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A method is developed to describe the quantum mechanical motion of a few simple spin systems, with
random time-dependent perturbations, in an exact manner, i.e., without reference to perturbation theory.
It leads to a Fokker-Planck type diffusion equation. When applied to a spin inQuenced by a fluctuating local
6eld (Abragam's model), this gives rise to a (microscopic) Hloch-type equation for the spin operators. An
application to a system of two identical spina (S=1/2) with modulated dipole interaction produces a very
complicated diffusion equation in eight variables, which simplifies, however, in a case of restricted rotation.
A model Hamiltonian for quadrupole relaxation for S=1 gives a relatively simple result, which reveals an
interesting difference between the relaxation in finite and zero external fields.

l. INTRODUCTION identical manner, but in first approximation inco-
herently, we would calculate the effective field as the
sum of all interactions on a given subsystem. The re-
quirement that this sum of random variables has the
same time characteristics as the input field provides the
self-consistency condition.

A similar method was recently introduced by Ander-
son. ' The main difference between his theory and ours
is that he uses a semiclassical equation of motion. This
limits the applicability to the case of inhomogeneous
broadening. We found that it is sometimes possible to
find a rigorous solution of Schrodinger's equation of a
small system exposed to a randomly varying per-
turbation.

The present paper deals with this part of our program.
We will study a few models for which its solution is
relatively simple. The main problem is to find a set of
independent and real parameters such that, when
suitably chosen as a function of time, they can fully
account for the quantum mechanical motion of the
system. These parameters can be obtained either by
studying the transformations between the observables
of the system, induced by the Hamiltonian, or by a
general parametrization of the unitary transformation
that links the Schrodinger to the Heisenberg repre-
sentation. We will use both Inethods in the following.

For simplicity we impose the restriction that the per-
turbation has no "long" correlation times, although this
may not hold for the actual self-consistent field. This
makes the process MarkofIian and leads to an equation
of Fokker-Planck type.

We will first treat the case of a spin with arbitrary
spin quantum number, perturbed by a randomly Quc-
tuating local magnetic field, in the presence of a con-
stant field (Abragam's model). We will then discuss a
system of two identical spins with 5= 2, with randomly
modulated dipole interaction in a constant external field
(Bloembergen's model for HsO). s The complicated form
that the Fokker-Planck equation takes for this case
makes its practical applicability problematic. We then
discuss the case of a two-spin system with restricted

'HE theory of spin relaxation is customarily de-
veloped by means of quantum mechanical per-

turbation methods. The general formalism based on this
method is, in principle, capable of yielding all observa-
bles of the system. The methods of statistical field
theory can be adapted to cope with this problem. Most
of the applications have, however, dealt with weakly
interacting systems for which a perturbation expansion
up to second order suKces to calculate the relaxation
times. These results can also be obtained with more
elementary methods. A notable exception is the work by
Caspers on spin-spin relaxation in solids, which clearly
illustrates the complications that one is going to en-
counter. A further case for which at least a partial
summation of the perturbation series would be needed
is a system of weakly interacting pairs of inequivalent
spins for which the spin-spin relaxation between pairs
as well as the dipole relaxation of each pair is being
considered. A perturbation calculation for this system'
gives the transition probability in the form of a power
series in the ratio of the two interactions, and not in the
closed form that one obtains with a semiclassical treat-
ment. 4 Finally, it is dificult to justify the use of a
perturbation expansion in weak external fields, as Kubo
and Tomita's theory presupposes the existence of a
resolved energy spectrum.

With these problems in mind we have tried to find a
new approach in which the theory of stochastic processes
plays a more central role. Our idea is to treat the inter-
actions in terms of a time-dependent self-consistent
field. Allowing this field to be a random variable with
unspecified time correlation functions, we would first
obtain a solution of the quantum mechanical equations
of motion of a single spin (or small subsystem) subjected
to this field. Then, with all the subsystems moving in an

*This work was supported by the AFOSR through a contract
with the Ohio State University Research Foundation.
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rotation, and finally we apply our theory to a mathe-
matical model for quadrupole relaxation. An application
of our solution of Abragam's model to the system of
spin-pairs mentioned above is presented in the paper
immediately following this one.

between t and t+At, one obtains

Li=cosf A0+sinf sin8 A p=pVi~(t)At,

Lp= sink( A0 c—os/ si110 Ap='rVp (t)At)

Lp =A/+—cos0 Ap =yVp~(t)At,

2. DERIVATION OF A FOKKER-PLANCK EQUATION where, e.g. ,
FOR ABRAGAM'8 MODEL

The Hamiltonian for a spin 5 in a fluctuating field

V(t) and a constant field H(0,0,H) is
V, '(t)At, =

and

[V,(t') cosprt'+ V„(t') sinppt'jdt', (l.2)

K=yHS, +yS V(t). 4 =4 (t)+-'A4 (13)

The equations of motion for the operators S(t) in the
Heisenberg representation are

This gives

—ihdS/dt= Lx(t),S(t)7 .

dS/dt=~V(t) &&S(t)y~HXS(t).

(2)

These equations can be solved in terms of two time-
dependent rotations A'(t) and A(t) by

S(t) =A'(t)A(t)S.

A'(t) is the rotation matrix corresponding to the pre-
cession in the external field. Therefore, the operators

The Eqs. (11)define an elementary step in a MarkofFian
process, because the right-hand members have, by as-
sumption, zero correlations in subsequent intervals At.
We will assume in addition that the components V~ in
three mutually perpendicular directions are statistically
independent. The probability W(8,&,Q, A8, A&,AP)At that,
in the time At, 0 changes to 8+A8 etc. , can then be
written as

WAt= fi'(Li)fp'(Lp)fp'(Lp),

where f,~ is the normalized probability distribution of
yAtV, ~(t). The normalization of W is given by

S'(t) =A'(t) S (5) At W sin0dA0dAqdA$=1, (15)

satisfy the equation

dS'/dt= yH&& $'(t).

We now perform the unitary transformation

(6)

S~= (S.+iS„)/v2, Sp ——S„(7)
which diagonalizes A (t) for our choice of H. This gives,
writing co=yII,

St,P(t) =Sp exp(ikpd), k=+, —,0. (8)

A(t) is a general rotation. In terms of Euler angles,
and using the operators (7), one has

because the Ja,cobian between L; and A0, AQ, AP (wit"
constant values of 8, p, lt) is equal to sin0. 8, p and g are
constants in the integration (15).

We can now follow a standard procedure, ' with only
a slight generalization, to obtain an equation for the
probability P(0,&,$,8p,gp, fp, t) that, at time t, the values
8, P, P are realized when, at time I=0, they were 8p, Pp, fp.

I.et x = (8,$,$), y = (A0,AQ, AQ), p(x ) =sinxi ——sin0.
With the above expression for the probability W(x+ 2y,
y) the master equation for P(x,xp, t)—=P(x) takes the
form

A~~ ——-', (1+cos0) expL+i(lt+ y)],
A+p ——, (1—cos8) expLai Q —pp)),

Hap= W (i/V2) sin8 exP(Kilt'),

g py= ~ (i/v2) sin8 exp (+ip),
A pp= cos8.

Inserting Eq. (9) into Eq. (3), one finds

cosP 0+sing sin0 j =y (V coscot+ Vp sincot),

sing 0—cosP sin8 j =y ( V, singlet+ V, coscu—t),

P+ cos8 j=y V, .

(9)

0P(x)/8t= P(x—y) W(*—-'y, y) p(x y)d'y—

W(.--',y, —y) p(x —y)d'y. (16)

The normalization is

P (*,x„t)p(x) dPx= 1, (17)

which can be satisfied for all times by virtue of Eq. (16).
At 1=0, one has

We now assume that the correlation times of V(t) are
short compared with the relaxation times, i.e., that a
time At exists such that the changes A0, AP, and AP in
the time At are, in the average, small, but that V(t+At)
is not correlated with V(t). Integrating Eq. (10)

P(x,xp, 0) =p
—'(xp)8P (x—xp)

=8 (cos8—cos8p)8 ((p—pp)8 (P Pp) . (18)—
' S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943); N. G.

van Kampen, Wed. Tijdschr. Natuurk. 26, 225 (1960).
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Using the fact that W(x,y) is a smooth function of its
first argument and expanding correspondingly, one
obtains, to second powers of y,

we have
O(0) = U (t)% (t), (25)

—iAU —'(t) d U/dt= K(t). (26)

P
(&pt .)+&p-

ox~-

+p Qa, p cap
8$~8xp

where

BP Bp
+ (pp-s)+p.s, (19)

8$~ l9XP 8$tx BXP-

y-W(*,y) d'y,

y-ypW(* y) d'y

(20)

With use of Eq. (14) and with the definition of I.; given
in Eq. (11),the quantities ti, and p, p can be expressed in
terms of the first and second moments of f,~, i.e., in
terms of J'vf;~(v)dv and J'v'f;~(v)dv. As an important
simplification we can take the first moments to be zero,
because the constant part of the total field, i.e., H, has
been eliminated. Furthermore, the second moments of
fi~ and f&~ are equal, because these two quantities refer
to two perpendicular components rotating in the
plane J H.

Defining

Expressing the general unitary transformation of the
system in terms of a set of real and independent parame-
ters, xi . .x, :U(xi x,), the Eq. (26) immediately
gives rise to a set of linear first order differential
equations:

I..=p; F.;(x~)i;=h.(t)/It, (27)

(28)

n=cosipg expPi(q+f+~pt) I,
(29)

P =i sin-', 8 exp L:,'i ((p—g —ipt)].

As is easily seen, the Eqs. (27) become identical with
the Eqs. (10); the rotation matrix A(t) of Eq. (9) is
obtained from

where h (t) is any matrix element of K(t). The existence
of linear relations (with constant coefficients) between
the elements of X can be used to ensure that the i't (t) in
Eq. (27) are either zero or are one of a set of linearly
independent matrix elements of BC.

The Eqs. (27) can, in principle at least, be used to
derive a Fokker-Planck equation, in analogy with the
procedure followed above. One merely introduces a
factor 8 (1. ) in the expression for W (x+2y, y) whenever
h (t)—=0. For the case of a spin 5= pi the unitary trans-
formation contains only 3 parameters, and can be
written in the well-known form

1/ri= (bt) ' v'fi~(v)dv
S(t) = U(t)SU '(t). (30)

1/r p (At)
—' v'f p~ (v) dv——,

(21)

one finds

po =0)

pp la &1+&1
—1

ptipp ——(ri sin'8) ',

pppp= —(ri sin'8) ' cos8,

(22)

pppp ——(ri sin'8) ' cos'8+rp '.

Inserting this in Eq. (19), we finally obtain

BI'/Bt= ~(I'),|cos08 8 1 8 cosg 8—+ +
2ri sing Bg Bg' sing By sing Bf

2rp Bl//

(23)

(24)

An alternative derivation of Eq. (10), and therefore
of Eqs. (23) and (24) is obtained by considering the
unitary transformation U(t) that connects the Heisen-
berg with the Schrodinger representation. Writing

For higher values of the spin quantum number the
parametrization of the general unitary transformation
is difficult to carry out. As the perturbation V(t) can
only produce a rotation, all bu't three of the parameters
can in this case be eliminated from Eq. (27). This means
that those of Eqs. (27) for which h (t) =0, are integrable,
i.e., impose holonomic conditions for this case. For other
forms of 3C these conditions may be anholonomic, as we
will show in Sec. 4.

3. PROPERTIES OF THE FOKKER-PLANCK
EQUATION

The Eqs. (23) and (24) can formally be obtained from
the Schrodinger equation of a symmetric top by re-
placing t by 9 and by replacing the moments of inertia
by ri and rp. The functions fai~(8) exp/i(m&p+nP)]
are, therefore, a complete set of eigenfunctions of
the 5 operator, with eigenvalues —X= —

~ r 0 'n'
——',ri 'Ll(l+1) —ip'). In particular, the elements of the
rotation matrix, as given by Eq. (9), are eigenfunctions
of F:

PA;I, = —X;A, I„

Xp=—1/2'i ——1/r i, (31)
X+—= I/Tp= —', (1/rp+1/ri).

From this, it follows that the autocorrelation functions
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of A;~ have exponential time dependence, with charac-
teristic times T~ or T2. One has, indeed, for any
component

1/ro= 0''Vo',
1/ri=o y'V '/(1 jip'(r ')

(38)

This leads to the familiar expressions for the relaxation

(A*(t)A(t+r)), = A*(x)A(x')P(x', x,r)p(x') dox'. (32)

A*(x)S$A (x') jP(x', x,r)p(x') d'x'

= —X(A*(t)A (t+r)),. (33)

For the time dependence of S(t) we have, from Eq. (4),

S(t+r)=A (t+r)A(t jr)S
=Ap(t jr)A(t jr)A-'(t)A' '(t)S(t). (34)

Using the operators in the representation (7) and taking
the average over the ensemble of all spins with the same
S(t), one obtains, for r«(T&, T&),

(dS~/dt), = S~/Tp+—iipS~,

(dS,/dt), = S,/T, . —
The analogy of these operator equations with the Bloch
equations permits the identification of T& and T2 with
the relaxation times of the spin system.

Explicit expressions for Ti and Tp in terms of V(t) can
be obtained from Eq. (21). Defining

v, =(v. ),=(v„)„
(36)

Vo'= (VP) 4,

Therefore,

8—(A*(t)A (t+r)),= A*(x)A (x')S[P(x',x,r)]p(x')d'x'
BT

h(Lp jiLy) hip
—=hip*=—0,

A1.8—=hg2 —h33= 0.
(42)

The general unitary matrix U of three by three has nine
real parameters. These can be introduced by writing

4. THE CASE OF TWO INTERACTING
IDENTICAL SPINS

A problem which is still relatively simple is that of
two identical spins with S=-'„with randomly modulated
dipole interaction. The Hamiltonian is

ae=y&(S4jSp, )jy'r —'Lr'S, .S,—3(Si r)(Sp r)j. (39)

Due to the symmetry, the triplet and singlet state do
not mix, and we need only to consider the triplet state.
UVe will use the second method discussed above, and
will write BC as a matrix with respect to the states
Vi= (4~ j4' +)/K2, 'Pp= —%~+, 4p=%', ln an obvi-
ous notation. This gives, in the interaction repre-
sentation,

t' 2Co v2Ci* v2C'i
K=—(h p) =-'y'O' %24'i —C'o

.V2C i* C p* —C'p.

with
Cp ——r '(cos'8 —-', ),
C i——r ' cospI sin8 expL —i(t jpot)], (41)

C p
——r—' sin'0 exp) —2i(i j4ot) j;

8 and i are the polar angles of r.
There are 4 linear relations between the h;~, viz. ,

ALp—=Q h;;=0,

and assuming, e.g. ,

(V.(t) V.(t+r))~= Vi' exp( —
~

r ~/~i),

(V.(t) V, (tjr))i ——Vpp exp( —
I
r I/po)

one 6nds

(37)

and

U=E.V gUOV'2R ',

E~,„8;p expi$;, . ——
V 2 &= 5&A, expo/& 'gy= 0

(43)

(44)

cos8
Up= sin8 sing.sin8 cosf

sine sing sing cosp—cos8 sing siny jcosIt cosy expiX —cos8 sinIt cosy —
cosset siny expiX .

—cos8 cosP siny —sinIt cosy expiX —cos8 cosset cosy jsinf siny exp'.
(45)

For x=0, Vp becomes a real rotation matrix in Euler The quantities Li Lp in Eq. (46) and Eq. (42) are
angles. E. is the transformation given by

0 0
Z= 0 I/K2 i/v2 ..0 —1/v2 i/K2

Its introduction simplifies the equations of motion. In-
serting Eqs. (43)—(45) in Eq. (26), we find

Li——hii/h,

Lp jiLp=hpp/h, (46)

Lp jpL4= p (hip jhip*)/@~2

L =—(5 j5 jest jit +X)+s'X
I p

=—-,'(jp —jp) jL-', (c'+1)Xi—Xpj cos2y
—cZy sln2 y,

Lp —iLp=—(8 iscXi) cos—y expi4Ip jsZp siny,

L7 iL4=(8 iscXi) sin——y exp—irip sZp cosy-,
Lp iLp= (y jir ', (c'j—1)Xi—-XpJ sin2y-

+cZi'+icZ, "cos2y) expi(rtp rtp), —
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Lo —=2 tt+2 i4+ X=o (49)

has been used to eliminate $i.
The equation L,6= L&=L8 =0 is apparently anholo-

nomic, so that the Eqs. (47) and (48) can not be further
simplified. The Fokker-Planck equation will thus be a
partial differential equation in eight variables. It can be
obtained as follows: We assume that the matrix ele-
rnents Ii,:i(t) are characterized by a correla, tion time r„
short compared with the relaxation times of the spins.
We then perform a short-time integration, as in Eq.
(11). The integrated matrix elements are then sta-
tistically independent, and have zero autocorrelation in
subsequent time intervals. The probability of a step
x ~ x +y in the 1i'larkoKan process is then given by

(5o)

where, in L, of Eq. (47), we have replaced x by y, and
x by x,+,'y . f,~ is -the distribution function of the
matrix elements in Eq. (46) after the short-time inte-
gration. The second moments of f,~ can be found from
Eqs. (40) and (41) and from the assumption that the
motion is characterized by a correlation time 7-,-. One has

(ht) —' v'f ~(i)dies=1/r;,

where
1/ri ———,'Qr„
1/r2 1/r, =-', Q,r/(1——+ (4u'r ),

1/r 3 1/r 4 ——g'Qr. / (1+oPr——,2),

Q= —'y'&'(r ")

(52)

The second moments p ~ are then obtained by solving
Eq. (47) for x, which is readily done and which gives,
after using Eq. (42), expressions of the form

5

x.= P G., (xp)L, . (53)

where

X =l—(5+5)+~+~+x+l(t &—) «s20,
X2= z ($2+$3+X)+it2+ it&,

(4S)
Z& =Z +iZ,"= $P—+zi (j 3 j.)—sin 2/7 expi (X+it;),

c—=cos0, s—= sing.

The equation

Ii„'= —h33' ———43''It'r —' sin2 (1 +cot),

h „'= ——4'iy'It'r-' cos2 (i +a&t)
(55)

All other elements are zero. The number of parameters
in U in this case is reduced to only three, namely we can
take 0= q =0, pi=0, (,+(~——m, and X+rt~+rt3 ——0. In-
troducing new variables, t, rt, and P' defined by $= t3
—(., rt=2rt4, p'=2', Eq. (47) ta,kes the form

2I.i= j+j cosP',

2Li =P' sing —$ sin—lt
'

cosit,

2L8—= tt
' cosrt+) sing' sing,

(56)

while all other L, are zero. Since Eq. (56) is quite similar
to Eq. (10), and since I.2 Reh23' ——0, I.~

————Imtt23' and
Ls -', (h»' —Is»' ), i——t can be verified easily that the
Fokker-Planck equation for this case has the same form
as that of Eqs. (23) and (24), with 8, P, and P of Eq. (24)
being replaced by P', f, and it, respectively. The values
of v'p and z~ in this case are

1/r0=0, 1/ri= (15/64)Qr, /(1+4'& r,. ). (57)

Here, Q is defined in Eq. (52).

In conclusion of this section, we remark that the
results of Sec. 2 for S= 1 can also be obtained from Eq.
(47), namely, by equating the L; to the matrix elements
of R=yS V(t). One obtains LO=Li= =L5=0,
L«=&V, I.&=&V„, L,s=&V,. These equations have a
solution with P, =rt, =x=0 which reduces to the one
found previously, which we know to be valid for
arbitrary spin. The fluctuating field V(t) can also be
considered in addition to the dipole interaction. This
merely makes the form of t4 p in Eq. (54) still more
involved.

5. "QUADRUPOLE RELAXATION" FOR S=l

It seems that even the case of restricted rotation,
considered by Bloembergen, ' which corresponds to
taking L~= const, does not produce a great simplification.
Only when the rotation is restricted in the sense that the
angle 8 is equal to ir/2, does one obtain a simple result.
In this case all 1z,; except h. 3 and h3~ are zero or constants
(time independent), and can therefore be included in

the zero-order Hamiltonian which is eliminated in the
interaction representation. Using a new basis defined by

+,'=+,, +,'= (—4,+i+3)/v2, and %'= (+,+i@3)/v2,

we find in the interaction representation

One then has

w-~= 2 G- (x)Gt (x)/ri,

As a final illustration of our theory, we consider the
Hamiltonian

5C„=8(t)(S'—3S,')+ C(t) (5,.' —S,P)+ALIIS.. (5g)

where p(x) is the Jacobian of the transformation. As the
resulting Fokker-Planck equation is rather long, but can
be written down without difhculty, we will not give it
here explicitly. We were somewhat surprised to find the
motion of this system to be so complicated.

For time-independent 8 and C, K, would be the well-

known quadrupole interaction in a solid with ortho-
rhombic symmetry. We will take B(t) and C(t) to be

' N. Bloembergen, Phys. Rev. 104, 1542 (1956),
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random functions of time, with 8=C=O, as in a cubic
crystal, though this is very far removed from a realistic
theory of nuclear quadrupole relaxation in solids. ' For
5=1, we can use the general formulas of the previous
section. Noting the somewhat unconventional basis used
there, we find from Eq. (58) that, in the interaction
representation, the equations of motion are given by

Lo= L3= L4= L6= Ly =L8=0,

Li ——2AB(«),
—Lo+iLo ——AC(«) exp2ico«,

for the probability P(x, io,i«, $&,«), with the P operator:

2 8 t3 8 1 1 8 8
+ 4 +-

s By Bx 'BXBc, 4 s Bp s Bp)

1 1 1 82

+-(—+—
) . (6~)

2 K1 K2 cI$2

Here, c—=cosy, s=—sinx.
The unitary transformation U is given by

where the L; are defined by the Eqs. (47)—(49). By
taking 0=0 one identically satisfies L3=L4= L6——I q

——0.
There are then three redundant variables. In elimi-

nating these, one must take care not to lose the identical
transformation V=1. One can indeed take

U12 U13 U21 ~31 0)

Uii —— ex—p z(—2$.+x),
U»= z»nox expz(c —&+&+ox),
Uoo=i sin —',x expz( —co+))«+$z+ox),

U zo
———cos-', x expi (—(p f+$.—+2x),

U» ———cos-', y expz(&p+))I+$z+-', x).

(65)

(60)tt=rto=rto=O, 5o=5o.

i)Vith this choice the Eqs. (47)—(49) take the form:

Lo=—$i+2$z+ x= 0,

I.i= —2$z —x= 2—AB («),

The unit matrix is obtained for $o
——(o=0, x=1«=zr,

which gives therefore the initial condition.

(b) The case II=0. For co =0, Eq. (61) can be solved

with cp=0, /= const. This makes Lo ——Lo ——0. This case
is therefore singular in the sense, that the condition

Lo Obecomes ho——lonomic. Only the variables x and $&

remain in the stochastic equation. Instead of Fq. (64),
we get

(61)Iz= —2x cos2(p —P—sing sin2(p= —AC(«) cos2co«,

I.o
—=-,'x sin2q —P sinx cos2io=AC(«) sin2co«,

Lo= j+)t cosy=0.

Taking the short-time average of these equations, the
question arises whether the right-hand members of the
equations for L2 and L5 become statistically inde-

pendent. Statistical independence has been assumed in
the foregoing, and was justified in the examples that we

treated, independent of the magnetic field. From Eq.
(65) it is clear that, , in the present case, this condition is

only satisfied when or=0, which gives L5=0, or when or

is sufficiently large, i.e., when the short-time integration
can be extended over a time At satisfying ~At))1. This
means that the Larmor time is much shorter than the
relaxation time.

(a) The case II "large. " The Eq. (61) for Lo can be
integrated. In order to retain the unit matrix, the
integration constant must be x.

2 8' 1 1 1
&( 5 «)= +— +— I'( ( «) (66)

cI« —)c2 cIx 2 K2 )cl ci$2

where )coo=a&(co=0). The unitary transformation is ob-

tained from Eq. (65) by taking &p=0, f=zr.
In the transition region between case a and 6 the

short time averages of C («) cos2(d«and C(«) sin2co«will be
correlated. Our method can be extended to this case.
One expects a Fokker-Planck equation in which the
coefficients depend explicitly on the frequency or.

An interesting difference in the results obtained from

Eq. (66) and Eq. (64) is, that the relaxation time for
transitions is twice as long for H =0 as it is for finite II.
This follows from the long-range time dependence of

I
Uzol', which gives the occupation of the state +o at

time t when the spin is in the state 0 2 at t=0. We have

(62)Pi = —2&o—x+zr.

The equation for Ls is clearly anholonomic, so that the
four variables $&, cp, f, x remain in the stochastic equa-
tion. Following the procedure described in Sec. 6, we

find for the Jacobian p=sinx. The second moments tc o

are obtained from Eq. (54) in which the times r, are
given by 7 2 = T5 = K2 7.1=K1 with

I/)c, =- o,A'(B'(«)),

I/». = o zAz(C'(«))/(1+4(o'croo)

I
U»(«)

l

'= cos'(-', x)I'(x, co,I«, po)«) slllxdxZ(pcf1jld$2 ~ (67)

Writing cos' —',x=oi(1+cosy), noting that cosy is an
eigenfunction of 5', with eigenvalue —4/)co and using the

(63) fact that at «=0, x(0) =zr, one finds

where oi and o& are the correlation times of B(t) ancl

C («), respectively.
This gives a Fokker-Planck equation of the form (23)
' J. van Kranendonic, Physica 20, 781 (1954).

I
U„(«) I'=-:Ll—exp( —4«/. ,)). (68)

The relaxation time is, therefore, )cz/4. For H=O one

finds similarly, from Eq. (66) the relaxation time lcoo/2.

SO, eVen When 4a-22or2((1, they differ by a faCtOr 2.
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Perhaps this could be observed in a case where our
model might have some applicability, such as, e.g. ,
quadrupole relaxation of a nucleus in a liquid.

6. DISCUSSION

In the foregoing, we have shown how some simple
quantum mechanical problems involving random Hamil-
tonians can be solved without reference to perturbation
theory. As is apparent from the example of the two-spin
system, the limitation of simplicity is very severe:
Reasonable equations can be expected only if the unitary
transformation, generated by the Hamiltonian, depends
on a small number of independent parameters.

A possible application of our method for more com-
plicated systems is its use in combination with pertur-
bation theory. We have not belabored this point here,
because the system analyzed in the following paper
illustrates it sufficiently.

We have confined the discussion to 3JarkoQian sys-
tems, but a generalization to include non-Markoffian
stochastic variables could be obtained in analogy with
the classical theory of non- Markoffian processes. "Such
a generalization would be more realistic than our
present models. From this point of view it would also be
desirable to extend our method to include a coupling of

' R. Bourret, Can. J. Phys. 38, 665 (1960).

the small system to a large but random system, such as
the phonons. "This would presumably allow one to in-
clude the temperature as a parameter in the stochastic
equations. We hope to return to this point in a later
publication. In conclusion we want to point out that the
classical counterpart of our Fokker-Planck equation can
be obtained readily. For the model treated in Sec. 2,
e.g. , we consider to this end the equations of motion of
the expectation values (S(I)). From Eq. (4) and from
the fact that in our representation (S,(0))=(S,(0))=0,
one obtains

(S (&))=~'o(f)(S.(o))

As A;0 is independent of q, this motion can be described
by the distribution function p(8,p, t) =fP(8, y,p, t)dy. p
satisfies a Fokker-Planck equation obtained from Eq.
(24) by dropping the terms in 8/I) q.

This classical equation describes fully the time de-
pendence of observables in a free-precession experiment,
but should not be used to calculate dynamical effects
connected with other interactions.
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The relaxation of a system of two inequivalent spins lS=s, I=s) with two noncommuting time-
dependent interactions, i.e., a randomly modulated dipole interaction, and a fluctuating local field acting on
one of the spins (S), is discussed. The influence of the fluctuating fleld is treated exactly in terms of a Fokker-
Planck equation, which is described in the previous paper. The dipole interaction is then treated with
perturbation theory. This gives, in all detail, the time-dependent transitions between the levels established
in a constant external field. It is shown that rate equations are insufFicient to describe the transitions, and
that in weak fields a resonance phenomenon can occur. This resonance is studied in some detail with Green's
function methods.

1. INTRODUCTION

N the following, we discuss the relaxation of a system
- - of two inequivalent spins, S= 1/2 and I= 1/2, with
randomly modulated dipole interaction, in which one
of the spins, 5, also takes part in an independent
relaxation process. In a recent paper, ' the Overhauser

*This work was supported by the AFOSR through a contract
with the Ohio State University Research Foundation.

f On leave of absence from University of Osaka Prefecture,
Japan.' J. Korringa, D. O. Seevers, and H. C. Torrey, Phys. Rev.
127, 1143 (1962).

effect in such a system was analyzed from a phenomeno-
logical point of view. Such a treatment assumes the
validity of rate equations, which describe the time
dependence of the population of the states, established
in a constant magnetic field, due to spontaneous
transitions. It also presupposes a knowledge of the
rates in these equations. These are not easy to come by,
with the exception of one special combination which
describes the rate of transitions of the spin I regardless
of the transition of spin S.' An attempt to evaluate the

' N. Bloembergen and L. O. Morgan, J. Chem. Phys. 34, 842
(1961).


