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Wave Propagation along a Magnetic Field in a Warxn PlasIna
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Bell Telephone Jaborutories, Murray Hill, Em Jersey

(Received June 7, 1962)

The steady-state properties of circularly polarized electromagnetic waves propagating along a static mag-
netic 6eld in a warm uniform plasma are considered. The coupled Maxwell-Boltsmann equations (with ion
dynamics neglected) are solved in the presence of short-range collisions. Expressions for the reaction and
penetration of the waves into a semi-in6nite plasma are obtained. These expressions are explicitly evaluated
and discussed for a wide range of physical parameters. The temperature eKects are large only (1) deep within
the plasma and (2) near electron cyclotron resonance. The effect oi temperature is to decrease reQection at
frequencies just above the cyclotron frequency and to increase it for frequencies just below the cyclotron
frequency. These eGects arise from a resonance damping additional to collisional damping and from an
upward shift in the eGective cyclotron frequency of the hot electron. For frequencies just above the cyclotron
frequency, the Poynting s vector in the plasma does not decrease monotonically with distance. The physical
origin of this anomalous behavior is discussed.
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where kp= a&/c is the propagation constant in free space;
1(.„,~ is the propagation constant for the right- or left-
circularly polarized waves in a cold plasma (we shall
denote by ir the propagation vector in a hot plasma);
esp ——eB / pmis the electron cyclotron frequency;
=(ne'/mep)" is the plasma frequency; v, is a phe-
aomenological electron collision frequency for momen-
tum transfer; and e„,~ is the effective dielectric constant
of the plasma for the two modes of propagation.

Sitenko and Stepanov, ' Bernstein, 3 Drummond, 4

Pradham~s Gershman 6,v and Stepanovs all analyzed the
initial value problem for an inhnite uniform. plasma
taking into account thermal motion but neglecting the
effect of collisions, that is, they searched for roots of
the dispersion relation. Their analyses are based on the
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I. INTRODUCTION

s~URING the past decade there has been consider-
able interest in the propagation characteristics

of electromagnetic waves in a uniform one component
plasma immersed in a static magnetic field. Astrom'
has analyzed the problem for a cold plasma; that is,
he neglected the effects of electron thermal motion.
For each direction of propagation of the wave relative
to the magnetic field, he found two normal modes. In
particular, the normal modes for propagation along the
static magnetic field are the right- and left-handed
circularly polarized waves whose dispersion relations
are given by

solution of a linearized, collisionless Boltzmann equation
with a self-consistent Maxwell field (the Vlasov equa-
tion). They found for typical warm plasmas and for
frequencies co far from the cyclotron frequency ~b, that
the dispersion relations (l.) and (2) were largely un-
modified. Near cyclotron resonance, however, there were
significant deviations. More specifically, Pradham found
(neglecting collisions) that e, was complex, that the real
part of e„passed through unity at ~=co& and that the
imaginary part of e, exhibited a maximum at ~= cot,.

The imaginary part of e, is due to a damping mechan-
ism similar to the Landau damping mechanism char-
acteristic of longitudinal plasma oscillations. Energy is
extracted from the wave by a resonant mechanism.
Electrons which travel at the modified phase velocity
(&p

—&up)/k experience an effective static electric fMld.
As a result, they are accelerated in their orbit and spiral
out (or in) around the magnetic lines of force. There is
a net energy transfer to the electrons and this results in
a damping of the wave. However, in steady state and
in the absence of collisions, this damping must be neg-
ligibly small since the number of electrons whose velocity
is exactly the phase velocity of the wave in question is
zero. Electrons whose velocities are near, but not exactly
at, the phase velocity will, on the average, gain no net
energy from the field unless collisions are present to
randomize their ordered motion. Also, as we shall show,
in the absence of collisions and in the steady state the
linearized theory breaks down for electrons exactly
at the phase velocity.

In this paper we will be interested in the steady-state
properties of transverse electromagnetic waves propa-
gating in a warm plasma along a static magnetic field.
Shafranov' has analyzed some general aspects of this
problem neglecting collisions. The neglect of colhsions
in the steady state involves, as we have pointed out,
certain inconsistencies. "

In Sec. II of this paper we consider the steady state,
' B.D. Shairanov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 1475

(1958).
'0 P. M. Platzman and S. J. Buchsbaum, Phys. Fluids 4, 1288

(1961).
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linearized solution of the coupled Maxwell-Boltzmann
equations. A discussion of the limits of validity of this
solution is presented in Appendix A. The penetration
and reQection of a sinusoidal 6eld into a semi-infinite
plasma is computed. In Sec. III we explicitly evaluate
these expressions for a wide range of physical plasma
parameters.

II. SOLUTION OF THE COUPLED MAXWELL-
BOLTZMANN EQUATIONS

We consider a one-component plasma filling uniformly
the semi-in6nite half space s&0. The plasma is im-
mersed in a uniform static magnetic Geld Bo which is
oriented in the positive s direction. We are interested in
computing the reQection and penetration properties
of a transverse, circularly polarized wave incident
normally upon the plasma from the left. Without loss
of generality we will assume that the wave has a mono-
chromatic time dependence and is of the form
E=E (s)e '"'

In general, as a result of the thermal motion of the
electrons, the plasma conductivity is a nonlocal integral
operator. That is to say, a Geld with a P component at
at point r' in the plasma will produce a current with an
n component at another point r in the plasma, with
magnitude o pLr, r', oi)Ep(r').

J (r,o)) = o pLr, r', oi]Ep(r')dr'.

In an infinite medium o„pLr,r', &ul is evidently only a
function of ~r—r'~. In the presence of boundaries
&r pLr, r',coj may be a function of r—r' and of r'. In our
problem, where Bo is perpendicular to the plane
boundary, the conductivity is clearly a function only
of the coordinate difference in the (x',y') plane. It may
depend on s', the distance from the boundary, if the
boundary a8ects the velocity distribution in the s'
direction. If the electrons are specularly reQected at
the boundary (z=0), the velocity distribution is un-
affected by the boundary since (I) the magnetic Geld

does not aGect the s component of electron velocity,
and (2) the electrons for z&0 in the infinite medium
are replaced by their equivalent images in the semi-
in6nite medium problem. "If the magnetic field had a
component in the (x,y) plane, or, if the electrons were
diffusely reQected from the boundary, these arguments
would not hold. The solution of Maxwell equations is
then a much more diKcult task as Fourier transform
methods no longer simplify the problem.

Hereafter we assume that o.
p is only a function of

~r —r'~. Then, in Fourier space Eq. (3) becomes an
algebraic relation,

The proper collision integral has been approximated
by a phenomenological velocity independent collision
frequency, v„which gives the relaxation of f to a uni-
form equilibrium distribution fo Mor. e properly, the
right-hand side of (5), if it is to conserve particles,
should relax to a local density rather than to a uniform
density. "Here, we are concerned only with transverse
waves where there are no local density Quctuations.

Equation (5) usually is linearized by setting f= fo+fi,
assuming that fi is proportional to E, and neglecting
terms of the order E'. In the steady-state problem the
validity of this assumption must be carefully examined
for that class of electrons which is in resonance with the
wave, i.e., whose 2' component of velocity is near the
modified phase velocity of the wave (s&—oui, )/k. This
question is considered in detail in the Appendix. We
show there that in the absence of collisions there
exist electrons for which the linearization procedure is
never valid no matter how small E is. However, in
presence of collisions the linearization procedure is
valid for all electrons provided

v,)eB/m(o')'" (6)

where (v') is some proper average of the square of the
thermal velocity. The above inequality assures that the
effective static electric 6eld which the resonant electrons
experience, acts for times short compared with the time
it. takes to heat those electrons. We will henceforth as-
sume that inequality (6) is satisfied and analyze the
problem on the basis of a linearized theory.

For right- or left-handed circularly polarized trans-
verse wave, fi is given by

fi (eE/m), , i (8——f&/Bv)/$v, i(oi+cot, —vk)5—
The conduction current J= fv fid'o is then likewise left-
or right-handed circularly polarized. It is convenient to
dehne the corresponding scalar conductivities e„,~ by
J, ~=0„,~E, , ~. These conductivities are

fpd o

where

where o p(k, &o) is the plasma conductivity tensor as
computed for the in6nite medium. A determination of
o p(k, co) thus permits a complete solution of the steady-
state boundary value problem, provided specular reQec-
tion of electrons at the boundary is assumed.

In order to determine o p(k, M) we use the Boltzmann
equation,

Bf e Bf
+v—vf [—E—+vXBj =—v. (fo f).—

Bt Bv

J (k,o~) =o,p(k, &u)Ep(k, cv), (4) N, , i (cv +ntg+ ~v.)/k,

"G. H. Reuter and E. H. Sondheirner, Proc. Roy. Soc.,
(London) A195, 336 (1949).

and k is the component of k in the direction of propaga-
tion of the wave. The quantity fo is the unperturbed
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where
D (k) = e.p(k,cp)Ep(k, cp), (10)

e.p(k, ( )= o.p+i~.p(k, ~)/(~ep). (11)

The current J'(cp, k) is the exciting current in the plane
a={3 and is related to the value of the transverse rf
magnetic field in this plane. It is a fictitious current and
is introduced purely for mathematical convenience.
Thus, for transverse circularly polarized waves

( s s.(~ ~ )i/2

j k ——„, E„,(k, )=+—
j
— —

i H„,P( )b(k, ), (12)
c m'k c epi

where B', ~' is the value of the rf magnetic field at the
boundary and k& is the component of k in the plane
perpendicular to Bp."

For the transverse waves it is clear that e(k, in) is
only a function of pp and of k, the component of k along
the direction of propagation $Eq. (7)]. Since E(r)
=J' exp(ik r)E(k)dk, the integral over the two com-

ponents of k perpendicular to the s direction may be
performed. The field inside the medium is a function of
2; only, and is given by

i fttp)'t' +" (os/c)e"dk
E., t(s)=+-I —

I
H. .t'. . . (13)

pr k epi „Lk'—c'p,e, (tk, p)p/'c]

The path of integration is along the real k axis. We
choose units measuring length in terms of ko

—' and tape
~0 and po equal to unity. In these units the impedance
of the plasma at a= 0 is,

i +" dk
Zz, t= =+

H„ te pr „Pk'—e, , t(k, pp)]

When e is independent of k as in a cold plasma
$fp(n)=8'(p)], then

E„t(s)= e„,t 't'H,
,
t' exp(ie„t't'z), -,

—1/2
&~r, l= &r, l

'~ Q". Panofsky and M. Philhps, Classicc/ E/ectricity ad ~gg~g-
tism (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1955).

"In position space the exciting surface current is local-
ized on the plane s=O and has the value 24, )&H9(s). $jnce
b I,'s) = (2~) 'J'e'~'8 (kz}de, Kq. I,'12) follows directly,

electron distribution function and it is taken to be
normalized to unity.

The solution of the boundary value problem for the
semi-infinite half-space is equivalent to Gnding the
Geld in an infinite medium excited by surface currents
and charges at the surface, x=0."The Fourier compo-
nent of the electric Geld in the infinite medium is in turn
determined from the wave equation

kXkX E(k,pp) —~'ttpD(k &)= (iipttp) J'(»pp) (9)

(17)

defines two functions, one analytic in the upper-half u
plane, and one analytic in the lower-half I plane. Equa-
tion (13) which determines the field E, may be con-
veniently split into two parts

E(s)= H'—
„Lk'—.e~(k,o&)]

(18)
Lks —eu (k,M)]

Here, p (k,in) and e (k,os) are the analytic functions
obtained from I [Eq. (17)] by assuming I is the
upper- or lower-half plane, respectively. As e (k,M)

( kl) ip))

i i +
E(s)=—H'—

7r 2
e+ikz + dk

X (k) l%, (—k)

+ cosks — dk . (19)
p X(k) l~( —k)

The quantity, l~(k) =k' —e~(k, pp), is an analytic function
over the entire I plane. The first integral in Eq. (19)
is the usual sum over normal modes obtained from a
solution of the dispersion relation li (k) =0 and
X(—k) =0.The second term, which vanishes in the limit
of zero temperature, is a non-normal mode-like term.
It generates a field which, in general, does not vary
exponentially with distance with the exponent propor-
tional to the distance. We must conclude then that a
normal mode analysis for a warm plasma is not strictly
valid. In more physical terms this means that it is
impossible to excite by any type of incident 6eld a
single "mode" which possesses a purely exponential
space dependence.

In order to evaluate Eq, (18), some choice must be
made for the equilibrium distribution function fp(n).
A Maxvrcllian distribution is the obvious choice. How-
ever, the numerical calculations are considerably simpli-

III. EVALUATION AND DISCUSSION OF RESULTS

The left-hand circularly polarized wave exhibits
little explicit temperature eGects since the "modified"
phase velocity of the wave (in+id p)/k for the important
k's is generally much greater than the mean thermal
velocity of the electrons. Thus, we will consider only
the right-hand circularly polarized wave, and will
henceforth drop the subscript r identifying it. For this
wave near cyclotron resonance, the important waves
travel suKciently slowly that a strong interaction with
a sufhcient number of electrons is possible.

Equations (7) and (11) define an e(k, id) which is not
an analytic function of k. The integral
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fied if a one-dimensional polynomial distribution of the
form

fo"(s*)=&/(s'+~')" (20)

is chosen. The variables v and e„are assumed to be in-
tegrated out; E is a normalization constant and o. is

etermined by setting (zI )= (3ET/ziz). We shall justify
this choice for fs(e,) later.

With Eq. (20) for a distribution function, ) (k)
becomes

4)p/uz =: Qis

T ~ 90eV

scjio =- o.oos

P(k) ~s a;

G(k) i=i k —k;

where the k; are the roots of )i(k)= 0.

GeM and
In terms of the roots k; and the coeKc t, th

e and the impedance Z are easily evaluated and are
found to be, '4

2i m2
&(z) =EP—P e;ILSi(k;z) ——',zrj sin(k, z)

7'=1
—cos(k;z) Ci(k;z)), (26)

2i M2
Z= ——P a;ln( —k;).

The quantities Si and Ci are the sine and cosine integrals
of complex argument.

An examination of the asymptotic form (z~ eo)

the G

o q. indicates that the nonexponential t fia pai 0
e field falls off with z at least as fast as (1/z'). The

coeKcients of the 1/z' terms are at m st f d
/zizc ) . This weak field, which extends dee into

the lasma isp a, is carried there by electrons traveling at
high velocities for times of the order of 1/v, . The a,r

'

lar form ofo this field at large z is strongly determined
by the choice of the distribution function. Shafranov'
has shown that for a Maxwell distribution the Geld at
infinity depends on z as exp( —z'~').

Far from resonance where

8—=
~
P(oi —(v s+iv, )/k j(zzz/ET)'~s

~
))1, (2g)

oNvellcs Tables Ov.'ntegrules D p'4 Bierens de Haan Eo

)~(k) = k' —1+
~' =i Pi k+agi(2j —3)!!' (21)

where
u= P(2N —3)ET/zrzc'Jlz (22)

6= (1—ops/(u+zv, /M), (23)

and (2j—3)ll=(2j—3)(2j—5) 5X3X1.Thus, )i(k)
may be written as a ratio of two polynomials:

) (k) =G(k)/P(k). (24)

The polynomial function F(k) is two orders 1
'

k
an ( ) so that the ratio F/G may be broken up into

a sum of partial fractions with linear denominators:

0.4—

0.3—

O.I—

. I . I. I . I

0.4 0.5 0.6 0.7 0.8 0.9 I.0
Gab 4J

l.2

Pro. l. Plot of the field refiection coefficients R(0) (dashed
curve) and R(T) (solid curve as a fun

I of „/ , T, d

(O2 j. ET
6]= 2' d' mC2

(30)

For 8))1 it is possible to make an as t ti
of I ~E . 1"/ f

&-.p o c expansion
o [Eq. (1"/)j for a Gaussian distribution function.
Near the boundary the field is again exponential with

k=s(1+ es), (31)

G7~ 1 ET
62= —

~

2'' 6' mc'
(32)

Since e2 is identical to e~, we conclude that far from res-
onance and near the boundary the Lorentzian distribu-
tion function yields the same Geld dependence as a

aussian.
Near cyclotron resonance the crucial phase velocities

Lorentzian-like distribution function with the correct
( ) is an excellent substitute for a Gaussian, provided
the exact functional form of 8 atinGnit

' t ' d.
Fi ure 1 is

in ni yis notrequired.
igure 1 is a plot of the reQection coeKcient

and near the boundary, the Geld is nearly a pure ex-
ponential, the deviations from exponential being of
order (ET/zrzc'). The single wave vector k differs only
s ightly from its value in a cold plasma, ~. For m= 2 in
Eq. (20) we find that

k=s(1+ ei),
with
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quency by a positive amount to produce the "dispersion-
like" behavior (solid curve).

The reQectivity, being an average property of the
plasma is quantitatively insensitive to the detailed
microscopic processes taking place in a warm plasma.
The field itself is a more sensitive probe of such eBects.
Figure 6 is a plot of the time-average Poynting's vector
as a function of distance into the plasma for values of
the plasma parameters corresponding to the maximum
positive point tos/01= 1.01, on the T=30 eV "dispersion"
curve of Fig. 4. The Poynting's vector, at least over the
range of distances plotted, is approximately exponen-
tial and extremely close to its value in a cold plasma.
At large distance the Geld is no longer exponential due
to the presence of high-velocity electrons in the dis-

tribution function. The dependence at large distances
is, as we have pointed out, a critical function of the tail
of the equilibrium distribution function. Since our
Lorentzian distribution is incorrect at high velocity,

we attribute no significance to the behavior of the Geld
at large distances from the boundary.

Fig. 7 is a plot of the Poynting's vector for the same
plasma parameters as in Fig. 6, except that 01s/01 has
been set equal to 0.99, the maximum negative point on
the T=30 eV dispersion curve of Fig. 4. The behavior
here is quite striking. The Poynting's vector falls off
rapidly with distance near the boundary, becomes nega-
tive, passes through a minimum, returns to a maximum
and finally decays uniformly to zero at infinity. In the
region near the minimum of the Poynting's vector, the
divergence of the Poynting's vector is positive. At zero
temperature, where there is a point-to-point relation

tLJb/to = 0.99

T = 3oeV

Pg/OO = 0.005

Gap 4) = 0.3

4Jb/CO = 1.01

T = 3oeV

Yc/u1 = 0.005

OO&/OO = 0.3
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FIG. 7. Plot of the time-averaged Poynting's vector I' as a
function of distance z in the plasma for fixed caz/cu.

040
ko

between field and current, such behavior of the electro-
magnetic energy Qow is not possible since the divergence
of the Poynting's vector is negative definite everywhere.
There is a net Joule heating of the plasma in each volume
element, forcing the Poynting's vector and the field
to decay monotonically with distance.

For a medium in which e depends on k and or, the
energy conservation equation for the time-averaged
Poynting's vector (P„(r)) at a fixed frequency 01 is

p &P„(r))

Fzo. 6. Plot of the time-averaged Poynting's vector I' as a
function of distance s in the plasma for axed coq /op.

= ——,
' Re E (r) o,et r —r', 01)Ea(r')dr', (33)
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where

(P„(r))=$Re(EXH*). (34)

In a cold plasma at r—r', suj=5(r —r')o (a&), where o is
the plasma conductivity. Since Re 0. is greater than
zero, (if the electron distribution function is mono-
tonically~decreasing with velocity) (P„(r)) is negative
definite. Mathematically, the general requirements on
o $r—r', ~j and E(r) such that (P„(r))be less than zero
are suKciently severe that under a given set of circum-
stances (P„(r)) can, in fact, become positive. It corre-
sponds to the situation where the electromagnetic
energy Qow in the plasma increases at the expense of
the kinetic-energy flow. Such kinetic-energy Aows a,re
not considered in this paper. "

Physically, the mechanism for the transfer of energy
from the plasma to the electromagnetic field is the
following: The electric field at a point creates at that
point a current with an in-phase component so that
there is a net transfer of energy from the Geld to the
electrons. However, if o' is a function of

~
r—r'

~
the cur-

rent can drift by virtue of the Gnite random velocity
of the electrons to another point in the plasma where
the fieM is of opposite phase. The current created by a
fmld at one point may then give up energy to the Geld

at another point in the plasma. The net energy transfer
to the electromagnetic field at a point is determined by
an average over the inGnite half-space. Figure 7 indi-
cates that nea, r cyclotron resonance, where the medium
is strongly dispersive, this averaging process gives a net
negative energy transfer from the wave to the electrons
in some region of the plasma. This region begins ap-
proximately one plasma wavelength inside the plasma. "
The Geld must undergo a phase reversal in order to pro-
duce this eGect. At the boundary there can be no phase
reversal.

For cub/co=1. 01, Fig. 6, this anomalous behavior is
not present. The Geld inside the plasma at this value of
cob/~ is not decaying as rapidly as it does when
o&b/co=0 99 The .me.dium is qualitatively as dispersive
at &ob/co= 1.01 as at cob/~=0. 99. However, the gradient
of the GeM is important since there must be relatively
large Gelds of opposite phase nearby in space in order
that the divergence of the Poynting's vector become
positive.

Figure 8 is a plot of the time average of 8'. The mean
square E for o»/&o =0.99 exhibits an anomalous behavior
in the region where the Poynting vector is negative.
For cob/to=1. 01 the Geld falls oB exponentially with
distance and is nearly equal to the field in cold plasma.

It is conceivable, although highly improbable, that
the anomalous behavior of the Poynting's vector results

"Conservation theorems associated with energy Qow in warm
plasmas have recently been developed by A. Bers, W'aves ie
Aeisotropic I'lasmus, edited by W. P. Allis, S. J.Buchsbaum, and
A. Hers /Technology Press, Cambridge, Massachusetts (to be
published) j.

'~ For cov/~=0. 3, a&b/co=0. 99, and v, /ca=0. 005, the Plasma
wavelength is approximately a free-space wavelength.
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FIG. 8. Plot of the tine-averaged square of the electric Geld If as
a function of distance s in the plasma for axed cob/w.

from the excessive number of high-velocity electrons
in the tail of the Lorentz distribution. It is clear from
the expression for the conductivity, Eq. (7), that the
domina, nt contribution to the dispersive character of
the dielectric constant near cyclotron resonance, arises
from electrons near the mean thermal velocity
(E'T/m)'" and not from electrons in the tail of the dis-

tribution. For these electrons, the Lorentzian distribu-
tion is an excellent approximation to a Maxwellian.
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where E is the Geld of a left- or right-handed circularly
polarized wave.

If the dominant collision mechanism is between elec-
trons of mass m and heavy centers of mass 3f, then the

APPENDIX A

In this Appendix we shall discuss the limits of validity
of linearization of the Boltzmann equation.

Bf rff—+v p'f —eLE+vXBj —= v, (fo f), (A1)—
8$ Bv
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use of a phenomenological velocity independent collision
frequency v, is accurate to order rN/M, when used to
compute quantities which depend on the Grst moment
of the distribution function, i.c., the electric current.
However, this approximation for the collision integral
fails to describe properly transport processes which
depend on the zeroth and second moments of the distri-
bution function, i.e., the average energy and the heating
of the plasma. "This proves to be an important point
when the limits of validity of the linearized theory are
considered.

A solution to Eq. (A1) may be written formally as
an integral over particle trajectories. "
f(x,v, t)

—v„.Pti(x —x,b)8(v —v, i)fp(vp)e "'(' "'gdxodvodto

+fo(v)e "(' ro)—
, (A2)

where Tp is the time at which the external field is turned
on.

In this case x,((xo,vp, t, tp) alld v i(xp vp t tp) are the
solutions of the equations of motion of a particle of
charge —e and mass m in a static magnetic fteldis Bp
under the action of a field E expo(ks —p)t) (assumed
known) with initial displacement and velocities xp and
vp at time tp. The integrals over xp and vp are easily
performed and the resultant f(x,v, t) is given as a single
integral

f(x,v, t) = rlxci/r)xo ()x,)/()()o
v fo(vo)e

—c(&—
&o)dtp

o
()'V,i/()Xo r)()~(/8'vo

+fp(v) expL —v, (t—To)$ (A3)

The quantities xp and vp are evaluated along the actual
path of the particle. The solution of the equations of
motion,

(A4)m(dv/dt) = —e/E+vXBoj,

"%.P. Allis, in Hundbuch der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1956), Vol. XXI, p. 410.

' We neglect the ac component of the magnetic field. This is
tantamount to neglecting radiation pressure.

may be carried out in straightforward manner. %e find,
for a field of the form E=Ee'(b* "')Lu,+su„j (where
u, and u„are unit vectors in the x and y directions) that

v (t)= I'(t to)+() (tp) cos(ob(—t to)—
W v„(to) sin(o b (t—to), (ASa)

v,)eE/m(()')'(', (AS)

where (()s) is some proper average of the square of the
thermal velocity. The above inequality implies that
the effective static electric field which the resonant
electrons experience cannot be allowed to act for times
long compared with the time it takes to heat those elec-
trons. Under such conditions the linearized approxima-
tion is not valid. This breakdown of the linearization
is to be contrasted with the failure of the linear theory
in the description of steady-state longitudinal plasma
oscillations. For longitudinal oscillations it is a problem
of phase coherence. ""Here it is a heating problem which
is not adequately treated by the momentum relaxation
term used in the Boltzmann equation. It is impossible,
using a relaxation term of the form employed in Eq.
(A1), to f(nd the correct 6rst-order corrections brought
about by the nonlinearity. However, it is possible to
set the limits of linear theory and these are given by
Eq. (AS).

"J.Dawson, Phys. Fluids, 4, 869 (1961).

r)„(t)= il'(t —t,)+v (t()) sin&ob(t —t())

~e„(to) cosp)b(t- tp), (A5b)
where

p)b= eBo/nt; p)g= kr), (to),
and

ier.
r(t t,—)=+

f8 40 Gag Ql y

XEe ie—bt~ ((c—u aa—wb-) &p e ((c—o &eb—) bj (A6)

Equations (A5a) and (A5b) are easily inverted, yielding

().-'(to)+()„'(tp)+v.'(tp) = (r),'+v„'+1),')
—2(r),+s()„)I'(t—tp). (Ai)

For ooW(pq+(ob, the term I'(t—tp), being linear in E„
may be treated as a small perturbation. A subsequent
expansion in powers of E of the distribution function
fp in Eq. (A3) yields exactly the results obtained by
linearizing the Boltzmann equation. The expansion
corresponds to evaluating the trajectory integral (A3)
not along the actual trajectory of the particle, but
along its unperturbed path.

For (o= p)z+(ob, I'(t—tp) increases linearly with time.
In this case it is incorrect to treat it as a small perturba-
tion if elapsed time in (A3) is allowed to run over a suf-
ficiently large range. Of course, the dominant contribu-
tions to the integral in (A3) arise from times less than
or equal to 1/v. .Thus, the second term on the right-hand
side of Eq. (Ai) can still be treated as a perturbation
provided v, is sufficiently large, i.e.,


