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The steady-state properties of circularly polarized electromagnetic waves propagating along a static mag-
netic field in a warm uniform plasma are considered. The coupled Maxwell-Boltzmann equations (with ion
dynamics neglected) are solved in the presence of short-range collisions. Expressions for the reflection and
penetration of the waves into a semi-infinite plasma are obtained. These expressions are explicitly evaluated
and discussed for a wide range of physical parameters. The temperature effects are large only (1) deep within
the plasma and (2) near electron cyclotron resonance. The effect of temperature is to decrease reflection at
frequencies just above the cyclotron frequency and to increase it for frequencies just below the cyclotron
frequency. These effects arise from a resonance damping additional to collisional damping and from an
upward shift in the effective cyclotron frequency of the hot electron. For frequencies just above the cyclotron
frequency, the Poynting’s vector in the plasma does not decrease monotonically with distance. The physical

origin of this anomalous behavior is discussed.

L. INTRODUCTION

URING the past decade there has been consider-
able interest in the propagation characteristics
of electromagnetic waves in a uniform one component
plasma immersed in a static magnetic field. Astrom!
has analyzed the problem for a cold plasma; that is,
he neglected the effects of electron thermal motion.
For each direction of propagation of the wave relative
to the magnetic field, he found two normal modes. In
particular, the normal modes for propagation along the
static magnetic field are the right- and left-handed
circularly polarized waves whose dispersion relations
are given by

E,EK,-z/ko = 1-—[wp2/w(w—wb+il’c)]7 (1)
a=«/ki=1—[w,"/0(wtwetiv,)], @

where ko=w/¢ is the propagation constant in free space;
k.7 is the propagation constant for the right- or left-
circularly polarized waves in a cold plasma (we shall
denote by k the propagation vector in a hot plasma);
wpy=eBo/m is the electron cyclotron frequency; w,
= (ne®/meo)'? is the plasma frequency; ». is a phe-
nomenological electron collision frequency for momen-
tum transfer; and e,,; is the effective dielectric constant
of the plasma for the two modes of propagation.

Sitenko and Stepanov,?2 Bernstein,® Drummond,?
Pradham,’ Gershman,%7 and Stepanov?all analyzed the
initial value problem for an infinite uniform. plasma
taking into account thermal motion but neglecting the
effect of collisions, that is, they searched for roots of
the dispersion relation. Their analyses are based on the

1E, Astrom, Arkiv Fysik 2, 443 (1950).

2 A. G. Sitenko and K. N. Stepanov, J. Exptl. Theoret. Phys.
(U.S.S.R.) 31, 642 (1956).

31. B. Bernstein, Phys. Rev. 109, 10 (1958).

4J. E. Drummond, Phys. Rev. 112, 1461 (1958).

5 T. Pradham, Phys. Rev. 107, 1222 (1957).
( 6 B. N. Gershman, J. Exptl. Theoret. Phys. (U.S.S.R.) 37, 695
1959).

7B. N. Gershman, J. Exptl. Theoret. Phys. (U.S.S.R.);38, 912

(1960).
( 8 SK) N. Stepanov, J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 1457
1959).

solution of a linearized, collisionless Boltzmann equation
with a self-consistent Maxwell field (the Vlasov equa-
tion). They found for typical warm plasmas and for
frequencies w far from the cyclotron frequency ws, that
the dispersion relations (1) and (2) were largely un-
modified. Near cyclotron resonance, however, there were
significant deviations. More specifically, Pradham found
(neglecting collisions) that ¢, was complex, that the real
part of e, passed through unity at w=w; and that the
imaginary part of e, exhibited a maximum at w= .

The imaginary part of e, is due to a damping mechan-
ism similar to the Landau damping mechanism char-
acteristic of longitudinal plasma oscillations. Energy is
extracted from the wave by a resonant mechanism.
Electrons which travel at the modified phase velocity
(w—w3)/k experience an effective static electric field.
As a result, they are accelerated in their orbit and spiral
out (or in) around the magnetic lines of force. There is
a net energy transfer to the electrons and this results in
a damping of the wave. However, in steady state and
in the absence of collisions, this damping must be neg-
ligibly small since the number of electrons whose velocity
is exactly the phase velocity of the wave in question is
zero. Electrons whose velocities are near, but not exactly
at, the phase velocity will, on the average, gain no net
energy from the field unless collisions are present to
randomize their ordered motion. Also, as we shall show,
in the absence of collisions and in the steady state the
linearized theory breaks down for electrons exactly
at the phase velocity.

In this paper we will be interested in the steady-state
properties of transverse electromagnetic waves propa-
gating in a warm plasma along a static magnetic field.
Shafranov® has analyzed some general aspects of this
problem neglecting collisions. The neglect of collisions
in the steady state involves, as we have pointed out,
certain inconsistencies.!?

In Sec. IT of this paper we consider the steady state,
(1;5B8.)D. Shafranov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 1475

(1;"611’). M. Platzman and S. J. Buchsbaum, Phys. Fluids 4, 1288
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linearized solution of the coupled Maxwell-Boltzmann
equations. A discussion of the limits of validity of this
solution is presented in Appendix A. The penetration
and reflection of a sinusoidal field into a semi-infinite
plasma is computed. In Sec. IIT we explicitly evaluate
these expressions for a wide range of physical plasma
parameters.

II. SOLUTION OF THE COUPLED MAXWELL-
BOLTZMANN EQUATIONS

We consider a one-component plasma filling uniformly
the semi-infinite half space 2>0. The plasma is im-
mersed in a uniform static magnetic field By which is
oriented in the positive z direction. We are intetested in
computing the reflection and penetration properties
of a transverse, circularly polarized wave incident
normally upon the plasma from the left. Without loss
of generality we will assume that the wave has a mono-
chromatic time dependence and is of the form
E=E(z)e .

In general, as a result of the thermal motion of the
electrons, the plasma conductivity is a nonlocal integral
operator. That is to say, a field with a 8 component at
at point r’ in the plasma will produce a current with an
a component at another point r in the plasma, with
magnitude oag[1,r',w]Eg(r)).

Jo(tw)= / aupl 1, Eg(r)dy'. (€))

In an infinite medium o.p[r,r',w] is evidently only a
function of |r—r/|. In the presence of boundaries
ool 1t ] may be a function of r—r’ and of r’. In our
problem, where By is perpendicular to the plane
boundary, the conductivity is clearly a function only
of the coordinate difference in the (x/,y") plane. It may
depend on 2/, the distance from the boundary, if the
boundary affects the wvelocity distribution in the 2’
direction. If the electrons are specularly reflected at
the boundary (2=0), the velocity distribution is un-
affected by the boundary since (1) the magnetic field
does not affect the z component of electron velocity,
and (2) the electrons for < 0 in the infinite medium
are replaced by their equivalent images in the semi-
infinite medium problem.! If the magnetic field had a
component in the (x,y) plane, or, if the electrons were
diffusely reflected from the boundary, these arguments

would not hold. The solution of Maxwell equations is :

then a much more difficult task as Fourier transform
methods no longer simplify the problem.

Hereafter we assume that o.s is only a function of
|r—r'|. Then, in Fourier space Eq. (3) becomes an
algebraic relation,

Ja (kyw) =0ag (k""’)Eﬁ (kaw) ’ (4)

1 G. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.,
(London) A195, 336 (1949).

where oq5(kw) is the plasma conductivity tensor as
computed for the infinite medium. A determination of
0ap(k,w) thus permits a complete solution of the steady-
state boundary value problem, provided specular reflec-
tion of electrons at the boundary is assumed.

In order to determine o,5(k,w) we use the Boltzmann
equation,

af e af
—4v-vf——[E+vXB]-—=v.(fo—f). (5
at m av

The proper collision integral has been approximated
by a phenomenological velocity independent collision
frequency, »., which gives the relaxation of f to a uni-
form equilibrium distribution fo. More properly, the
right-hand side of (5), if it is to conserve particles,
should relax to a local density rather than to a uniform
density. Here, we are concerned only with transverse
waves where there are no local density fluctuations.

Equation (5) usually is linearized by setting f= fo+ fi,
assuming that f; is proportional to E, and neglecting
terms of the order E%. In the steady-state problem the
validity of this assumption must be carefully examined
for that class of electrons which is in resonance with the
wave, i.e., whose z component of velocity is near the
modified phase velocity of the wave (w—ws)/k. This
question is considered in detail in the Appendix. We
show there that in the absence of collisions there
exist electrons for which the linearization procedure is
never valid no matter how small E is. However, in
presence of collisions the linearization procedure is
valid for all electrons provided

v.>eE/m(v)\ 2, 6)

where (1%) is some proper average of the square of the
thermal velocity. The above inequality assures that the
effective static electric field which the resonant electrons
experience, acts for times short compared with the time
it takes to heat those electrons. We will henceforth as-
sume that inequality (6) is satisfied and analyze the
problem on the basis of a linearized theory.

For right- or left-handed circularly polarized trans-
verse wave, fi is given by

fr=(eB/m)r1- (3f0/8v)/[ve—i(wtwr—v-k)].

The conduction current J= fvfid® is then likewise left-
or right-handed circularly polarized. It is convenient to
define the corresponding scalar conductivities o,,; by
Jr1=0,,1E, 1. These conductivities are

Twp? d%y
O'r,l‘_"_i / fo y (7)
k V= Ur,2
where ,
Ur = (WFwp+iv,)/k, (8)

and £ is the component of k in the direction of propaga-
tion of the wave. The quantity fo is the unperturbed
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electron distribution function and it is taken to be
normalized to unity.

The solution of the boundary value problem for the
semi-infinite half-space is equivalent to finding the
field in an infinite medium excited by surface currents
and charges at the surface, s=0."* The Fourier compo-
nent of the electric field in the infinite medium is in turn
determined from the wave equation

kX kX E (k,w)—w?uoD (k)= (iwpo)J* (kw), (9)

where
Do (k)= eop(k,w) Eg(k,w), (10)
and

€a(B,0) = 8aptivap(k,w)/ (weo). (11)

The current J*(w,k) is the exciting current in the plane

=0 and is related to the value of the transverse rf
magnetic field in this plane. It is a fictitious current and
is introduced purely for mathematical convenience.
Thus, for transverse circularly polarized waves

(k’—w—:er,z)Er,z(k,w)= +§(§)(5‘—°)”§1,,,°(w>a<ko, (12)

C €

where H,; is the value of the rf magnetlc field at the
boundary and k1 is the component of k in the plane
perpendicular to Bo.1®

For the transverse waves it is clear that e(kw) is
only a function of w and of %, the component of k along
the direction of propagation [Eq. (7)]. Since E(r)
=/ exp(ik-r)E(k)dk, the integral over the two com-
ponents of k perpendicular to the z direction may be
performed. The field inside the medium is a function of
z only, and is given by

o\1/2 e oo (w/c)e™*dk
r l(z) + (EO) /;w ! [k2'—w26r,l(k7w)/62].

The path of integration is along the real £ axis. We
choose units measuring length in terms of k¢! and take
o and o equal to unity. In these units the impedance
of the plasma at z=0 is,

E., i [t dk (14
Zoa= =+4- - 4
' 7w [B2—er1(kyw)]

When e is independent of %2 as in a cold plasma
[fo(v)=8%(v)], then

E..1(2)= & i ?H, 0 exp(ie, %),

(13)

(15)

and
Zer= e i V% (16)

12 W, Panofsky and M. Phillips, Classical Electricity and Magne-
tism (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1955).

18In position space the exciting surface current is local-
ized on the plane z=0 and has the value 2#,XH%(z). Since
3(z) = 2m)"1 S & 15 (k) d%k, Eq. (12) follows directly.
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III. EVALUATION AND DISCUSSION OF RESULTS

The left-hand circularly polarized wave exhibits
little explicit temperature effects since the “modified”
phase velocity of the wave (w+ws;)/% for the important
k’s is generally much greater than the mean thermal
velocity of the electrons. Thus, we will consider only
the right-hand circularly polarized wave, and will
henceforth drop the subscript 7 identifying it. For this
wave near cyclotron resonance, the important waves
travel sufficiently slowly that a strong interaction with
a sufficient number of electrons is possible.

Equations (7) and (11) define an e(%,w) which is not
an analytic function of k. The integral

© fod®v
o [7:—u]

defines two functions, one analytic in the upper-half %
plane, and one analytic in the lower-half # plane. Equa-
tion (13) which determines the field E, may be con-
veniently split into two parts

i 0 ek dp
E(z) =—H°|:

T o LB2— X (k,w) ]

A=A

Here, €U(kw) and e“(kw) are the analytic functions
obtained from I [Eq. (17)] by assuming # is the
upper- or lower-half plane, respectively. As eZ(k,w)
= EU(—k) w) ’

Ee=molt [T pal L L g
&= {5/ ) [A(k) a k):'

1
+ / [————~———:Idk}. (19)
AE) A(—F)

The quantity, A (k) = k*— €V (k,w), is an analytic function
over the entire # plane. The first integral in Eq. (19)
is the usual sum over normal modes obtained from a
solution of the dispersion relation A(E)=0 and
M(—%)=0. The second term, which vanishes in the limit
of zero temperature, is a non-normal mode-like term.
It generates a field which, in general, does not vary
exponentially with distance with the exponent propor-
tional to the distance. We must conclude then that a
normal mode analysis for a warm plasma is not strictly
valid. In more physical terms this means that it is
impossible to excite by any type of incident field a
single “mode” which possesses a purely exponential
space dependence.

In order to evaluate Eq. (18), some choice must be
made for the equilibrium distribution function f,(v).
A Maxwellian distribution is the obvious choice. How-
ever, the numerical calculations are considerably simpli-

an
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fied if a one-dimensional polynomial distribution of the
form

Jor () =N/ (v’ +a?)" (20)

is chosen. The variables v, and v, are assumed to be in-
tegrated out; NV is a normalization constant and « is
determined by setting (»*)= (3KT/m). We shall justify
this choice for fo(v.) later.

With Eq. (20) for a distribution function, A (k)

becomes
wt v (k) (j—1)!

k)=k—1+ X 21
Me)=F w? iz;'l['iak—l-A]"(Zj—3)!! @
where
a=[(2n—3)KT/mc*]?, (22)
A= (1—wp/wtiv./w), (23)

and (25—3)!1=(2j—3)(2j—5)---5X3X1. Thus, A (k)
may be written as a ratio of two polynomials:

NE)=G(R)/F (). (24)

The polynomial function F (k) is two orders lower in %
than G (k) so that the ratio F/G may be broken up into
a sum of partial fractions with linear denominators:

F(k) n2 a;

— = 25
Gk) = k—k; @)

where the k; are the roots of A(£)=0.

In terms of the roots k; and the coefficients a;, the
field and the impedance Z are easily evaluated and are
found to be,*

27 n+2
E(z)=H'— Y a;{[Si(k;z)—3w] sin(k;z)

i —cos(k) Ci(k)}, (26)

2i nt2
Z=——73 a;In(—k).

T =l

@7

The quantities Siand Ci are the sine and cosine integrals
of complex argument.

An examination of the asymptotic form (z— )
of Eq. (26) indicates that the nonexponential part of
the field falls off with z at least as fast as (1/22). The
coefficients of the 1/2% terms are, at most, of order
(KT/mc*)*2. This weak field, which extends deep into
the plasma, is carried there by electrons traveling at
high velocities for times of the order of 1/v.. The particu-
lar form of this field at large z is strongly determined
by the choice of the distribution function. Shafranov®
has shown that for a Maxwell distribution the field at
infinity depends on z as ~exp(—2>/).

Far from resonance where

o= |[(w—wstiv.)/k](m/KT) 12| >>1, (28)

4 Bierens de Haan, Nowvelles Tables D’Integrales Definies
(Leide, 1867), p. 223.
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Fic. 1. Plot of the field reflection coefficients R(0) (dashed
curve) and R(T) (solid curve) as a function of wy/w for fixed
values of wp/w, T, and »./w.

and near the boundary, the field is nearly a pure ex-
ponential, the deviations from exponential being of
order (KT/mc?). The single wave vector k differs only
slightly from its value in a cold plasma, k. For =2 in
Eq. (20) we find that

k=k(14+¢), (29)
with
w,? 1 KT
6g=———— (30)
20? A% mc?

For 6>>1 it is possible to make an asymptotic expansion
of I [Eq. (17)] for a Gaussian distribution function.
Near the boundary the field is again exponential with

k=k(1+e), (31)
and
w,? 1 KT
€= —— — —— (32)
2w? A3 mc?

Since e is identical to €, we conclude that far from res-
onance and near the boundary the Lorentzian distribu-
tion function yields the same field dependence as a
Gaussian.

Near cyclotron resonance the crucial phase velocities
in Eq. (17) are sufficiently small so that again the
Lorentzian-like distribution function with the correct
(#*) is an excellent substitute for a Gaussian, provided
the exact functional form of E at infinity is not required.

Figure 1 is a plot of the reflection coefficient
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R=|(1—2)/(1+2)|, for the warm plasma as a function
of wy/w for a fixed value of w,/w, KT/mc* and v./w.
The dashed curve is the reflection coefficient R(0) for
the cold plasma and the solid curve is the reflection
coefficient R(T) for the warm plasma. For the finite
temperature case a distribution function of polynomial
form [Eq. (20)] with =2 was chosen. This is the
lowest value of # for which a finite (3?) exists. The roots
of \(k) become the solution of a quartic equation with
complex coefficients. These roots were found analyti-
cally and were evaluated numerically for a large number
of plasma parameters on an IBM 7090. We note first
that R(0) is large only for 1—w2/w?*<wy/wS1. In this
range of wy/w the plasma is cut off because e, as given
by Eq. (1), is negative so there is no propagation. We
note that a finite temperature 7' modifies the reflection
coefficient only near cyclotron resonance, ws/w~1. Of
course, this is so because only for ws/w~1 is the phase
velocity of the wave sufficiently small that the effect of
finite random velocity of the electrons is appreciable.

Figures 2, 3, and 4 are plots on an expanded scale of

0.12
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F1c. 2. Plot of the difference of the field reflection coefficients
R(0) and R(T) as a function of wy/w at fixed wp/w and T for
various values of v./w.
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F16. 3. Plot of the difference of the field reflection coefficients
R(0) and R(T) as a function of wp/w at fixed T and »./w for various
values of wp/w.

the difference AR between the reflection coefficients at
zero temperature R(0) and finite temperature R(7T),
AR=R(T)=R(0). In all cases which we have studied,
the effect of the temperature is to decrease the reflec-
tivity for ws/w<1 and increase it for w;/w>1 in such a
manner that a plot of AR against w;/w results in a
“dispersion like” curve at wy/w~1.

The sequence of curves starting with Fig. 2 depicts
the behavior of this ‘“dispersion” curve as one of the
relevant plasma parameters is varied. Figure 2 shows
the dependence of AR on the collision frequency. As one
would expect, AR decreases rapidly with increasing
v.. At large v, the pole of the denominator in Eq. (17)
is far from the path of integration even for w~ws.
Another way of saying this is that as ». increases, the
limiting phase velocity near resonance is proportional
to v, rather than to (w—ws) so that the velocity of the
important waves are not small. That is, § of Eq. (28)
remains large. A small », enhances the hot-electron ef-
fects; the electrons drifting in synchronism with the
wave experience the effective static field of the wave for
a long period of time. In fact, for sufficiently small »., our
linearized description breaks down.

Figure 3 depicts the behavior of AR with the plasma
frequency. The dependence on w, is relatively weak.
However, the AR curves do spread out somewhat and
increase in magnitude with increasing w,. This results
from a slowing down of the waves with increasing plasma
densities.

In Fig. 4 is shown the dependence of the AR curve
on the temperature. As T is increased, the AR curves
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increase in magnitude and spread out. There are rela-
tively more high-velocity electrons at the higher tem-
peratures so that there will be larger resonant effects.
These effects exist for values of wy/w removed from
wp/w=1 since at higher temeprature the waves can
have a larger phase velocity and still resonante with a
mean thermal electron.

It is possible to describe the rather complicated dy-
namics which gives rise to the behavior of the reflection
coefficient in terms of two simple macroscopic param-
eters. We conclude from an examination of the numeri-
cal results that the warm plasma, as far as the reflection
coefficient is concerned, may be described in terms of
parameters of the cold plasma with (a) a modified
collision frequency, and (b) a net shift in the cyclotron
resonance frequency.®

The additional damping mechanism is, of course, the
“resonance damping,” the analog of the Landau damp-
ing phenomenon for longitudinal oscillations. It can be

0.12
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F1c. 4. Plot of the difference of the field reflection coefficients
R(0) and R(T) as a function of w/w at fixed wp/w and v./w for
various values of T,
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Fic. 5. Plot of the difference of the field reflection coefficients
in a cold plasma as a function of ws/w for a shifted collision fre-
quency (dashed curve) and for a shifted collision frequency and
cyclotron frequency (solid curve).

crudely represented by ascribing to the electrons an
effective collision frequency vess, Where vest=votvres,
with »es being an increasing function of T, w,, 1/7., and
a very strongly increasing function of 1/|w—ws|.

The shift in the cyclotron resonant frequency can
be represented by wy'=witAw, at resonance, and
arises from the fact that only the electrons traveling
with the wave are strictly at resonance and they experi-
ence a field at the Doppler-shifted frequency. The
quantity Awy is primarily a function of the temperature
although it depends weakly on the other plasma
parameters.

In Fig. 5 we plot the difference of two cold-plasma
reflection curves. The dashed curve is the difference in
reflection coefficients R (wp,v+vres)— R(ws,v.) ; the solid
curve is R(ws+Awp, vetvres) — R(ws,ve). No attempt is
made here to fit the actual results in a hot plasma since
vres and Aw; were chosen to be independent of the
plasma parameters, which is not correct. However,
this crude computation indicates that increasing ».
only is not sufficient to produce the “dispersion like”
curves of Figs. 2-4. One must shift the cyclotron fre-
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quency by a positive amount to produce the “dispersion-
like” behavior (solid curve).

The reflectivity, being an average property of the
plasma is quantitatively insensitive to the detailed
microscopic processes taking place in a warm plasma.
The field itself is a more sensitive probe of such effects.
Figure 6 is a plot of the time-average Poynting’s vector
as a function of distance into the plasma for values of
the plasma parameters corresponding to the maximum
positive point ws/w=1.01, on the 7'=30 eV ‘““dispersion”
curve of Fig. 4. The Poynting’s vector, at least over the
range of distances plotted, is approximately exponen-
tial and extremely close to its value in a cold plasma.
At large distance the field is no longer exponential due
to the presence of high-velocity electrons in the dis-
tribution function. The dependence at large distances
is, as we have pointed out, a critical function of the tail
of the equilibrium distribution function. Since our
Lorentzian distribution is incorrect at high velocity,

. wb/w = 1.0l
L T = 30eV
B Ye/w = 0.005
Wp/w = 0.3
|O-I \
~2
o 10
1073
-4 I 1 [ |
1% 1 2 3 4 5

F1c. 6. Plot of the time-averaged Poynting’s vector P as a
function of distance z in the plasma for fixed wp/w.
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we attribute no significance to the behavior of the field
at large distances from the boundary.

Fig. 7 is a plot of the Poynting’s vector for the same
plasma parameters as in Fig. 6, except that wy/w has
been set equal to 0.99, the maximum negative point on
the =30 eV dispersion curve of Fig. 4. The behavior
here is quite striking. The Poynting’s vector falls off
rapidly with distance near the boundary, becomes nega-
tive, passes through a minimum, returns to a maximum
and finally decays uniformly to zero at infinity. In the
region near the minimum of the Poynting’s vector, the
divergence of the Poynting’s vector is positive. At zero
temperature, where there is a point-to-point relation
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Fi1c. 7. Plot of the time-averaged Poynting’s vector P as a
function of distance z in the plasma for fixed ws/w.

between field and current, such behavior of the electro-
magnetic energy flow is not possible since the divergence
of the Poynting’s vector is negative definite everywhere.
There is a net Joule heating of the plasma in each volume
element, forcing the Poynting’s vector and the field
to decay monotonically with distance.

For a medium in which e depends on % and w, the
energy conservation equation for the time-averaged
Poynting’s vector (P,(r)) at a fixed frequency w is

v <Pw(r)>
=1 Re{Ea (x) /aaﬁ[r—-r’, w]Eg(x')dr’ }, (33)
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where

(Po(r))=3% Re(EXH¥).

In a cold plasma o[r—r', w]=58(—1")o(w), where o is
the plasma conductivity. Since Re ¢ is greater than
zero, (if the electron distribution function is mono-
tonically, decreasing with velocity) (P.(r)) is negative
definite. Mathematically, the general requirements on
o[r—71', w] and E(r) such that (P,(r)) be less than zero
are sufficiently severe that under a given set of circum-
stances (P,(r)) can, in fact, become positive. It corre-
sponds to the situation where the electromagnetic
energy flow in the plasma increases at the expense of
the kinetic-energy flow. Such kinetic-energy flows are
not considered in this paper.!®

Physically, the mechanism for the transfer of energy
from the plasma to the electromagnetic field is the
following : The electric field at a point creates at that
point a current with an in-phase component so that
there is a net transfer of energy from the field to the
electrons. However, if o is a function of |r—r'| the cur-
rent can drift by virtue of the finite random velocity
of the electrons to another point in the plasma where
the field is of opposite phase. The current created by a
field at one point may then give up energy to the field
at another point in the plasma. The net energy transfer
to the electromagnetic field at a point is determined by
an average over the infinite half-space. Figure 7 indi-
cates that near cyclotron resonance, where the medium
is strongly dispersive, this averaging process gives a net
negative energy transfer from the wave to the electrons
in some region of the plasma. This region begins ap-
proximately one plasma wavelength inside the plasma.!®
The field must undergo a phase reversal in order to pro-
duce this effect. At the boundary there can be no phase
reversal.

For wy/w=1.01, Fig. 6, this anomalous behavior is
not present. The field inside the plasma at this value of
wp/w is not decaying as rapidly as it does when
0p/0=0.99. The medium is qualitatively as dispersive
at wp/w=1.01 as at wy,/w=0.99. However, the gradient
of the field is important since there must be relatively
large fields of opposite phase nearby in space in order
that the divergence of the Poynting’s vector become
positive.

Figure 8 is a plot of the time average of E% The mean
square E for ws/w=0.99 exhibits an anomalous behavior
in the region where the Poynting vector is negative.
For wp/w=1.01 the field falls off exponentially with
distance and is nearly equal to the field in cold plasma.

It is conceivable, although highly improbable, that
the anomalous behavior of the Poynting’s vector results

(34)

15 Conservation theorems associated with energy flow in warm
plasmas have recently been developed by A. Bers, Waves in
Amnisotropic Plasmas, edited by W. P. Allis, S. J. Buchsbaum, and
A. Bers [Technology Press, Cambridge, Massachusetts¥(to be
published)].

18 For wy/w=0.3, ws/w=0.99, and »./w=0.005, the plasma
wavelength is approximately a free-space wavelength.
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Fi1c. 8. Plot of the time-averaged square of the electric field E as
a function of distance z in the plasma for fixed ws/w.

from the excessive number of high-velocity electrons
in the tail of the Lorentz distribution. It is clear from
the expression for the conductivity, Eq. (7), that the
dominant contribution to the dispersive character of
the dielectric constant near cyclotron resonance, arises
from electrons near the mean thermal wvelocity
(KT /m)!2 and not from electrons in the tail of the dis-
tribution. For these electrons, the Lorentzian distribu-
tion is an excellent approximation to a Maxwellian.
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APPENDIX A

In this Appendix we shall discuss the limits of validity
of linearization of the Boltzmann equation.

af af
—+v-Vf—e[E+vXB]-—=v.(fo—f), (A1)
at av

where E is the field of a left- or right-handed circularly
polarized wave.

If the dominant collision mechanism is between elec-
trons of mass m and heavy centers of mass M, then the
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use of a phenomenological velocity independent collision
frequency v, is accurate to order m/M, when used to
compute quantities which depend on the first moment
of the distribution function, i.e., the electric current.
However, this approximation for the collision integral
fails to describe properly transport processes which
depend on the zeroth and second moments of the distri-
bution function, i.e., the average energy and the heating
of the plasma.!” This proves to be an important point
when the limits of validity of the linearized theory are
considered.

A solution to Eq. (A1) may be written formally as
an integral over particle trajectories.!

&y

¢
= / — v [ 8(x—X) 8 (v—ver) fo(vo) et Jdxodvodty
K + (e, (A2)

where T is the time at which the external field is turned
on.

In this case X, (Xo,Votyto) and v (Xo,Vo,t,to) are the
solutions of the equations of motion of a particle of
charge —e and mass m in a static magnetic field'® B,
under the action of a field E expi(kz—wt) (assumed
known) with initial displacement and velocities xo and
vo at time 4. The integrals over x, and v, are easily
performed and the resultant f(x,v,) is given as a single
integral

¢ axd/ axo

37)01/(9:700

(‘)xcl/(')vo -1
cho (vo)e_"c(’_“’)dto
dve1/ 3o

+ fo(v) exp[—».(t—T0)] (A3)

The quantities xo and v, are evaluated along the actual
path of the particle. The solution of the equations of
motion,

fxyp)=

To

m(dv/dt)= —e[E+vXB,],

may be carried out in straightforward manner. We find,
for a field of the form E= Eei*+=«d[ G, 44, | (where
i, and 4, are unit vectors in the x and y directions) that

v.() =T (t—to) v, (to) cosws(t—to)
Fo,(to) sinws(t—to),

(A4)

(A5a)

17W. P. Allis, in Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956), Vol. XXI, p. 410.

18 We neglect the ac component of the magnetic field. This is
tantamount to neglecting radiation pressure.
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2, () =1L (t— o)+ (o) sinws(t— £o)

=k, (%) cosws(i—140), (ASb)

where

Wp= eBo/m 5 wa=ko, (to),
and

ek 1
L(t—to)=~+—
m (w—wa—ws)
X[e—-iwbte—i(w—wd—wb) to— e—-i(w—wb) t]. (A6)

Equations (ASa) and (ASb) are easily inverted, yielding

03" (o) 40,7 (o) 02 (fo) = (v +v,*+v.?)
—2(vakdv, )T (—to). (AT)

For w#ws+tws, the term I'(¢—1), being linear in E,
may be treated as a small perturbation. A subsequent
expansion in powers of E of the distribution function
foin Eq. (A3) yields exactly the results obtained by
linearizing the Boltzmann equation. The expansion
corresponds to evaluating the trajectory integral (A3)
not along the actual trajectory of the particle, but
along its unperturbed path.

For w=ws+ws, I'(§—2o) increases linearly with time.
In this case it is incorrect to treat it as a small perturba-
tion if elapsed time in (A3) is allowed to run over a suf-
ficiently large range. Of course, the dominant contribu-
tions to the integral in (A3) arise from times less than
or equal to 1/v.. Thus, the second term on the right-hand
side of Eq. (A7) can still be treated as a perturbation
provided v, is sufficiently large, i.e.,

v.>eE/m(v*) 2, (A8)

where (#?) is some proper average of the square of the
thermal velocity. The above inequality implies that
the effective static electric field which the resonant
electrons experience cannot be allowed to act for times
long compared with the time it takes to heat those elec-
trons. Under such conditions the linearized approxima-
tion is not valid. This breakdown of the linearization
is to be contrasted with the failure of the linear theory
in the description of steady-state longitudinal plasma
oscillations. For longitudinal oscillations it is a problem
of phase coherence.!*** Here it is a heating problem which
is not adequately treated by the momentum relaxation
term used in the Boltzmann equation. It is impossible,
using a relaxation term of the form employed in Eq.
(A1), to find the correct first-order corrections brought
about by the nonlinearity. However, it is possible to
set the limits of linear theory and these are given by
Eq. (A8).
19 T, Dawson, Phys. Fluids, 4, 869 (1961).



