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The abrupt-kink model of dislocation motion is generalized to describe the dynamics of a dislocation at
temperatures where the barrier to kink diffusion is negligible compared with the thermal energy, and where
generation of double kinks is still unimportant. It is assumed that kinks may be treated as a one-dimensional
gas of particles which interact through their long-range stress fields. The interaction energy, U(x), at a
separation « is derived. For x greater than a few lattice spacings, U (x)~ ||, like the interaction between
point charges. The equations of motion of a dislocation are obtained for a general U (x). It is shown that
the well-known string model is equivalent to assuming an incorrect short-range interaction U (x)~8(x) and
ignoring the variation of the effective mass of a dislocation with its orientation relative to a close-packed
crystal direction. While the equations of motion have not been solved with the true interaction, possible
effects of its long-range character are investigated with an interaction of the form U(x)~—In|x|. The
behavior of the dislocation under a static stress is discussed according to this model and, in addition, the
fundamental frequency of vibration about the equilibrium configuration is derived.

I. INTRODUCTION

N a previous paper! (subsequently referred to as I),
a new model of dislocation motion was presented.
The essential feature of this model was the recognition
given“to the discrete atomic nature of a dislocation
through introduction of the concept of an abrupt kink.
Further, it was shown how macroscopic equations of
motion of a dislocation could be obtained from the
microscopic properties of an abrupt kink.

We were concerned in I with the temperature regime
in which the mean thermal energy of a kink was less
than the activation energy for kink diffusion. A first
application of the theory to internal friction phenomena
was shown to account for many of the finer details of the
Bordoni attenuation peak which is found experimentally
in cold worked metals.

According to our interpretation of the origin of the
Bordoni peak, the activation energy for kink diffusion
in fcc metals would appear to be ~0.08 eV. While
a priors this value seems quite reasonable to us, in view
of the present lack of definite confirmatory experimental
evidence for our interpretation, one cannot yet exclude
the possibility that some other mechanism is operative
in producing the observed attenuation. Thus, in the
interim, we have been considering an alternative formu-
lation of the abrupt kink model which would be appli-
cable if the mean thermal energy of a kink were consider-
ably larger than the activation energy for kink diffusion.
Of course, if our previous estimate of the activation
energy is correct, the contents of this paper are totally
irrelevant for fcc metals, since the metal would then no
longer be a solid. But, in any event, it is conceivable
that the activation energy can vary significantly from
one structure to another among the different types of
solids. Consequently, at this early stage, it seems worth-
while to explore other possible formulations of the model
if only to determine the qualitative behavior of a dis-
location under the differing conditions which may be
hypothesized. However, we should emphasize that the

L A. D. Brailsford, Phys. Rev. 122, 778 (1961).

present treatment is in no way meant to compromise the
model as outlined in I. Rather, it is our hope that the
pertinent conditions for any particular solid can be
resolved by further experimental study.

As in I, we shall continue to assume that the thermal
generation of double kinks may be neglected at tempera-
tures of interest. Consequently, the motion of a disloca-
tion will be described again in terms of the behavior of
those kinks which are “built-in”” at 0°K by virtue of its
orientation relative to a particular close-packed
direction.

The application of an external stress tends to drive
kinks of the same type toward one pinning point. Thus,
in order to obtain a finite compliance, the model must
include some mechanism which opposes such a redis-
tribution of kinks. In I this was attributed to the dif-
fusive character of the kink motion. Thereby the ten-
dency to avoid a large concentration gradient of kinks
was explicitly included. However, if the barrier height
for kink diffusion is negligible, such a mechanism is
inoperative. Obviously, in this instance, the behavior
of a dislocation must be governed largely by the long-
range interaction between the different kinks of which it
is constituted. The origin of this interaction is clearly
through the elastic stress field associated with a kink.

In the next section, we shall consider the following
model. It will be assumed that the concept of the
kinetic energy of a kink is valid. With this premise, the
problem of determining the collective behavior of a set
of kinks or of a one-dimensional gas become formally
identical. The latter can be formulated in terms of ele-
mentary hydrodynamics. In the present context, a
similar treatment yields (after minor approximation),
and for an arbitrary kink-kink interaction, the equation
of motion of the dislocation. The latter is an integro-
differential equation in which the kernel is the kink-kink
interaction energy, U (x). Thereby, it manifests specific-
ally the manner in which the motion of a particular
line element is influenced by the configuration of the
remainder of the dislocation. Moreover, the circum-
stance in which an analogy with an extensible string
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might exist is immediately obvious. For since the motion
of a line segment of a string depends only upon the con-
figuration at the same point, it is easily shown that
U (x) would have to assume a d-function character.

The correct form of U (x) is therefore of some potential
interest. Itis derived, following a method due to Burgers,
in Sec. ITI. We find that, at large distances, U (x)~ | %],
a behavior typical of the interaction between point
charges. Thus, in contrast to the requirement for a
string model, the interaction is of long range.

Unfortunately, the structure of U (x) does not appear
to lend itself readily to analysis in the one-dimensional
problem under consideration. However, since the es-
sential feature is its long-range character, it is interesting
to investigate a further hypothetical example which
does incorporate this property, so that one may antici-
pate some consequences of the correct interaction. Ac-
cordingly, in Sec. IV, we consider the behavior of a dis-
location for a supposed interaction U(x)~—In|x|.
This example has two virtues. First, the whole analysis
is trivial. And, secondly, it may be of incidental interest
to any reader concerned with the separate problem of
the dynamical properties of a pile-up of rigid dislocations.
For the present work, the most interesting prediction
appears to be the form of the equilibrium configuration
of a dislocation. Namely that, instead of lying straight
along the line joining the two pinning points, a disloca-
tion with built-in kinks possesses macroscopic curvature
even in the absence of an applied stress.

The preceding description outlines the contents of
this paper. Inasmuch as we consider here that kinks
are free to move along a dislocation, the model bears
some superficial resemblance to other work in disloca-
tion theory involving kinks. As a consequence of this
apparent similarity, it is possible that certain remarks
we have made could be the source of confusion unless we
explain further our particular point of view. In particu-
lar, we refer to the discussion of the analogy with an
extensible string. In the past it has been proposed that
the form of a kink in a dislocation could be derived from
the model of a string with line tension subject, in addi-
tion, to a spatially periodic force field which in some
manner is meant to account for the structure of the host
lattice.? Thus, from this standpoint a dislocation could
never behave like an extensible string alone. But the
question is, can one really separate the totality of all
the atomic forces, as implied by this model, in such a way
meaningly? Indeed, it may be possible. But, unfor-
tunately, we do not know how to do it. Instead we prefer
to adopt the following hypothesis. Namely, kinks exist,
ipso facto. That is,® “A kink is to a dislocation what a
dislocation is to a slip plane.” It represents a funda-
mental unit of atomic dimensions. Then, with additional
assumptions concerning the character of the kink mo-
tion, we show here, as in I, how a macroscopic descrip-

2 A. Seeger, Phil. Mag. 1, 651 (1956).
3 A. W. Overhauser (private communication).
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tion of the static or dynamic properties of a dislocation
may be derived. In our opinion, it is only in this latter
description that comparison with models derived from
a continuum theory are justified.

II. EQUATION OF MOTION

In order to be specific, we shall discuss the behavior
of a dislocation which is inclined, on the average, at an
angle 6 to a close-packed direction and contains a se-
quence of built-in “left” kinks. The notation (and vo-
cabulary) follow that used in I. An (x,y) coordinate
system is chosen in which the x axis is parallel to a close-
packed direction, the two pinning points being located
at (—L/2,0) and (L/2,L tanf). Thus, we wish to deter-
mine the kink density #(x,f), under the new conditions
we have postulated. The position of the dislocation,
y(x,8), can then be obtained by simple integration :

y(x,t)=a'/‘=F n(x,t)dx. 1)
—L/2

As a first approximation we shall assume that the
interaction between kinks depends only upon the vari-
able x and is independent of their relative orientation
with respect 'to the close-packed direction. Of course,
this is incorrect in detail (see Sec. III), but the error
involved is generally small. As a result, one can achieve
considerable mathematical simplification without com-
promising the physical features in any essential way.
The problem is then one-dimensional.

According to the basic tenets of the model, for a
given interaction, the equation of motion of a kink may
be obtained from Newton’s Law. However, our basic
objective is better served by treating the kink assembly
as a one-dimensional fluid. For we are not so much in-
terested in the motion of any individual kink as in the
time development of the macroscopic density. Thus, if
we introduce a drift velocity »(x,f), the equations of
motion may be written in the form:

In/dt+-(9/dx) (nv)=0, (2)
and

9v/0t4-(8/9x) (v*/2) =F (x)/my.. 3)

Here, m; is the effective mass of a kink and F(x) is the
total force acting on a kink at x, which, in the presence
of a constant applied stress o, is

Lyz AU (x—x')
Flx)=— / n(x)—————da’ —cab. 4)

—L/2 X

Equations (2) and (3) are, respectively, the equation
of continuity and Euler’s equation. They may be derived
either by standard methods or, formally, from the
Lagrangian of the many-particle (kink) assembly. For
general interest, the latter derivation is presented in the
Appendix.
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The equations of motion have to be supplemented by
appropriate boundary conditions. We assume that the
dislocation is firmly pinned at x==-L/2. The boundary
conditions are therefore

=0, at x==4L/2. 5)

In addition, there is the further constraint
L2
/ n(x)dx=mnoL, 6)
~L/2

where 7, is the average kink density, which defines the
relative orientation of the pinning points in the slip
plane.

When departures from the equilibrium distribution,
n.(x), are small, the equation determining the kink
density can be obtained readily from (2) and (3). For,
if we let

n(xit) = ne(x)+n1(x)t)) (7)
where #.(x) satisfies the integral equation
Li2 U (x—x')
/ Ne(x)—————dx’+0ab=0, 8)
—L/2 ox
we obtain, to first order, the following equation for #;:
62n1(x,t)
o
19 a rbn
= —-—{ 1o(x)— / m (' DU (x—a')dx' ;. (9)
my, 0% 9% J L2

Or, by virtue of (1), after integration,

Oy (x,0)
e
=_}_{6ye(x) }_a_ /L/Z PNER)

———U(x—a")dx'.
dx JoxJ_r;p O

(10)
mirQ

This constitutes the equation of motion of a dislocation
according to the present formulation of the abrupt-kink
model. Through its integral character it illustrates ex-
plicitly that the displacement at one point is affected
by the configuration of the remainder of the dislocation.

Although (10) is quite complicated in structure, it
is not difficult to determine the approximation in which
the equation describes the motion of a flexible string.
For as we have stated in the previous section, the equa-
tion must then be of completely local character. This
suggests that we examine the consequence of an inter-

action of the type
U(x)=Sa*(x—x'), (11)

where S is constant. And, indeed, for c=0, we find
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from (8) that (10) reduces to

&%y Smea? 8%y,

e my oxr

(12)

which is the equation determining the displacement of a
flexible string with line tension S. However, there is
still one important difference from the model which is
normally used,* namely, that the effective mass per unit
length m*, is here given by

m*=mz/noa’.

(13)

Thus, if one assumes an effective mass for a kink, the
effective mass of unit length of a dislocation depends
upon the average kink density. This is an obvious
physical consequence of the fundamental mechanism of
the dislocation motion.

We have shown that an interaction if the type (11)
yields a modified version of the string model. Clearly
it is of interest to establish the true nature of U(x).
This will be the object of the following section.

III. INTERACTION BETWEEN KINKS

As an example, we consider the dislocation shown in
Fig. 1(a). The Burgers vector b is at an angle ® to
the close-packed direction, the slipped region in the
slip plane being labeled S. The burden of this section
will be to determine the effective force on the kink A
arising from the presence of the other kinks in the dis-
location.

The method is based upon the following observation :
Namely, that the dislocation in 1(a) can be represented
as a superposition of a dislocation 04 B, with one kink,
and of a sequence of two-cornered dislocations as shown
in Fig. 1(b). If, by convention, we call the dislocation
04 B positive, these two cornered dislocations will be
positive or negative also, depending upon whether they
lie to the right or left, respectively, of A. Let op
represent the component of the shear stress acting in
the slip plane, in the slip direction, at 4, due to disloca-
tion with corners near D. Then the effective force fap,

(b)

Fic. 1.(a) A dislocation containing a sequence of left kinks
and (b) an equivalent dislocation network.

4 A. Granato and K. Lucke, J. Appl. Phys. 27, 583 (1956).
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exerted by the kink at I? upon that at 4 is

fap=—oapba. (14)

The calculation of ¢p will be presented below.

The displacement field resulting from a two-cornered
dislocation of the above type can be obtained from the
general result of Burgers.® Following his notation, with
the coordinate system given in Fig. 2, we find the dis-
placement, u(r), to be

u(r) =u*(r)+u**(r)4grady, (15)
where
bro 2T\ (7
= (* ) (3)
+
+tan‘1<ﬁ>—tan“1<x(y d)):l’ (16)
ar a7,
W)= (1) =0, an
b
u’z** (I') =—f (r,@) ) (18)
4ar
¥ em (19)
xb(r)—mg r,®),
and e ity
g(1,®)= (sin®) ln(r: x)-f—(cos@) In(m). (20)

In these equations, » is Poisson’s ratio and 7, is the dis-
tance of r from the point Q, i.e.

ro=[a+ (y+a)y+2"1 ", (21)

These displacements can be used to compute the
stress op and hence the force fa4p. After some algebra,
one can show that f4p may be written in the following

form
fap=—(8/0x)U (o,®), (22)

which defines the kink-kink interaction energy, U. We

find that
uab? p—x pg—%
U(9,¢)=~——~[ (1—» cos%)li(———)-—( >:I
4r(1—v) y y+a
oyt
+ (1—v sin2®) ln(f——y—-—a)
pty
patx
+ (v sin2®) ln( )}, (23)
ptx
where

p=(P+y )", po=[+"+(y+al”?  (24)

and yu is the shear modulus. Since we can expect (23)
to be correct only for separations much larger than a

& J. M.. Burgers, Proc. Acad. Sci. Amsterdam 42, 293 (1939).
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F16. 2. The coordinate
system used in calcu-
lating the stress field
arising from a two-cor-
nered dislocation.

lattice constant, we expand U as a power series in the
kink height, a. We then obtain the comparatively
simple result

wa?p? 1
U (p,@)~——— —{ (1+v—3» sin?d)
8r(1—») p

+ (1—» cos’®)i+2» sin2®7]}, (25)
where {=tan(0/2), and tanf= (y/x). Evidently, the
interaction between like kinks is repulsive and varies
inversely as their separation. In a similar manner, one
can see that the interaction between unlike kinks would
be of the same form as (25) but with opposite sign (i.e.,
attractive). For the only change in the analysis would
be a change of sign in (14). Moreover, it is easy to show
that kinks (such as E) to the right of 4 obey the same
interaction law.

Finally, we would point out that for 8Zn/4, U does
not depend in any essential way upon the relative orien-
tation of the two kinks with respect to a close-packed
direction. Thus, as we mentioned in the previous section,
a further reasonable approximation to U is

2b2
—(14-»—3 sinp),

U(x)~——
= 8r(1—v) ||

(lz]>a) (26)

for kinks of the same type.

IV. EFFECT OF LONG-RANGE INTERACTION

Although U (x) has the simple asymptotic form given
above, we have not yet been able to devise an analytic
method of solution of the equation of motion with this
interaction. While we could have resorted to numerical
analysis, it appeared more worthwhile at this point to
seek an alternative hypothetical interaction which,
although making the problem easily soluble, would
contain the essential long-range character of the correct
interaction. Thus, we were led to consider the conse-
quences of an interaction

U@)==Uyln|x|, 27

U being constant. Of course, (27) tends to overestimate
the long-range effects. But in view of the stated aim of
the exercise, this does not cause any special concern
We will consider first the steady-state configuration
in the presence of an applied stress. Substituting for
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U(x), Eq. (8) becomes

Lz p,(x) oab
f dx’'— <——> =0.
—L/2 (x—x’) U 0
This equation can be solved by the following method.
We let x= (L/2) cos® and use the expansion

(28)

1 w sin(nd)
=—23 — cosnd’. (29)
cos®—cos®’ n=1 sin®
Hence, if #n,(x)=P(®), (28) becomes
> sinnd / P (@) sin®’ cosnd’'dd’
n=1 0
= —(0ab/2U,) sin®, (30)

or

/ P (@) sin®’ cosn®’dd’ = —8,,1(cab/2U,). (31)
0

The solution of (31) is

P(®) sin®d=K— (cab/wU,) cos®, (32)

where K is a constant, to be determined from (6). Thus,
in terms of the original variables, one finds the position
of the dislocation to be given by

y= (noaL/m)[w—cos™(2x/L)]

+ (0a®L/2xUo)[1— (2x/L)*J2.  (33)

This is an interesting result. It shows that, even
in the absence of an external stress, the dislocation is not
straight. As a result of the long-range interaction, kinks
tend to pile up near the pinning points, producing
thereby a macroscopic curvature in the dislocation.

In addition, we should note the condition in which
(32) is a physically allowable solution. Since the genera-
tion of double kinks is prohibited, it is clear that, in
our example, (dy/dx)>0. That is, the density #(x)
must be everywhere positive. Since K= (2no/x), it is
evident from (32) that the solution is valid only for
stresses less than a critical stress, o, given by

oo=2noUq/abd. (34)

For larger stresses, and near the pinning point at
(L/2,L tand), the dislocation is constrained to lie along
the close-packed direction.

Finally, we shall derive the fundamental frequency of
vibration of the dislocation with the model interaction
(27). We consider only the simplest situation when there
is no applied stress. Then substitution into (10), with
the same change of variable as given above, yields the
equation

a®’

dnoUy ™ 0V (@')/ 0%
— YV (®) sind= /
0

, (35)
(cos®— cosd”)

1er k
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where y,= Y (®) and we have assumed a time depend-
ence y1~exp (). Since y; must be zero at the pinning
points, we make the expansion

Y (@)=Y A4, sinnd.

n=l1

(36)
Then, by virtue of (29), we obtain

L )
W’ sin’® 3 A, sinnd=w 3 nd, sinn®, (37)

n=1 n=1
where
w02 = (4"0 Uo/Lmk) . (38)
Hence, the 4, satisfy the relations
A1(3—2'y)=A3, (39)
and, for n>2
An+2=2(1—')/n)A,.—A",_2, (40)

where 4¢=0, and v= (2w¢?/w?). Three-term recurrence
relations of the general type (40) occur also in solutions
of Mathieu’s equation.® Only for certain values of 7,
with fixed 4, and 4,, will the sequence of numbers 4,
converge. These values of ¥ correspond to the normal
vibrational frequencies. The fundamental frequency
can be found readily using the techniques employed for
solving Mathieu’s equation. Thus, with 4,=0 for all
odd 7, we find w=1.8wq, whereas for 4 ,,=0 for all even #,
we obtain w=1.1w,. Hence, the fundamental frequency,
wy, is wy~1.1we. Although the numerical coefficient is
of no practical interest, the form of w, illustrates again
the dependence of the vibrational frequency upon the
orientation relative to a close-packed direction and the
strength of the kink-kink interaction.

V. SUMMARY AND CONCLUSION

The abrupt-kink model of dislocation motion has been
reformulated so as to include the temperature regime
in which the mean thermal energy of a kink is much
greater than the activation energy for kink diffusion.
The equation of motion of a dislocation has been derived
for an arbitrary kink-kink interaction. The form of this
interaction has been obtained. While we have not been
able to solve the equation of motion with the correct
interaction, a model incorporating its long-range prop-
erty has been investigated in detail.

It should be obvious from the treatments given here
and in I that any of the presently conceived aspects of
dislocation motion can be described within the frame-
work of the abrupt-kink model. But since, for a particu-
lar temperature, the conditions covered by the two
formulations are mutually exclusive, the definitive
determination of the activation energy for kink diffusion

6 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), p. 556.
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in dislocations of different types is obviously of para-
mount interest. It is our hope that this can be established
by further experimental and theoretical study.
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APPENDIX
The Lagrangian, L, of a set of kinks at positions, ;, is

2 U(lm—x)).  (AD

- 1
L= -%mk Z T3
% 4,7, (i7%7)

We wish to determine the time development of the
macroscopic density, #(x). Since

n(x)=2: 6(x—xs),

apart from self-energy terms, which we can ignore, the
total potential energy, ¥V, may also be rewritten as

(A2)

1 pL2 Ll
Vz—f dx/ dx' U(|x—o'|)n(x)n(x). (A3)
2J) ;e —L/2

Our aim will be to express the kinetic energy in terms
of similar collective variables, and hence derive the

equations of motion.
We introduce the complex Fourier transform, 7,4, by
means of the relation

L
ng= L7112 / n(x)e19%dx. (A4)

—L/2
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That is, from (A2),
ng=L"12 3" ; g~iazi, (AS)

Then, the momentum, ®_, say, canonically conjugate
to n, is given by

&_,=dL/dn,. (A6)
But since
L g
pi=—=2 b ;—, (A7)
axi q (?CI),;

we find, after differentiating (AS) with respect to time,

that
pi= =112 3" &_ geiawi, (A8)
q
Hence, the kinetic energy, 7', of the system is
T= Z (p2/2my)
= (1/2m ') 37 9q'®- @ ote—y, (A9)
[ '4
or
Ll
T=(1/2my) n(x) (09/9x)dx, (A10)
where e
Li
<1>q=L‘1/2/ ®(x)eiezdy. (Al11)
—L/2

Equation (A10) will be recognized as the kinetic energy
of a fluid when expressed in terms of a velocity potential
®(x)/mr. The equations of motion for # and ® may be
found from the Hamiltonian, H=T-V. After the sub-
stitution myv(x)=0®/dx, the latter yield Egs. (2) and
(3) of the text.
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Nuclear Magnetic Resonance in UAl,
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The nuclear magnetic resonance of Al*” in UAl, has been observed in the range of temperatures 4-300°K.
Large Knight shifts (X) were found with a temperature dependence not of a Curie-Weiss type. This behavior
and the temperature independence of the linewidth, when considered in conjunction with susceptibility (x)
measurements, indicate (1) no localization of the magnetization of the U (5f and/or 6d) electrons and (2)
no magnetic ordering exists. These results are contrasted with those obtained on the isostructural XAl,
(X =rare-earth ion) metals. Using a simple model, certain features of the band structure and the effective
exchange interaction between itinerant f and s electrons may be deduced. From the extrapolated limit of
the linear K vs x curve a large positive temperature-independent contribution to x is obtained which is
attributable to the Kubo-Obata orbital paramagnetism to be expected in metals with unfilled degenerate

bands.

INTRODUCTION

XPERIMENTAL evidence of an appreciable ex-
change interaction between the localized spin
moments of the rare-earth ions and the conduction

electrons has been obtained from nuclear magnetic
resonance (NMR) studies! of the XAl, intermetallic

' V. Jaccarino, B. T. Matthias, M. Peter, H. Suhl, and J. H.
Wernick, Phys. Rev. Letters 5, 251 (1960).



