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The lowest order nonlinear eGects due to saturation in the simultaneous resonant absorption of several
oscillating Gelds by a low-pressure gas are considered. The analysis is based on a perturbation solution of
the Boltzmann equation for the density matrix of the gas in a quantum statistical description. Within certain
ranges of the parameters involved, it is shown that: (1) When the gas is irradiated by two oscillating linearly
polarized 6elds of diferent frequencies well within the Doppler-broadened width of the same absorption line,
maximum absorption of both fields occurs when the two linear polarizations are perpendicular to each other.
(2) When the gas is in a static magnetic Geld and irradiated by two right-circularly polarized fields at coo and
~0+6~, and two left-circularly polarized olds at aro and c00—h~, all well within the Doppler width of the
respective Zeeman components (Are=+1 and —1) of the same absorption line, there exists a de6nite phase
relationship among the fields whereby absorption of all four fields is simultaneously at a maximum. Although
these effects are quite small in normal spectroscopic work, manifestation of both efkcts is readily observable
in gaseous He-Ne optical masers.

I. INTRODUCTION
' 'N this paper, we consider the nonlinear eGects due to
- ~ saturation in the simultaneous resonant absorption,
or stimulated emission, of several coherent monochro-
matic radiation Gelds by a low-pressure gas. This in-
vestigation was motivated by the following questions
arising in our study on a gaseous He-Ne optical maser. '2
In such a maser, the Doppler width of the Ne emission
line of interest is considerably broader than the separa-
tion between successive resonant frequencies of the
radiation cavity. When the maser excitation is strong
and the population inversion between the two excited
Ne states of interest is much higher than the threshold
value required for maser action, coherent oscillation
can take place in several longitudinal modes of the
cavity. According to the usual linear theory of masers, ' 5

the various oscillations are expected to be independent
of each other. Experimentally, however, certain relation-
ships among the various oscillating modes of the maser
are observed: (1) In the absence of an external rnag-
netic 6eld, the maser often oscillates in several linearly
polarized modes. It is observed' that the polarizations
in successive modes are at right angles to each other.
(2) In another set of observations, ' in the presence of an
external magnetic 6eld applied along the axis of the
maser, it is found that the maser could oscillate simul-
taneously in at least three modes. There exist certain
phase relationships among the various oscillations
such that no net beat note at the difference frequency

' A. Javan, Phys. Rev. Letters 3, 87 (1959).' A. Javan, W. R. Bennett, Jr., and D. R. Herriott, Phys. Rev.
Letters 6, 106 (1961).' J.P. Gordon, H. J.Zeiger, and C. H. Townes, Phys. Rev. 99,
1264 {1955).' N. G. Basov and A. M. Prokorov, J. Exptl. Theoret. Phys.
(USSR) 28, 249 (1955). (translation: Soviet Phys. —JETP 1,
184 (1955)7.' N. Bloembergen, Phys. Rev. 104, 324 (1956).

' R. A. Paananen (private communication).
'To be reported in detail in a forthcoming paper by R. A,

Paananen and the authors.

between two successive modes could be detected. (See
Sec. V below for more details. ) It is the purpose of the
present paper to examine the role of the nonlinearity
due to the saturation eGect in determining the relation-
ships among the various oscillating modes in a gaseous
maser. For simplicity, the more compact density-
matrix formulation is used in the calculations here.

In brief, when the gas is irradiated by several coherent
oscillating fields, the total rate of transition is modu-
lated at the difference frequencies; therefore, the popu-
lations of the states of interest are also modulated. If
the nonlinear saturation eGect is important in the sense
that the rate of induced transitions is not negligible
compared with the relaxation rate, the absorption
processes at the diferent frequencies of the applied
radiation will, therefore, not be independent of each
other. The basic problem is to determine the lowest
order nonlinear term in the electric dipole moment of a
gas induced by the radiation fields. We obtain this from
a perturbation solution of the Boltzmann equation for
the density matrix of the gas. When the nonlinear effects
as discussed above are taken into account, it can be
shown that both the absorptive part and the dispersive
part of the induced dipole moment of the gas at any
frequency would depend upon not only the magnitudes
but also the relative orientations of the polarizations or
the phase relationships among the fields. In the presence
of a population inversion, or a negative temperature,
the above effects imply that the negative absorption
by the gas, or the gain of the gaseous medium, varies
with such relationships among the radiation fields. Thc
experimentally observed polarization or phase relation-
ships would then correspond to the choice where such a
negative absorption is the highest; or, alternatively, the
threshold for coherent maser action is the lowest.

The use of two radiation 6elds in masers has been
considered in detail in the past by Javan' and others. ~"

s A. Javan, Phys. Rev. 107, 1579 (1957).' P. W. Anderson, J. Appl. Phys. 28, 1049 (1957).' V. M. Kontorovich and A. M. Pro%.orov, J. Exptl. Theoret.
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In most of these considerations, however, one of the
radiatiorl jlelds is of saturation strength and is primarily
employed to set up, loosely speaking, a population in-
vel'sioli between two other states of the atomic or
molecular systems where maser action is to take place
in the form of either a single amplifying or a single
oscillating radiation 6eld. Extending the work of
Javan, ' the Doppler effect in a gaseous maser has been
considered by Yajima. "

Mathematically, the nonlinear effects considered here
are not very diferent from those encountered in the
usual optical double-resonance experiments, " and in
multiple quantum transitions in nuclear magnetic reso-
nance work. In the former case, the systems interacting
with the radiation 6elds are practically isolated. In the
latter case, multiple quantum transitions take place in
nonisolated spin systems and a variety of relaxation
processes must be considered. ' In the present work, the
relaxation process in the gaseous system envisaged here
is considerably simpler —only hard collisions dominate.
Such a process can be characterized by a single mean
collision time in the Boltzmann equation for the density
matrix. Furthermore, the effects we consider here in-
volve successive single-photon processes rather than
true multiple-photon processes.

Karplus and Schwinger" give a general theory of
saturation in the absorption of radiation by a gas. There,
the applied radiation is a single monochromatic wave.
The gaseous system considered in the present work is
similar to that considered by these authors; the prob-
lem is, therefore, formulated as an adaptation of their
general formulation to the situation where the applied
radiation consists of several monochromatic com-
ponents. We restrict our considerations, however, to
the case where the radiation 6eld is relatively weak, so
that the rate of induced transition is small, but not
negligible, compared with the collision rate, in order to
facilitate solution of the Boltzmann equation by pertur-
bation techniques. The procedure used is described in
the following section.

Two specihc examples that need be considered in
order to explain the polarization and phase relation-
ships in maser oscillations are given in the succeeding
sections. In all these cases, the perturbation calculation
is carried out up to the first nonlinear term in the in-

duced dipole moment of the gas. The application of
these calculated results to the maser system is discussed
in detail in Sec. V.

Phys. (USSR) 33, 1428 (1957) Ltranslation: Soviet Phys. —JETP
23, 1100 (1957)j."S. Yatsiv, Phys. Rev. 113, 1538 (1959).

» T. Yajima, J. Phys. Soc. Japan 16, 1594 (1961).
'3 See, for example, J. ¹ Dodd and G. %'. Series, Proc. Roy.

Soc. (London) A263, 353 (196k);J.P. Barrat, ibid. , and references
quoted therein."S. Yatsiv, Phys. Rev. 113, 1552 (1959) with references to the
original work of R. K. Wangness and F. Bloch.

"R.Karplns and J. Schwinger, Phys. Rev. 73, 1020 (1948).

F(t) =Q& F&" cos(&d&t+8,). (2.1))

Once this is known, the resonant absorption of the:
radiation by the gas can be determined readily. The
Doppler eBect can be taken into account simply by
averaging over the translational velocity of the mole-
cules, The Hamiltonian of the gas molecule, including
the energy in the external field, is

H=Hp —Qi p F&'& cos(o&&1+0))
=—Hs+P& V&'& cos(o&&t+0~), (2.2)

where Hg is the Hamiltonian of the isolated molecule
and p is the dipole moment operator. The resonant part
of the induced dipole moment is given by

p(t) =Tr/pD(1)g, (2.3)

where D(t) is the resonant part of the density matrix.
Using a representation in which Ho is diagonal and
under the usual assumptions, 's D(1) is determined from
the Boltzmann equation

8—+so&„.+- D„„(1)

p (o) p (o)

P —V&'& cos(o&&1+0&)
A~ l d$

Z——Q LV g, &'&Ds„(1)—D„g, (1)Vs„&'&]
kl

)&cos(a&,1+0,), (2.4)
where

B&&) B&&

p(')=exp — = Tr exp
J2J Ir (2.5)

is the equilibrium distribution function at the tempera-
ture T in the absence of the applied Geld. The complete
derivation of Eq. (2.4) is given in reference 15, with
the only difference in the perturbation term V. Here V
has several components, V"'cos(o»t+ei). This com-
plicates the solution of the equation and it is not
feasible to use the same method" "of solution. For the
present purpose, it is su%cient to consider the case of
moderately weak fields in the sense that the rate of the
induced transitions is small, though not negligible,
compared with the collision rate, or

i V.„&'& iiilr-'«1. (2.6)

With this restriction, the Boltzmann equation (2.4)
can be conveniently solved by standard perturbation
techniques. Specifically, we have

(2.7)

II. THE BOLTZMANN EQUATION

The problem here is to determine the resonant part of
the average electric dipole moment per molecule, p(t), ,

of a gas, in which r is the average time between colli-
sions of a molecule, induced by an applied electric Geld, ,

F(t), consisting of several monochromatic components
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The lowest order term in D „is linear in V „&".

D„„(~=0 f«V„„(&=0
t —LP V "& cos(a»t'+8&)$

Ch

(2.7a)

Pn. i. A two-level
system irradiated by
two linearly polar-
ized fields.

I inearIy

polarized

0+

for U„„")AO, (2.7b'&

Ap (0 = —(p 0 —
p ( ))/Ace „. (2.8)

Equation (2.7a) includes, obviously, all the diagonal
terms of D(", since in the present representation, V has
no diagonal terms. For the subsequent terms, i.e., j)2:

forward application of Eqs. (2.7)—(2.9). As noted pre-
viously, only near resonance terms need be kept, as-
suming that no other transition frequencies, ~ „,are
close to coo in the sense

i
(~)— P PV ~(&)D~ (&'—i)(t') [ ~»—~0)(([~ .„,—~, (. (3.2)

—D„],'&-" (t') V(„..('&j cos(co&t'+e))
Substituting Eq. (3.1) into Eq. (2.7b), and in view of
Eq. (3.2), we obtain for the first approximation

X«p i~~ +—~(t' —t) dt'. (2.9)
12

1+i'»7
Equations (2.7)—(2.9) constitute a formal series solution
of Eq. (2.4); the successive terms in the series are of the
order

I
V „")

~

j&)t7 ' smaller. An additional simplifica-
tion can usually be made in the application of Eqs.
(2.7)—(2.9): Only near resonance terms need be kept
in the multiple integrations implied in (2.9).

For the case of a monochromatic radiation 6eld, it
can be verified that the procedure outlined here also
leads to the well-known expressions" for the suscepti-
bility of a gas, with or without saturation. In this case,
the perturbation routine is much more cumbersome
than the usual method. ""However, in the case where
the applied radiation consists of several components at
different frequencies, it serves as a simple systematic
procedure of obtaining the 6rst few terms in a perturba-
tion expansion of D „,which issufF)cient in view of (2.6).

III. EXCITATION BY TWO LINEARLY
POLARIZED FIELDS

Consider a gas of molecular density E, with a non-
equidistant discrete spectrum irradiated by two linearly
polarized fields of angular frequencies a)o and (oo+5~,
where Ace((~0 and coo are close to the transition fre-
quency, co», corresponding to a particular pair of
energy levels, Ei and E2 jEi)E2, (Fig. 1)], of the
gaseous system. The perturbation term in the Hamil-
tonian, Eq. (2.2), has the form

V= —p F&' coscoot —p F&~) cos((do+t)(0)t
= V& ' cosMpt+ V&~) cos(~0+5&0)t. (3.1)

Kith the form of the perturbation specihed, the in-
duced dipole moment of the gas can be determined from
the density matrix to be computed through a straight-

where

in addition,

(~ +g~) V (b)g i((ao+k(o—) t

1+iQ&2&+)r

012=6012—GJO) 0&

Q&2& ) =GO)2 ((do+AM) (0 I

D21 D12

D»() =D»() =O.

(3 3)

(3.4)

(3.5)

D"' is linear in V( ) and V( '. The corresponding aver-
age dipole moment per molecule of the gas in this
approximation, p&'&(t), is computed from D&'& using
Eq. (2.3) and then averaging over the orientation of the
molecule, in view of the spherical symmetry of an
isolated molecule. The power absorbed from each fre-
quency component of the radiation is proportional to
the time average of the scalar product of the radiation
field and the rate of change of the corresponding
Fourier component of p"&(t). This leads to the usual
absorption coeKcient of the gas, and the absorption
processes at the two frequencies of the applied radiation
are completely independent of each other; needless to
say, they do not depend upon the relative orientation
of the polarizations. Such a dependence will come in
through the nonlinear terms associated with the higher
order terms to be determined using formula (2.9).

For the next order, with Eqs. (3.3)—(3.5), we obtain
all the elements of D&'& using (2.9). D&'& is, however,
diagonal; it does not contribute directly to p(t), or
p(') (t) =0. To obtain the first nonlinear term in p(t), we
must continue on to the next order of approximation,
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2cop
0'.y2 Q)0 = Z

45'(1+oQ)or) 1+Q)oor'

gP 2(o)~

plo ((oo) +1
4A'(1+iQ»r)

(3.7a)

2((op+A(o) o)p+h(oX, +
1+Q)o&+)'r' (1—iQ)o&+) r}(1+id(or)

D(o) (t) ~

D)o("= V)o( )c ' o'L-I Vu" I'~u(~o)+ I
Vu'" I'Pu(~o) J

+Vu(o)c—((~o+&~) &L
I
V (~)

I
o(o (o)o+ t),(o)

+IV '"I'& ( +~ )7=D "' (36)
where

where

x-(~o) =—s I
puI'~)o(~o), (3.8a)

x.o(~o) = —(2/15) I p) I'(1+2 c»'4)P»(~o). (3 gb)

Thus, for the added average absorbed power, in addition
to that due to po)(t), we take a time average of the
scalar product of the rate of change of y, &o) (oop) and the
corresponding component of the radiation ield together
with the proper constant coefficient. It can easily be
seen that part of this added absorbed power depends
on o&) through the g dependence of x.o((op); explicitly, it is

8~~7
I
plol'I~" I'I~'" I' ImP)o(~o)(cos'p)aro, (3.9a)

i5c

8m~V

IP» I'I f"& ) I'I ~&o) I'
i5c

XImn)o(&do+A(d) (cos'g) ((op+A(o). (3.9b)

where c is the velocity of light. Similarly, it can be
shown that the &t-dependent part of the absorbed
power at (op+Boo is

Apg2(') r'
c)o((op+A&o) =+1

4loo(1+iQ„&+)r)

1+Q 9 r (1 ot&,(or) (1+oQ—» + r)

Mp

(3.7c)
(1—i~~r) (1—e„r)

&p»"'r' 2 (~o+&~)
P)o((op+A(o) =+0 . (3.M)

45'(1+iQ»&+) r) 1+Q)o&+)'r'

Again, y&o)(t) can be determined completely through
Eqs. (3.6), (3.7), and (2.3) and averaging over the
orientation of the molecule. The explicit dependence
of y&o) (t) on the angle between F&'& and F&o), @, comes
in through the terms involving the crossed products
Vu"

I
Vu o'I and Vu&o)I Vu& &I'. Physically, these

crossed products come from the fact that, when the
applied coherent radiation consists of two components
at different frequencies, the total transition rate is
modulated at the difference frequency. The amount of
modulation depends upon the relative orientation of
polarization of the two 6elds. If the collision rate is not

sufficiently fast as compared with the transition rate,
transitions are, therefore, induced between states whose
populations are modulated.

Of particular interest in y&o)(t) are: the component
of p") (t) varying harmonically at the angular frequency
cop that lies in the direction of F&'& and the component
varying at (op+A(o that lies in the direction of F&o), for
these alone contribute to the absorption of the radiation
Gelds. It suffices to give one of them here.

(t)
p (o) ((oo)= I

p(o) (p)p) ~ F(o)g
I
p(o) Io

=Re(I x..(~o) I
&&' I'

+X. ((oo)IF ' I'j F c—'"o') (3.8)

Thus, whether the absorbed power corresponding to
Eqs. (3.9a) and (3.9b) is positive or negative will depend
upon the signs of ImP»((oo) and Imc(»((op+ad&oo) It ca.n
be shown straightforwardly from Eqs. (3.7b), (3.7c),
and (3.4) that, in general, they could each be positive or
negative independently depending upon the values of
the various parameters. However, this is not so in the
particular ranges of parameters stipulated here: The
Doppler linewidth, characterized by 0., is much greater
than her, and hen is much greater than the collision
linewidth or

I'urthermore,
~77.»kore»1.

(op»A(o.

(3.10)

(3.11)

3hpgg(')coo~
ImP(o ((op) = &0,

noh(ooo +or
(3.12a)

Imn»(&d p+A(o) =
3hpgo&'& (&dp+t) (d)m.

&0, (3.12b)
45'D(d'o Q7(

The Doppler effect can now be taken into consideration
by replacing (op and (op+5(o by their Doppler-shifted
values and then averaging over the Boltzmann dis-
tribution for the translational velocity, e, of the
molecules. In performing the integration over e, by
virtue of Eqs. (3.10) and (3.11), the integrands ImPqo
and Imn~2 are rapidly varying functions of v, and the
major net contributions of the integrals come from two
points —where the two Doppler-shifted frequencies are
close to ~~2. Hence, all the slowly varying factors of the
integrands can be taken out of the integral signs and
evaluated at these two points, leaving rather simple
integrations to be performed. Thus, we obtain:
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IV. EXCITATION BY THREE OSCILLATING FIELDS
AND PHASE RELATIONSHIPS

Ke consider now the same gas placed in a static
magnetic field 3!along the s axis and assume the two
levels of interest EJ„and E2 have angular momenta J
of 0 and 1, respectively. In a representation in which
the total Hamiltonian Hq,

Hi=Ho —gIJ, PJ K, (4 1)

corresponding to the internal molecular energy and
the Zeeman energy is diagonal, the E& level will be
split up (Fig. 2). In Eq. (4.1), g is the spectroscopic
splitting factor of the E2 state and p, o is the Bohr

since tttpip(0))0, where ogpr comes from the normal-
izing constant in the Boltzmann factor, and, by virtue
of Eqs. (3.10) and (3.11), terms of the order 6&0/(00,

(&0)/0')', (6(pr) ' and smaller are neglected. On the basis
of Eqs. (3.9a), (3.9b), (3.12a), and (3.12b), we reach
the important conclusion: for maximum absorption,

@=+[(2~+1)/21~, ~=0, 1, 2 .
, (3.13)

so that the added absorbed power corresponding to
y(')(t), which is negative, due to the nonlinear effects
considered here would be the minimum. In other words,
for maximum absorption, the two linearly polarized
fields F'& and F(p) must be at right angles to each other.

The reason for this result is quantum mechanical in
nature, but a simple physical explanation can perhaps
be given in terms of the saturation effect. When the gas
is irradiated by two linearly polarized oscillating 6elds,
the resultant Geld is amplitude modulated at the differ-
ence frequency which is small compared with the oscil-
lation frequencies. The maximum instantaneous magni-
tude of the resultant 6eld depends upon the relative
orientation of polarization of the two linearly polarized
fields; nevertheless, without taking into account satura-
tion, the absorptions of the two Gelds are completely
independent. Consider now the effect of saturation.
Saturation depends upon the instantaneous magnitude
of the resultant fieM when the modulation is slow. When
the two Gelds are perpendicular to each other, the
maximum instantaneous magnitude of the resultant
Geld is the least as compared with any other relative
orientations; therefore, it does not drive as deeply into
the saturation region. Consequently, maximum absorp-
tion is expected when the two Gelds are perpendicular
to each other.

An effect similar to this should also be present in the
magnetic resonance of an ensemble of spin-1/2 nuclei
under the simultaneous inhuence of two linearly
polarized rf 6elds of different frequencies but well
within the inhomogeneously broadened absorption line.
This could be shown by either using the density matrix
formalism as done here or using the phenomenological
equation of Bloch assuming that T&= T2 and the rf Geld
consists of two frequency components.

J=O m&0
K)

m=o

m&-f

FIG. 2. Positions of Zeeman levels and the applied radiation.

magneton. Designating the leve/s of interest as level
1(E1,J=O, m=O)2(Ep, , 7=1,ttt= 1), and 3(E0,J'=1,
ttt= —1), the transition frequencies of interest are (010,

~~~, and co~3. The applied radiation consists of two right
circularly polarized fields at p)0 and (00+6(0, and two
left circularly polarized fields at too and 000—6(0 (Fig. 2)

F(t) =Re[F+(»t, ""'+0 &t—'0++(F+(o)+F (0))e

yF (1)0 t(ccp t)t—1c8cc]— (—4 2)

where in Eq. (4.2) + and —designate right and left
circular polarizations, respectively. It is further assumed
Chat.

~p&M, (o, ~23, (4.3a)

and no other transition frequencies, ~ .„., are close to
coo, Mqg, orq3 in the sense

(4.3b)

The perturbation term, V(t), in the total Hamiltonian
H =Hi+ V has the following matrix elements, neglecting
the nonresonant counter-rotating terms:

V —V' ct i V (0)tc-tcccpt+ i V (1)S t(cccp+)icc) t—ct-
ctcc 7

V (0)S—tccpt+$V (1)e-t(ccp-ticcc)t—ct (4 4)

~S3= ~32= ~i&= ~22= ~33=o,

where, with y as the dipole operator,

Vp„„("—=—(ttt ( p F~(t)
( tt), l=0, 1. (4.5)

The problem now is to determine the part of the power
absorbed by the gas that depends upon the relative
phases 8+ and 0 of the applied 6elds.

With the perturbation term V specified, Eq. (4.4),
it is again possible to determine the induced dipole
moments and the absorbed power at various frequencies
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where

x+ ((op+») =—zip»l'Ip»I'(~p+»)r3

4Ipz'(1 iQ)3(+—& r)

1 1
X ~p)3"'I +

(1+zQ)pr 1—zQ)3 r

()+tp„)(1—tp„~ & ))

+3Pip(P&, (4.6a)
(1+iQ33r) (1+iQ ipr)

Q)3—(o» (op) Ot Qip (o)3 ((op+») (0t
Q»=(o)3—(op(0» Qip( &=(o)3—((op—»))0, (4.7)

023= cg23—Ace.

The corresponding absorbed power is found using a
procedure similar to that used in Sec. III. The only
difference is that in performing the integration over the
translational velocity of the molecule in order to take
into account the Doppler eGect, major contributions

through a straightforward, though quite tedious, appli-
cation of the routine outlined in Sec. II. The procedure
is well illustrated in the problem treated in detail in
Sec. III with the only essential difference in the fact
that here no averaging over the orientation of the
molecule is needed as such a degeneracy has been re-
moved upon application of the static magnetic Geld.

In brief, starting with Eq. (4.4), we obtain through
successive applications of Eqs. (2.7) and (2.9) all the
matrix elements of D&'& and D"). These in turn lead
to the various Fourier components of all the elements
of D('& and, therefore, p"'(t) via Eqs. (2.9) and (2.3).
Since the eventual purpose is to compute the absorption
of each component of the radiation fields, of particular
interest are: The component of y(3) (t) varying harmoni-
cally at the angular frequency (op+» with the phase
8+ that is right circularly polarized, the components
varying at coo that are either right or left circularly
polarized, and the component varying at ohio

—A~ with
the phase 0 that is left circularly polarized. Further-
more, we are only interested in those terms in the
amplitude of each of these components which depend
upon the relative phases 0+ and 0 . These observations
simply the problem substantially, since of the multitude
of terms in p(3&(t) only a few terms meet all these re-
quirements. Take, for example, the (op+» component.
The terms of interest come entirely from D»('& ((op+»);
they are

pp(3) ((op+»; 0+, t&
—
)

= 2ReLppiDi3(3) («+»; 0+, 0 )j
((op++(o)t '(++ ) IP (o)

I IP ( )
I
F (o)

Xe (cteo 8+co)tt—ip j (4 6—)

and

)t'1m'(top+») )
!y+('& = tan-'!

& Rex+(top+»))

Imx+((op+») =—I p» I I p» I'(~p+») "~
4k'o.Qzr

2

~2

~
~

2

2 ~
~ ~

7

2
X +

1+Qppzr' 1+(Q33—»)'r'

I p»I'I p»I'(«+»)"~
Rex+((op+») =—

(4.8b)

(
1 (»—Q33) r

x +»r 1+(Q33—»)'r')'

In Eqs. (4.8a) and (4.8b), again, terms with con-
tributions of the order (»/tr)', »/(op, (»r) ' and
smaller are ignored and use is made of the fact that
Apiz "&=)3p»")+0((o23/(op) by virtue of Eqs. (2.5) and
(2.8). Similar computations can be carried out for the
remaining components of the radiation. Omitting all
details, the power absorbed of the right circularly
polarized field at (op that depends upon 0++0 is:

(~ 2~&'/~) I
I'+(3)

I I
~+")

I I

I"-(P)
I I

~-")
I

X
I
x+(~p) I

»nQ+"' —t&'—0 ), (49)
where

and

Imx~(a)p) )
(t ('&=tan-'

Rex+ (cop) )
(4.9a)

13 12 %07 7l

Imx+ (cop) =-
48(r+zr

2
X +

1+Qppzr' 1+(Q33+»)'r'

&O7' &
Rex+ (top) =

4lz'ogzr

t' 1 (Q33+»)r
x! +-

)+(tt, +~ ) ")

(4.9b)

The absorbed power for the two left circularly polarized
fields at ~o and ~o—Ace can be obtained from the ab-
sorbed power for the two right circularly polarized
Acids at (op and top+», respectively, with the simple
replacements:

come from four points —where the Doppler shifted fre-
quencies (op(") and ((op+»)("& are near (o», and top( &

and ((op—») ( & are near (o». Carrying out the integra-
tions, we obtain for the absorbed power at (op+»

L(~p+») 2~&/~3 I
~+"'

I
IF+"'

I
~-"'

l l
~-"'

I

X
I
x+((op+») I

sin(tt~&'&+0++8-), (4.8)
where
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and for the indices:

(+)~ (—) and 2~3
by virtue of the inherent symmetry of the problem. It
is then easy to show that the power absorbed from the
left circularly polarized Geld at coo that depends upon
0+ and 0 is

(p)=~ y (p)

I
"-( ) I

=
I X+(~p) I,

(4.10a)

and the power absorbed at ~0—Ace that depends upon
0+ and 0 is

L(~p ~~)2~&/ejI F+"'I IF+"'I I~-"'I IF-"'I
X

~

X ((op—h(o)
~

sin(P &')+8++8 ), (4.11)
where

()) —~ y (&)

)X ((op—~~)
~

= ~X+((op+A(o) ~. (4.11a)

Equations (4.8)—(4.11) give the necessary relations to
determine when absorption of each component is at a
maximum; in general, it is not possible to Gnd one
0++0 which would give maximum absorption of all
four components of the applied Geld. However, in the
near resonance range in the sense:

023'((Acvr ', or (egg =Ace. (4.12)

It is clear from Eqs. (4.8)—(4.11) that

(1)~y (P)~y (1)~y (P)~ /2 (4.13)

It follows unambiguously from Eq. (4.13) and Eqs.
(4.8)—(4.11) that for maximum absorption of all four
components, one must have, in the case Eq. (4.12)
holds,

i)++8 =sr&2rssr, @=0, 1, 2 (4.14)

The physical reason for this result is similar to that of
the case studied in Sec. III.

A detailed discussion of the application of the results
obtained in these sections to gaseous optical masers is
given in the subsequent section.

V. APPLICATION TO GASEOUS OPTICAL MASERS

We now consider the role of the nonlinearity due to
saturation and coherence effects in determining the
relationships among the longitudinal modes in a gaseous
optical maser. In such a maser, such a nonlinearity
must come into play, since the amplitude of the maser
output is essentially determined by such nonlinearity
as that due to saturation. In attempting to apply
directly the results obtained previously for a normal gas

(~o2w&/e)
I
F+"'

I
IF+"'

I
Ip-"'

I I
~-"'

I

X~X (o),)~sin(P &') —0+—8 ), (4.10)
where

to the case where a population inversion and coherent
stimulated emission occur, however, the basic assump-
tion is used that the method of calculation and hence
the results obtained are equally valid in the presence
of a negative temperature' characterized by the
population inversion maintained by the pumping
process. The relaxation time, r, is now the character-
istic time constant with which the gas, upon perturba-
tion, returns to its normal population inversion with
the pumping process on; or, 7. is the reciprocal natural
linewidth of the stimulated emission due to transitions
between the inverted states. In considering the Doppler
e6ect which involves the translational velocity of the
molecules, the normal thermodynamic temperature of
the gas can still be used. Accepting these usual assump-
tions, with minor modiGcations, the two absorption
problems considered in the previous sections apply
directly to gaseous masers.

Consider Grst a normal gaseous He-Ne optical maser
in the absence of any appreciable longitudinal magnetic
field. The strongest maser line' '~ corresponds to the Ne
transition 2ss —+ 2p4 (Paschen notation) at 1.1523 is. We
estimate that the Doppler width (o) of this emission line
in the absence of maser action is roughly 1 kMc/sec
and v is of the order of 10 7 sec at 1 mm Hg pressure
He and 0.1 mm Hg pressure Ne. For a 1-m long maser,
the separation in frequency (A(o) between the longi-
tudinal modes of the Fabry-Perot cavity is 150 Mc/sec.
Thus, conditions (3.10) and (3.11) of Sec. III are
satisfied. Assume that the maser excitation is strong
enough so that it can oscillate simultaneously in two
cavity modes separated by 150 Mc/sec. Normally, the
maser output in neither mode is polarized. However,
in the event there is slight asymmetry in the maser or
in the presence of a very weak transverse magnetic
Geld, the maser output in each mode is linearly polarized.
The polarizations are observed' to be perpendicular to
each other. On the basis of the computations made in
Sec. III, it is clear that, in the presence of a population
inversion between levels 1 and 2 (levels 2ss and 2p4),
App2( (0 and maximum negative absorption or maser
gain for both longitudinal modes occurs when the two
linearly polarizations are perpendicular to each other.
Consequently, oscillations corresponding to this relative
orientation get built up most rapidly and eventually
prevail.

It should be pointed out that not only the absorptive
part but also the dispersive part of the dipole moment
contains a small nonlinear term which depends upon
the relative orientation of polarization of the two fields.
This lea,ds to a small shift in the maser oscillation fre-
quencies. However, due to the fact that the maser
emission lines are well within the Doppler-broadened

'p See, for example, A. Abragam, The Principles of ÃNefear
3fagnetism (Oxford University Press, New York, 1961), pp.
89-92, 134 6."G. F. Koster and H. Statz, J. Appl. Phys. M, 2054 (1961).
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relationship among the modes should be, since it is not
possible to meet the simple unambiguous criterion that
the negative absorption of all modes shall be maximum
simultaneously. This question is still under study.
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Magnetoacoustic Measurements in the Noble Metals at 350 Mct/sec*
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Further magnetoacoustic measurements on the noble metals are presented for frequencies up to 350
Mc/sec. Plots of the ultrasonic pulse height, h, vs the reciprocal of the magnetic Geld strength, 1/f7, show
20 or more maxima and minima for several orientations in each metal. Fermi surface dimensions are calcu-
lated from the periods in 1/H of the magnetoacoustic oscillations using the interpretation that the periodicity
arises from those portions of the Fermi surface which are extremal in the qxa direction of momentum
space; Fermi surface cross sections viewed along the L100$, $110$, L111j,and $112) directions are shown
in detail. The results are compared with Fermi surface dimensions given by: (1)other magnetoacoustic effect
data, (2) de Haas-van Alphen and anomalous skin-effect data, and (3) recent band theory calculations.
Some simple calculations of electron mean free paths and collision relaxation times are given.

INTRODUCTION

N this paper we shall present further noble metals
& - Fermi surface dimensions' ' derived from magneto-
acoustic-effect data. The oscillatory variation of
ultrasonic attenuation as a function of magnetic 6eld
intensity (magnetoacoustic effect) occurs only in very
pure metals at low temperatures due to the requirement
that the electronic mean free path be much greater
than the sound wavelength, ). The oscillations which
are periodic in H ' (lI is the magnetic field. strength)
occur because of geometrical coincidences between
certain electron orbits and the periodic electric 6elds
accompanying the sound wave. The effect, when H is
perpendicular to the sound propagation vector q (q is
2sr/X), gives the dimensions and ultimately the shape
of the Fermi surface if we make the interpretation that
the period observed in H ' is determined by the Fermi
momentum perpendicular to H and q at those portions
of the surface where this momentum is extremal.

*This research was supported by the United States Air Force
through the Air Force Qffice of Scientiic Research under contract
No. AF 49(638)-832.' R. W. Morse, A. Myers, and C. T. Walker, Phys. Rev. Letters
4, 605 (1960).

~ R. W. Morse, in The Fermi SNrface, editedby W. A. Harrison
and M. B.Webb (John Wiley 8r Sons, Inc. , New York, 1960).' Reference 2, p. 245.' R. W. Morse, A. Myers, and C. T. Walker, J. Acoust. Soc.
Am. I, 699 (1961).

s V. J.Easterling and H. V. Bohm, Phys. Rev. 125, 812 (1962).
6 H. V. Bohm and V. J.Easterling, Bull. Am. Phys. Soc. 6, 438

(1961).' M. H. Cohen, M. J.Harrison, and W. A. Harrison, Phys. Rev.
117,937 (1960).

s T. Kjeldaas and T. Holstein, Phys. Rev. Letters 2, 340 (1959).' A. B.Pippard, Proc. Roy. Soc. London A257, 165 (1960).
' V. L. Gurevitch, J. Exptl. Theoret. Phys. (U.S.S,R.) 37, 71

(1959) )translation: Soviet Physics —JETP 10, 51 (1960)j.

If j'tk is such a momentum and A(B ') is the corre-
sponding magnetoacoustic period, then

j'tk = (eX/2C) t 1/A(1/a) j.
Almost all data were taken using longitudinal sound

waves, the sound propagation directions studied being
L100j, L110j, and L1111 for all three metals, and
additionally t 112j in gold and copper. In these experi-
ments the magnetic Geld can be given any direction in
a plane perpendicular to g. The longitudinal velocities,
lattice constants, and free-electron sphere radii for the
noble metals are given in Table l.""The experimental
techniques and preparation of samples were essentially
the same as those discussed in an earlier article' except
that we now have equipment, constructed in our
laboratory, which increases our frequency range to 350
Mc/sec. All three metals were of nominal purity
99.999% or better.

The method of plotting and analyzing the data was
the same as described earlier. ' The extremal Fermi
surface dimensions corresponding to the observed
periods of oscillation are interpreted in terms of the
Fermi surface model shown in the extended zone scheme
in Fig. 1. Some of the extremal orbits which we shall
discuss are also shown in the 6gure.

"The elastic constants used in the velocity calculation are from
W. C. Overton and J. Gaffney, Phys. Rev. 98, 969 (1955) for
copper, and from J. R. Neighbours and G. A. Alers, Phys. Rev.
111,707 (1958) for silver and gold.

"The lattice constant values at 4.2'K were calculated by
taking the 25'C values given by C. S. Barrett, Strnctnre oj Metals
(McGraw-Hill Book Company, Inc. , New York, 1952), and
correcting to 4.2'K using the thermal expansion data of F.C. Nix
and D. McNair, Phys. Rev. 61, 74 (1942).


