the longitudinal phonon at the point (0,0,3), i.e., at the point X
in the reduced zone. The double-headed arrows A., m show the
directions of the polarizations along the line L0$1$. The third
polarization vector is normal to the (100) plane, and has the
same v(q) relation as er but shifted in phase.

Vsing the method of successive approximations,
sometimes with the associated techniques' for keeping
q in the correct direction, measurements were made on
specimens A and 8 in [f007, [gi ], and [g0]directions
of a (110}plane and also along the zone boundary.
The (111)and (200) planes of aluminiurn crystals were
variously used as the monochromator and analyzer,
and wavelengths of 1.91 A and 2.26 A were employed.
Details and typical neutron groups were presented in
reference 2.

Using the constant Q method with fixed incoming
energy, measurements were made in [&007, [g07, and
[$10] directions in a (100}plane of specimen B. The
Al (111) monochromator was set to a wavelength of
2.26 A, and the Al (200) analyzer was generally em-
ployed. . Figure 2 shows the (100) plane of the reciprocal
lattice with the initial and final vector diagram for a
typical experiment. Typical neutron groups were shown
in reference 2.

Using the constant Q method with fixed analyzer
energy, measurements were made in [$00], @f07, and
[gg] directions of the reduced zone, in a (110}plane
of specimen C. Lines studied in reciprocal space are
shown in Fig. 3 as dashed lines. They were selected to
aBord maximum discrimination between longitudinal
and transverse modes, through the factor (Q. g)s jn
Eq. (3). The limits of the vector diagram [Eq. (2a)7
for a typical experiment are also shown in Fig. 3. A
typical series of neutron groups is shown in Fig. 4.
The number of counts accumulated during a preset
number of monitor counts" is plotted as a function of

' The monitor is a thin 6ssion counter located in the rnono-
energetic beam (indicated as M in Fig. 1).
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FIG. 3.The (110)plane of the reciprocal lattice with a "constant
0" experiment (showing the initial and final vector diagrams)
designed to measure the frequency of the longitudinal phonon at
the point (3/2, 3/2, 3/2), i.e., at the point L in the reduced zone.
Measurements were made along the dashed lines in reciprocal
space.
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"constant Q" experi-
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the three experimen-
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Flg. 3.

the frequency calculated from Eq. (2b). In these (and
most other) experiments the (1,1,1) aluminum analyzer
was fixed with 28~= 67', and thus with E'= 12.28&&10 '

2. The Experimental Dispersion Curve

The centers of the neutron groups obtained in the
different experiments were used to define values of v

and tl by Eq. (2). The composite results are shown in

Fig. 5, the results with conventional methods as open
circles, and the results with the constant 0 method in
a (100) plane as closed circles. The newer results with
the constant 0 method in a (110) plane are shown as
crosses. The curves are plotted in such a way as to
display their inter-relationship.

It is believed that the scatter of the points is a fair
measure of the errors in the dispersion curves of Fig. 5,
especially where several independent experimental
arrangements were involved. The slopes of the dis-
persion curves at q=0 are indicated in Fig. 5, as
calculated from recent ultrasonic measurements of
Waldorf. "

The effects of resolution in reciprocal space are
almost certainly small except for phonons of small q,
and possibly for phonons near the point (1,0,0) of the
reduced zone. The resolution varied somewhat from
experiment to experiment. In the horizontal plane it
was approximately given by 8Ir(qu/2m. ) +0.03, as
estimated from the resolution elements and from the
widths of the observed groups, and thus it was of
negligible importance. The resolution normal to the
plane of the spectrometer was of greater importance.
The vertical divergence of the collimating slits was
about &1-,' deg for k' and about &0.6' for ko. The
resolution normal to the plane of the spectrometer is
therefore about 5v(qa/2vr) &0.06. For phonons at a
nominal reduced wave number (qa/2w)=0. 2 the cor-
rection would change the reduced wave vector by
3(qa/27r)=0. 01, i.e., by 5%, and would ordinarily be
negligible for reduced wave vectors &0.4. Actually the
correction depends strongly on the details of the
dispersion surfaces i (q) in the vicinity of q. Because
of this we have not made any corrections for resolution
to our measurements.

Because of the frequency dependence of the cross
section, Eq. (3), a correction should be applied for
energy resolution. The order of magnitude of this
correction can be estimated as

&i 4@'/&3r,
- IO

I 1 I

74 73 72
I

20

E0

- l2

7I ?0 69 68 67
l l

2l 22 25

(IO 'eV)

where W is the full width at half-maximum of the
neutron group in units of frequency, and ~~ is the
mean frequency of the group. The constant ( 1/4)

» D. I., %aldorf, Bul]. Am. I'hys. Soc. 5, 170 (1960).
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FIG. 5. The dispersion curves for
lead at 100'K, plotted so as to show
the inter-relation of the various
branches. The older measurements
(reference 2) are shown by open and
closed circles, the most recent by
crosses. The straight lines through
the origin give the initial slopes of the
curves as calculated from the elastic
constants (Table III). 0.5

actually depends on the shape of the peak and on the
ratio hu/k&7. '. Typically this correction turned. out to
be about 0.5 j~, and was ignored. For some especially
broad groups the correction was applied and brought
the frequencies into good agreement with narrow
groups at the same q. Most of the broad groups were
omitted from the final data compilation nevertheless.

Values of the frequencies for the three symmetric
directions, with estimates of over-all "probable" errors,
are given in Tables I and II. The errors contain allow-
ance for calibration and other determinate errors, and
hence cannot be expected to be random. Values for the
Lt 10' direction, and for the zone boundary in the (110)
plane, are possibly less accurate since only one set of

TABLE I. Frequencies (units 10"cps) of the lattice vibrations in lead at 100'K which propagate in the [l'00$ and [l'g] directions.

0.20
0.30
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

[I'00$

0.47 &0.04
0.73 &0.03
0.90 &0.02
0.96 a0.03
1.04 &0.02

1.115&0.02

1.10 &0.03

1.03 &0.03

0.95 &0.02

0.89 &0.02

0.87&0.03
1.27&0.03
1.61%0.03
1.71&0.04
1.83&0.04
1.91&0.03
2.00&0.03
2.07&0.03
2.14a0.04
2.16%0.02
2.15&0.02
2.14%0.02
2.05W0.03
1.94&0.04
1.86+0.03

0.19
0.26
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.867

0.35 &0.04
0.44 +0.03
0.55 &0.03
0.61 a0.02
0.66 &0.02
0.73 &0.02
0.77 &0.02
0.79 &0.02
0.SOS&0.02
0.835&0.02
0.86 +0.02
0.88 &0.02
0.89 &0.02

ag/2s.

0.143
0.25
0.332
0.433
0.519
0.563
0.606
0.649
0.693
0.736
0.779
0.823
0.867

0.82 &0.05
1.24 &0.04
1.51 &0.04
1.76 &0.03
1.91 &0.03
1.97 &0,03
2.00 &0.03
2.05 &0.03
2.085&0.02
2.09 &0.02
2.08 &0.03
2.16 &0.03
2.185&0.02
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TABLE II. Prectuencies (units 10"cps) of the lattice vibrations in lead at 100'K which propagate in the LI'I'Oj direction.
The zone boundary is at aq/2v= 1.061.

aq/2s

0.212
0.284
0.325
0.35
0.375
0.40
0.425
0.45
0.475
0.50
0.525
0.55
0.60
0.65

0.99 +0.04
1.26 +0.04
1.40 &0.04
1.48 +0.03
1.545+0.02
1.605&0.02
1.64 &0.02
1.665+0.02
1.675&0.03
1.715&0.02
1.76 &0.02
1.795+0.02
1.85 &0.02
1.92 +0.02

Longitudinal

aq/2s

0.70
0.778
0.85
0.90
0.99
1.061
1.132
1.173
1.215
1.244
1.272
1.314
1.373
1.414

2.01 +0.02
2.10 +0.02
2.09 &0.02
2.04 &0.03
1.925+0.04
1.75 &0.04
1.54 +0.04
1.39 +0.03
1.30 &0.03
1.24 &0.03
1.185+0.03
1.07 &0.03
0.885+0.03

(0.89 +0.02)

~2 j
oq/2s.

0.20
0.30
0.40
0.50
0.60
0.70
0.814
0.914
1.00
1.12
1.214
1.314
1.414

(= (0,0,1)

0.53&0.03
0.75%0.03
0.95+0.03
1.17&0.03
1.37a0.03
1.57&0.03
1.78&0.03
1.92&0.04
2.02&0.03
2.02&0.03
2.02%0.03
1.93%0.04

(1.86&0.08)

0.141
0.283
0.424
0.566
0.707
0.848
0.959
1.056
1.17
1.241
1.281
1.414

0.21+0.03
0.41&0.03
0.56&0.03
0.76&0.03
0.91&0.03
1.12&0.03
1.20&0.03
1.25&0.03
1.15&0.03
1.06+0.04
0.96a0.04

(0.89&0.02)

measurements for each was made. The values for the
I $10j direction also suffer from possible error arising
from the possible existence of anomalous neutron
groups as discussed in the next section.

3. Anomalous Neutron Groups

The intensities of the groups are proportional to the
factor (Q g,)' in Eq. (3). Normally, measurements
vere made in positions in the reciprocal lattice for
which this factor had close to its maximum value Q2.

On the one hand, this made the intensities easily
measurable, and on the other hand, it should have
made it possible to identify the branch to which a
strong phonon belonged. Thus, for example, only longi-
tudinal phonons should be observed along the line
LOOQ) since for transverse phonons the factor (Q ()'=0.

Xevertheless we observed, in crystals 3 a,nd 8,
several neutron groups which gave values of u and q
in reasonable agreement with the v(q) curve for the
L00ff 2' branch at Q's from (2s-/a) (0,0,1.6) to
(2s-/a) (0,0,2.5) for which only LOOpj I. phonons should
be observed. A typical pattern, for (a/2s) Q= (0,0,2.3),
is shown in Fig. 6(a). A strong group appears at a
frequency corresponding to the transverse mode at
the point (0,0,0.3) in the reduced zone, though from
F.q. (3) only the longitudinal mode should appear. The
temperature variation of the intensities of these anoma. -
lous neutron groups was studied in a limited way,
without definitive results. Sometimes the intensities
(for groups in energy gain) increased strongly with
temperature, a,s with phonons, and sometimes they
seemed relatively independent of the temperature.

We ascribe' these groups to a double scattering
process, in which a one phonon group of neutrons
undergoes, a second (Bragg) scattering, or vice versa.
Then, if k' is the neutron wave vector after the first
scattering and k" after the second scattering,

Adding, we have

ko —k"=2s-(~,+ ~2) —q=27r~~ —q,

since the sum of two reciprocal lattice vectors is itself
a reciprocal lattice vector. Thus, the one phonon-elastic
double-scattering process still give groups in the correct
positions but the intensities need no longer satisfy the
one-phonon theoretical expression, either as to polar-
ization dependence or as to temperature dependence.

With the better specimen C the anomalous neutron
groups were weak, if present at all. A typical pattern
LFig. 6(b)j shows no anomalous group, though it does
show extra scattering at low frequencies, probably
from multiple-phonon and multiple-event inelastic
scattering. This behavior agrees with expectations,
since both the probability of the one phonon-elastic
double scattering process, and its intensity, are smaller
for a relatively perfect crystal than for an imperfect
crystal.

These anomalous neutron groups can only be clearly-

demonstrated to exist when the different branches for
the wave vector concerned are widely separated in
frequency. There is no reason to suppose that they do
not also exist when the frequencies are close together.
In this case their existence will introduce error into the
frequency determination since the position of the mean
of the neutron groups will be altered.

Consideration of the probability of occurrence of the
double scattering leads to the conclusion that the
process may be the rule rather than the exception for
large crystals which are efficient Bragg scatterers (i.e.,
efFicient monochromators). Thus, the crystals should
be as perfect as possible, particularly if the intensities
are to be used' for branch identification or in the
analysis, or if the branches are close together in fre-
quency.

IIL BORN-VON KQRMAN ANALYSIS

kp —k'=-- gtr ~,—q, k'==-k"= 2s g, .
We first analyze the experimental results in terms of

the familiar Born-von Karman theory of lattice dy-
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namics. For convenience we consider q in a symmetric
direction in crystal, a direction which is the intersect. ion
of two or more mirror planes. The polarization vector,
g, , the direction of vibration. of the single atom in the
unit cell, can then only be normal to or parallel to the
wave vector q.

For the degenerate transverse modes in the [$00j
and [gt ] directions, P may lie in any direction normal
to q. In the [g0] direction, the two transverse modes
are distinct with ( lying in the [110jand [001]direc-
tions for Tl and T2, respectively.

In the Born-von Karman theory restoring forces
between atoms depend linearly on the relative dis-
placements of the atoms. The equations of motion of
the lth atom (in the lth primitive unit cell) for a
particular mode irt a particular symmetric directiorc is

cvu. 1
———p1 C..(l,l')u. 1,

Branch

Lt00~ T
'Lf00) 7
Lm] T
Lmh L

Ln0j T.

Elastic constant c;

C44

C11

(cl 1 c12+c44) /3
(err+ 2c12+4c44) /3

(c11—c12)/2
&44

(c11+c12+2c44)/2

1

3i4
3/4
-2

2

2

This can be written as

31o22 = p C „[1—cos(r42rq/qsr) J,

TABLE III. The elastic constants for the symmetry directions
in a cubic crystal and the parameter B.The three basic constants
of lead at 100'K (reference 17) are c»=5 437,. c12 4.505, c44
=1.819, all in units of 10" dyn/cm'.

u 1
——U exp(iq R1) exp(iq R11' irct),

where R1 is the vector distance of the lth atom from
the origin and R~~. is the vector distance of the t'th
atom from the lth atom. Substituting Eq. (5) in Eq.
(4) we obtain

~o1'=+1 @..(l,i') exp(iq R, 1 ). (6)

where I ~ is the displacement of atom t in the particular
direction cr (of polarization) considered, and M is the
mass of the atoms. C (l,l') represents the restoring
force exerted on atom l in the direction 0,, when atom
I, is moved a unit distance also in direction 0,. The
summation includes the term l=l', and +1C (l,l') =0
in order that the crystal may be stable under uniform
translation. I.et the solution of (4) have the form of a
traveling wave:

where q~ is half the distance to the nearest reciprocal
lattice point in the direction of q, q=

I q I
and 4 „ is a,

linear combination of 4I, (l,l') for which the phase
q R«, is a, constant. 4I2 effectively represents a force
between a particular atom and the (two) planes of
atoms normal to q and e planes away. The sum is
taken to a number of terms S such that C„=O for
m) S.

Following Foreman and I.orner, rs we used Eq. (7) to
determine the range of the interatomic forces in lead
from the dispersion curves. (See also reference 2).
Appropriately weighted frequencies of phonons, of the
particular branch and direction considered, were fitted
by least squares to an expression of the form of Eq. (7)
using different numbers of terms X in the series. We
included in the 6ts the appropriate elastic constants c;,
using values interpolated from measurements of
Waldorf, "and the equation

(0) SPECIMEN 8
Ep = O.OI62 eV

VARIABLE

E )Ep
X

)p x
XX X

X

CO

(b) SPECIMEN C

E ~O.OI23 eV

VARIABLE

w Ep

0.5
I

I.O

V ( Io 6/s)
I.5

0 n' ~ ~
T

2.0

Pro. 6. Constant Q experiments at the point (0,0,2.3), q= (22r/o)$0, 0,0.3j, at which on]y the longitudinal mode should
appear. An anomalous neutron group with a frequency about
that of the transverse mode was found with specimen B. The
measurements shown as crosses were made later at a lower
counting time per point than were the principal measurements.

rr28ac„= g -,22224 „.
n=l

(The constant 8 and the elastic constant c; depend
on the branch considered, and are listed, together with
the values of the elastic constants, in Table III.) The
values of 4„ for two branches obtained in the fits are
shown in Fig. 7, plotted as a function of the number of
terms used in the fits. It will be observed that the
values of the coeKcients 4 „are substantially inde-

pendent of the number of terms used in the 6ts.
The rms deviations (d,~) of a, single experimental

value of MoP from the fitted curve was also computed,
and 611r/10 is also plotted against llr in Fig. 7. It
decreases steadily to an approximately stable value
which corresponds very nicely to the estimated error of
1 to 2%%u~ in frequency. (The stable value actually

'8 A. J. E. Foreman and W. M. . Lomer, Proc. Phys. Soc.
(London) 870, 1143 (1957).
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FIG. 7. The interplanar force con-
stants for the longitudinal and trans-
verse branches in the fI00) direction
plotted as functions o'. the number of
planes used in the 6ts. The plane
number and the sign of the force
constant are at the right in each
figure. The rms deviation (—:10)of
the fitted curve from the measured
values of M'oP is also plotted for each
branch.
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decreases slowly with E because of the finite number
of measurements used in the fits. )

From the behavior of both the C„and A~ in Fig. 7
it appears that at least three and probably four planes
are needed to fit the [l 007 T branch, and that at least
six planes are needed to fit the [$007 I. branch. For
the [$007 direction four planes correspond to inter-
actions out to at least eighth neighbor atoms, and six
planes out to at least seventeenth neighbors. In Fig. 8
the values of Moi' for the [I007 I. branch are shown,
together with the Fourier composition and the fits for
iV=5 and 12, plotted against the reduced wave vector.
In Fig. 9 C„ is plotted against e, effectively the distance
between interacting planes of atoms, for the [$007 I.
branch. The force between planes is seen to oscillate
at large distances. This oscillation is connected with

E 40

CI
300

T ic. g. values of 3fis' for the longitudinal branch in the Q00$ I
direction plotted against the reduced wave vector, The fitted
curves with 12 planes (good 6t) and with 3 planes (possibly a Iit)
are shown. The erst Gve Fourier components are also plotted.

the sharp drop in frequency of the [I007 I. branch
near the zone boundary. The same behavior, though
less marked, can be seen in some of the other branches
in Table IV.

If the elastic constants were omitted from the its the
results obtained were essentially unchanged. Con-
versely, it was not possible to deduce unambiguous
values of the elastic constants from the neutron meas-
urements. The smallest values of Eat which satisfactory
its were obtained usually yielded values of the elastic
constants in agreement with experiment, at larger
values of Ã the calculated elastic constants Quctuated
widely. This behavior comes about from the excessive
sensitivity of the elastic constants to the high Fourier
components [see Eq. (8)7.

Measurements along the line [$107 were also fitted
to an expression of the form of Eq. (7) with an addi-
tional constant term Co. The results are given in
Table IV. From the symmetry of the reciprocal lattice
(Fig. 2) it is easily seen that the polarization vectors
must lie along one of the three coordinate axes, as
shown by the arrows denoted A. and x. Thus the
problem is a linear one since the three modes are
separable. The C„are not interplanar forces, however,
but merely linear combinations of the interatomic force
constants since the atoms in any one plane have
different phases.

The 4, (l,l') are interatomic force constants of the
usual description, but their number can be greatly
reduced by application of the symmetry requirements
of the crystal using standard methods. "For each class
of neighbor there are at most six independent force
constants, which may be further reduced by symmetry.
Thus, for the twelve 6rst neighbors at positions of the
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type isa(1, 1,0) there are three force constants

crz =—C.,(-', zz(1, 1,0))=4„„(-',zz(110))=—(x,x),

p.—=C-(-: (1,1,0))—=(, ),

yz =C'gs(-', a (1,1,0))—= (x,y).

I

30
I I T

Pb IOO' K

t~, 0.01 L BRANCH

The composition of the planar coefficients C in terms
of these constants is given in Table V (to fifth neigh-
bors). Thus, for the L'$00] T branch

zlzz oz'= (4nz+4Pz+gcrs+8Ps+4us+4ys) (1 co—sire)

+ (2P,+8Ps+4zr4+4P4) (1—cos2zr| )
+ (4PB+4ys) (1 co—s3zrI )

uzz 4
cs

beet

N

= ~,+n t I-COS (AX)l

I ~ I I I 0 I 4 I

We tried to solve for atomic force constants by
fitting the force constants by least squares to the
measurements of Table IV, cutting off at fifth neigh-
bors. The results were of no use because the errors
introduced by cutting oK were larger than all except
the first neighbor constants. (The only positive result
is that crz 4X10s dyn/cm and pz is negative, —2
X10' dyn/cm). Jt does not appear possible to increase
the number of interacting neighbors sufFiciently to
allow a meaningful 6t to be carried out. The amount of
"orthogonal" information in the measurements so far
carried out is sufficient only to allow fitting out to
eighth neighbors, ' " regardless of the accuracy of the
measurements. Even so, separate values of all the force
constants could not be obtained. For example, y~ could
not be separated from 65. To go further, new measure-
ments would be required in nonsymmetry directions
with resulting difficulties' in carrying out the fits.

To sum up, the results show that the interatomic
forces in lead are of long range and sometimes of
alternating sign. Because of the long range it is not
possible to obtain a detailed description of the force
constants in the Born-von Karman theory.

I I I I I I I I I I

2 3 4 5 6 7 8 9 IO I I

PLANE - n

I

15

SPACING (A)

I

20 25

Fzo. 9. Tile interplanar force constants for the [$00]I branch.

IV. INFLUENCE OF THE FERMI SURFACE ON
LATTICE VIBRATIONS

1. Exyeriments

where Ep is the Fermi radius. Computations"" of the
effect have been made for ideally free electrons; for

On theoretical grounds, Kohn' has proposed that.
there exist lines through reciprocal space at which the
dispersion surface of the lattice vibrations have infinite
slopes. The positions of these anomalies are related to
the Fermi surface, and the infinite slopes to the sharp-
ness of the Fermi surface. For a spherical Fermi surface,
as for free electrons, the anomalies occur at positions
in reciprocal space given by the equation:

2&~= I2~~+ql,

TABLE IV. Interplanar force constants C „ for lead a,t 100'K in units of 10' dyn/cm. ~

[11)0]r
[I'00] I-

[m] &

[m] 1.

4p

6.50
29.45

4.54
I

—1.0
9.70

I
—2.60

0.20
I

0.09
2 45

I
1 95

0.19
04

5.20
I

0.30 I
0.05 ',

—0.10
29.6

~

5.8 ~ 1.4
I

04

0.01
0.85

—0.05
0.1

—0.10
—0.35

—0.05
0.6

0.03
0.55

0.10
—0.3

&0.10
&0.25

&0.10
&0.45

[I'I'0] I
[go] Ts

Lg(0) T).

7.6
28.6
8.95

24.6
4.5
3.05

3%2

—3.8
—3.0

265 I
20

2.0 I
—0.3

1.85
I

—0.60 ,
'

—0.05
0.4
0.05

—0.8
—0.35
—0.01

—0.2
0.15

—0.02

&0.17
&0.25
%0.15

[I'10]A

[f10]II
10.7
44.5 —23.0

8.9
4.7

2.0
2.8 0.6

0.5
1.5 1.0

&0.2
&1.0

a Notes: 1. CoefBcients marked ~ ~ ~ are zero by symmetry. 2. The vertical lines mark off values of Cn contributed to by 2 neighbors ( ), S neighbors
(———), and 8 neighbors (-——-).3.The errors given are approximate errors in the force constants incurred in fitting the experimental data. For absolute
errors they should be increased by a factor of perhaps two.

"T.Toya, Jour. Research Inst. Catalysis, Holzlraido Univ. 6, 161 (1958)."E.J. Woll, Jr. , and S. J. Nettel, Bull. Am. Phys. Soc. 6, 144 (1961);E.J. Woll, Jr., and W. Kohn, Phys. Rev. 126, 1693 (1962).
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TABLE V. Interatomic force constant composition of interplanar force constants 4„ for symmetry
branches in a face-centered cubic crystal.

Position of
atom —+

-,'a (1,1,0) —,'a(2, 0,0) —,'a(2, 1,1) —,'a(2, 2,0) —,'a(3, 1 0)

Branch

[&00] T 1

1 Pl Jl
(x,x) (s,s) (x,y)

a2 p2 n3 p3 y3 83 a4 p4 74
(*,*) (~,X& (*,x) (~,» b,s) (xa) (*,x) (s,s) (x,~)

2

0;5 pg
(x,x& b, s& (s,s) (x,r)

4 4.

[('00] L 1
2
3

[Z&] T
2

[m] L
2

4 2 4

2 4

2 4

4 2 —2

[n.0] T.

[(.(.0] T, 1
2
3

2 2
4

4

[n0] I.

[$00]A

[(10]0 0

2
3

16—8

32
8 —8—8

8 8 16

16

this case the anomalies turn out to be too small for
observation at present.

Nevertheless we believe that the anomalies visibly
present in the dispersion curves of Fig. 5 are, in fact,
Kohn anomalies. In this section we present the experi-
mental evidence for the reality of the observed anoma-
lies, and discuss their relation with the Fermi surface.
In the following section their unexpectedly large
magnitude will be discussed from a theoretical point
of view.

In an ea,rlier report' we discussed the anomalies on
the basis of the free electron model with a spherical
Fermi surface; here we will proceed immediately to
consider the real metal with a real Fermi surface.
Figure 10 shows the cross section in the (110) plane of
reciprocal space of the Fermi surface of lead in the
extended zone scheme. "According to Gold" the Fermi
surface of lead is only moderately distorted at the inter-
sections of the free electron sphere with Sragg reQecting
planes (as shown in Fig. 10). The Fermi surface of Fig.

"See J. M. Ziman, L&leclrons and Ehonons (Oxford University
Press, New York, 1960).

"A. V. Gold, Phil. Trans. Roy. Soc. London A251, 85 (1958).

10 satisfies the experiments of Gold on the de Haas-van
Alphen effect, as well as the results of this paper. The
anomalies of K.ohn occur at wave vectors through which
abnormally large numbers of electrons can be elastically
scattered. Two such transition wave vectors are indi-
cated in Fig. 10 by the solid lines (J ) and the dashed
line (G). Transition F is found to correspond very closely
to an anomaly in the longitudinal branch in the )gal]
direction, and transition G to an anomaly in the Lg0]
J. branch.

Figure 11 shows the accumulated results for the
I ff't j I. branch. Measurements were made along the
line Q = (2gr/a) (h, h, h) in reciprocal space in two
regions: (A) from (1,1,1) to (1.5,1.5,1.5) and (8) from
(1.5,1.5,1.5) to (2,2,2), and at different energies and
modes of operation, as indicated. In every case an
anomaly is visible at aq/2rr=0. 75. The measurements
in each series, indicated by a symbol, were made
successively using the constant Q method. One set of
results are shown in Fig. 4.

The Fermi surface of lead contains four electrons,
and, therefore, on the free electron model, has a radius
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FIG. 10. Possible section through the Fermi surface of lead in
a (110) plane through the origin. The section of the free electron
sphere containing four electrons is shown as a light circular line.
Bragg reaction occurs where this circle intersects the re6ecting
planes shown, and the Fermi surface is distorted somewhat as
shown. Electron scattering vectors which produce a Kohn anomaly
in the LI'I'I'j I branch are indicated by the bold double headed
arrows, F, and in the I I'IO) I branch by the dashed double
headed arrow, G.
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Fro. 11. Collected results for the Pffi J l. branch. The letters
A and 8 refer to zones about the (1,1,1} and (2,2,2) reciprocal
lattice points.

Ep=1.2407(2 /7r)a. From Eq. (9), an anomaly due to
transition F would occur in the L(g'] l. branch at

I ql =2&~—2~
I

&
I

= (2.4814—1.732) (2s./a) =0.75 (2s-/a).

Thus, if we identify the observed anomaly as this
Kohn anomaly E, the Fermi radius along the body
diagonal L111] differs from the free electron Fermi
radius by at most 1%, and is probably slightly larger.

Figure 1.2 shows the Lg'0] I. branch, also measured
at several regions in reciprocal space. For free electrons
an, anomaly due to transition G is expected at

I qI
= (2.8283—2.4814) (2s./a) =0.347 (2s./a). If we identify
this Kohn anomaly with the observed" anomaly at
0.45(2s-/a), then the Fermi diameter along the face
diagonal L110] is found to be 2.38(2s./a), 4% smaller
than for free electrons. The difference is in the expected
direction since this part of the Fermi surface is beyond,
but close to, Bragg reflecting planes Lsee Fig. 10].It is
in qualitative agreement with the de Haas-van Alphen
measurements of Gold) which show a closely related
orbit (the ( orbit in the third zone—see Fig. 10) to be
30% smaller than for free electrons; this corresponds
to a 4 or 5% decrease in the Fermi diameter in the
extended zone scheme.

The signs of the anomalies Ii and 6 of Figs. ii and
12 are compatible with the rule'": "As the phonon
wave vector in the extended zone scheme exceeds the
Fermi diameter, the abrupt decreased shielding of the
ions by the electrons causes the frequency to increase

anom alously.
"

The assignment of the anomaly of Fig. i 1 was checked
once by making measurements along a line parallel to

"The construction used to locate the position was suggested
by S. H. Vosko (private communication).

~ I
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FIG. 12. Collected results for the Pg0$ I branch, showing an
anomaly at ag/27r=0. 45, and a probable one at 1.24.

the
I gt] direction from Q(a/2s-)= (1.4,1.4,1.15) to

(1.85,1.85, 1.6) at intervals in (' of 0.025. Similar small
anomalies were seen on opposite sides of the zone
boundary L(1.583,1.583,1.333)] at approximately
(1.525,1.525,1.275) and (1.64,1.64,1.39), as expected for
a "longitudinal" anomaly such as Ii. )If the anomaly
were "transverse, " involving electron momentum
transfers not parallel to q, then in off-symmetry
directions it wouM not appear symmetrically about the
zone boundary. )

The magnitudes of the anomalies are of the same
size as the absolute errors expected in the experiments.
However, the experiments were carried out in consistent
ways such tha. t many of the errors (e.g. , of calibration
and of specimen alignment) entered in the same way
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for all the points in a given series. The random errors
expected from statistics are much smaller than the
expected absolute errors or than the magnitudes of the
anomalies. We can estimate the statistical errors in
locating the center of a neutron group by the expression.

Av =N"'rt "'dv/dN.

N (the number of counts per point) has typical values
of 100 or so, rt (the number of points in a peak) is
usually about 10, and dv/dN is typically 2&&10'. Thus,
the statistical uncertainty in a frequency is ordinarily
less than 10" cps, several times smaller than the
anomalies. The anomalies could possibly be spurious
if there existed unrecognized contaminant structure in
the energy distributions. To eliminate this hazard as
far as possible the measurements were repeated at
several different energies (Fig. 11) and at different
positions in reciprocal space (Figs. 11 and 12). In
every case an anomaly was observed at about the
same position.

From another point of view the Kohn anomalies
result from interatomic forces of very long range and
of va, rying sign (cf. the work of Langer and Vosko'4 on
the screening in metallic alloys). This is just the
behavior already discussed in Sec. III. The Fourier
components needed to reproduce the anomalies of
Figs. 11 and 12 are of considerably shorter wavelength
(and therefore represent forces of longer range) than
those obtained in the fits of Table IV which reproduce
the over-all shape of the dispersion curves. Thus, the
Kohn anomalies require only an extension to greater
distances of the already long-range forces certainly
needed to explain the over-all behavior of the dispersion
curves.

Note added ie proof. The anomalies discussed above
have now been observed in x-ray scattering by A. Paskin
and R. J. Weiss LPhys. Rev. Letters 9, 199 (1962)].

2. Theory

%e will discuss the Kohn eRect in terms of calcu-
lations made by Toya" for the case of nearly free
electrons, using the Hartree-Fock method. Toya solved
the Hartree-Fock equation for the metal in the presence
of the lattice vibrations to obtain the electronic energies.
These energies then were used (the adiabatic approxi-
mation) in the potentials for the ions, and the lattice
vibrations calculated. In Toya's work (which actually
preceded Kohn's) the Kohn effect is explicitly dis-

played, although Toya did not comment on its existence
and indeed the e6'ect turns out to be very small for
nearly free electrons.

The Kohn eGect enters via the electron-phonon
interaction, in the theory through the matrix element
given by Bardeen. "The matrix element involves energy

~' J, S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196
(1959)."l. Bardeen, Phys. Rev. 52, 689 (193/).

denominators in the form of a sum,

W '=+LE.(k,)—E,(k,+K)]—' (10)

where K=2m. e+if, k, is the wave vector of an electron
and E, is the corresponding energy. For free electrons,
the summation yieMs"

where the reduced wave vector transfer t=K/2Kv, Ev
is the Fermi energy, S is the number of electrons per
unit volume, and the function

1 ts 1—+t
f(t) = —,'+ ln

4t
(11a)

g(&R,)= Us* exp(sK r)Usdr, . (13)

where the integral is taken over the Wigner-Seitz cell of
equivalent radius E,. For nearly free electrons (Us 1)

g(x) =3x '(sinx —x cosx). (14)

The factor g' for free electrons is shown in Fig. 13(a).
For Na, the Kohn anomalies (E'=2E'v) occur at the
position of the arrow; the amplitude of the anomaly is
thus markedly decreased" by this factor. For Pb, on the
free electron model, the anomalies would. occur ~t

is shown in Fig. 13(b).
The frequency eigenvalues MoP are given by the

algebraic sum of several terms, one of which takes
account of the shielding of the motions of the ions by
the electrons. Neglecting exchange and correlation
(taken into account in an approximate way by Toya),
this term is proportional to a factor

(12)

The Kohn anomalies occur' at t = 1, at which point the
slope of f(t) is logarithmically infinite. The infinity in
the slope strictly occurs only over an infinitesimal
range in f (and. therefore in the frequency), and is thus
unobservable. The anomaly appears in practice in the
form of high (but not infinitely high) Fourier compo-
nents.

The anomalies are reduced by another factor in the
matrix element —the overlap integral coming from the
perturbation. Physically, this factor—a kind of form
factor—arises because the electrons are spread out in
space: correspondingly the electrons cannot experience
large momentum transfers, and thus cannot interact
with lattice waves of large wave vector (in the extended
zone scheme).

If the Bloch wave functions of the electrons are
approximated as Us(r) exp(ik, r), with Us independent
of k„ the matrix element is proportional to the square
of a factor
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FIG. 15. (a) The "form factor" for free electrons;
(b) the "energy denominator" for free electrons.

~~ See J. G. Daunt, in Progress irI, Lou-TemPerctlre Physics,
edited by C. J. Gorter (North-Holland Publishing Company,
Amsterdam, 1955), Vol. I, Chap. XI."J.E. Aubrey, Phil. Mag. j 1001 (1960).

KR, =6.07 for which g'=6X10 ', and thus would be
probably unobservable.

The free electron model is not adequate for Pb,
however. Specific-heat measurements" show that the
mean density of states at the Fermi surface is about
twice that for a metal with four free electrons if the
a,rea of the Fermi surface is taken equal to that for
free electrons. Rf conductivity measurements" show
that the Fermi surface has an area only 55'P~ of the
area of the Fermi surface for free electrons. Thus the
density of states at the actual Fermi surface is larger
than that for free electrons by about 2j0.55, a factor
of more than 3. The amplitudes of the Kohn anomalies
are proportional to the products of two densities of
states (at the initial and final states), as can be seen
from Eq. (10).Thus, on the average the Kohn anomalies
in Pb will be enhanced by over an order of magnitude,

and the enhancement could be greater still, since the
density of states will be far from uniform over the
Fermi surfa. ce.

In Pb also the wave functions of the electrons must
be considerably diferent from uniformly spread-out
free electrons, and should be expected to be rather
concentrated about the nucleus. Then, by Eq. (13),
the factor g' would be correspondingly enhanced at
large momentum transfers. On crude computations it
does not seem difKi.cult to obtain an enhancement of
over an order of magnitude.

Thus it seems possible to account 'qualitatively for
the observation of the Kohn eGect in Pb, despite the
expected weakness of the eGect for free electrons.

It is attractive to try to expla, in the drop in frequency
of the [f00] L branch at the zone boundary, as arising
from an enormous Kohn anomaly. We would then look
for electron transitions between regions of high density
of states with small momentum transfer. The strong
anomaly in the @f0] I. branch at aq/2~~1. 24 (Fig.
(12)] is tentatively ascribed to transitions along the
line A —A in Fig. (10). (These anomalies would not
occur for free electrons). The t $00] L anomaly might
then arise from similar transitions in the L100] direc-
tions of the plane normal to the plane of Fig. (10), and
intersecting it in line A —A. This would require a large
distortion of the free electron Fermi surface in the
third zone.

V. CONCLUSIONS

The results of this paper have demonstrated that the
dispersion curves of metals contain a great deal of
detailed information about the electronic structure of
the metal, including details of the Fermi surface. By
use of the Kohn construction, it is possible to study the
Fermi surface. (It should be noted that this method
of studying Fermi surfaces is one of the few useable at
elevated temperatures. ) There is, however, much infor-

mation about other aspects of the electronic structure
available if ways can be found to extract it.
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