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Flow Instability in Liquid Helium II*
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The stability of steady, low-velocity laminar Qow of the normal component of liquid helium II is shown
to follow from the principle of minimum entropy production. It is pointed out that for two-Quid equations
containing a nonlinear mutual friction term, this justi6cation of stability is no longer valid when the energy
dissipation by mutual friction is comparable to that by the viscosity of the normal-Quid component. An in-

stability condition which is characterized by a dimensionless parameter g (Gorter number) formed from the
ratio of these two dissipative terms, is shown to predict the magnitude and temperature dependence of the
critical velocities observed in heat conduction, boundary movement, and isothermal Qow experiments in
channels wider than 10 3 cm. Instabilities observed in heat conduction at higher velocities are shown to
correlate with a Reynolds number of the usual form. The onset of the mutual friction force is discussed in the
light of this phenomenological theory.

I. INTRODUCTION

'HE superfluidity of liquid helium has been explained

by Landau' on the basis of the available energy
states in the liquid. This explanation also gives a
critical velocity at which quantum excitations are
formed and superfluidity must break down. Could we

identify this critical velocity of Landau with the many
observations of the onset of additional frictional forces,
the main problem in the flow of liquid helium would be
solved. However, when applied to the known energy
states in helium II, this concept yields a minimum
critical superfluid velocity of about 6000 cm/sec, which

is much higher than those observed.
In fact, the observed critical velocities range from

about 0.1 to 50 cm/sec, depending on the lateral dimen-
sion of the channel d. ' In narrow channels (10 'cm&d
& 10 ' cm) the critical velocity is approximately propor-
tional to d '/'; it has also been shown that the superfluid
velocity is the critical parameter' and that there is little
temperature dependence. In wide channels (d) 10 ' cm)
the critical velocities can be approximated by
V,=0.01d ' (in cgs units) at T=1.4'K, but there is a
temperature dependence which varies with the type of
experiment and there is little evidence that the critical
velocities observed are uniquely associated with the
superfluid. These facts suggest, as was pointed out by
Atkins, ' that the critical velocities in these two cases
are of a difI'erent character.

Feynman4 showed that the Landau concept applied
to Onsager'ss quantized vortex motions should lead to
critical velocities not much above those observed, and
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New York, 1959). Critical velocities are discussed on page 198.
3 P. Winkel, A. Broese van Groenou, and C. J. Gorter, Physica

21, 545 (1955).
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by C. J. Gorter (North-Holland Publishing Company, Amsterdam,
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e L. Onsager, Nuovo cimento 6, SuppL 2, 249 (1949).

Atkins' has shown that this model fits much of the data
in wide channels at 1.4'K. This theory is attractive, but
open to the following objections: (1) The constants
giving the correct magnitude are uncertain; (2) the
temperature dependence is not explained; (3) the value
chosen for d in oscillating-boundary experiments is the
penetration depth of the normal fluid, a choice which
seems inconsistent with selecting the superfluid velocity
as the critical parameter.

The present proposal is hydrodynamic in nature,
starting from equations of motion which contain the
mutual friction term introduced by Gorter and Mellink'
to explain the measured heat conduction of helium II.
From these equations, a thermodynamic argument con-

cerning the mutual friction term suggests a criterion of
flow instability, which is then compared with observed
critical velocities in a wide variety of experiments. The
high correlation which is found between theory and
experiment finally leads us back to examine more closely
the onset and nature of this mutual friction.

and the equation of continuity,

v V=0. (2)

The usual assumptions that the fluid velocity at a solid

boundary equals the boundary velocity and that the
viscosity p is constant, are justified for present
applications.

The dissipation of energy in a viscous incompressible
fluid in a region of volume v whose surface is s, can be

e C. J. Gorter and J. H. Mellink, Physics 15, 285 (1949).

II. STABILITY OF SLOW LAMINAR FLOW

To make clear the nature of the argument which

justifies the stability of slow laminar flow in helium II,
we first apply it to the familiar case of an incompressible
viscous fluid. The motion of such a fiuid is described by
the Wavier-Stokes equation, which, in the absence of
external fields, is

pBV/r)t pV V'V= ——7'p —.rt'7&t,'7'X V,
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written as~ 8

i
&XVi'dr+st (dV/dt) ds.

For low velocities, where the accelerations are small, the
surface integral can usually be neglected. The dissipa-
tion will then be

E=rt (VXV ~'dr.

When we can neglect the inertial term pV VV in
Eq. (1), some general theorems hold. Under these con-
ditions Helmholtz' and Korteweg" showed that in a
region whose boundary velocities are given and con-
stant, the steady motion eventually reached is unique
and stable, and dissipates less energy than any other
kinematically possible motion with the same boundary
conditions. This stable motion is the solution of Eq. (5)
with appropriate boundary conditions.

VP = —~vX~X V.

Rayleigh" "generalized this theorem to any dynamical
system without potential energy in which the kinetic
energy and dissipation function can be expressed as
quadratic functions of the generalized velocities with
constant coefFicients.

Onsager" generalized Rayleigh's principle and showed
that irreversible processes which can be described by
linear phenomenological relations, and which obey re-
ciprocal relations, can be described by a variational
principle. He showed that, with time-independent con-
straints, the steady state to which such a system pro-
ceeds is one of minimum entropy production. There is
presently controversy over how far away from equi-
librium this principle is valid4 however, there is little
question that for slow viscous Qow it is completely
justified. From this standpoint the theorems of Helm-
holtz and Korteweg follow as a special case of the
principle of minimum entropy production for a liquid
at uniform temperature.

Liquid Helium II
To discuss the motion of helium II, the two-Quid

equations essentially in the form given by Landau' and

7 D. Bobyleff, Math. Ann. 6, 72 (1873).
J. Serrin, Handbuch der I'hysik, edited by S. Flugge (Springer-

Verlag, Berlin, 1959), Vol. 8, Part 1, section on incompressible
viscous fluids, pp. 246—262.

' H. Helmholtz, Collected Works (1869), Vol. 1, p. 223.
"D.J. Korteweg, Phil. Mag. (5) 16, 112 (1883).
"Lord Rayleigh, Phil. Mag. (6) 26, 776 (1913).
n H. Lamb, Hydrodynamics (Dover Publications, New York,

1945), 6th ed. , p. 619.
'e L. Onsager, Phys. Rev. 37, 405 (1931);38, 2265 (1931).
'4 I'roceedings of the International Symposium on Transport

Processes in Statestecal Mechanics, Brussels, t956 (Interscience
Publishers, Inc. , New York, 1958).

p~+p~= p.

If we add Eqs. (6) and (7), we get the result

aV. BV.
p, +V, VV. +p. +V. VV.

i

ctt itt

(10)

=—&P—rt&x&X V„. (11)

If we can neglect the accelerations, this equation
reduces to

vp= —gvx vx V.,
which is identical in form with Eq. (5) and shows that
the pressure field is determined only by the normal-Quid
velocity field.

Again, if we assume in Eq. (6) that the acceleration
terms can be neglected, or more generally can be derived
from a potential, we have by taking the curl of this
equation and using Eq. (g),

VX)i V.—V i'(V.—V„)j=0. (13)
"F. London, SuPerguugs (John Wiley tk Sons, Inc. , New York,

1954), Vol. 2, pp. 130, 132, 141. A term representing the creation
of normal fluid has been neglected in London's equations.' H. E. Hall and W. F. Vinen, Proc. Roy. Soc. (London) A238,
215 (1956)."L M. Khalatnikov, Uspekhi Fiz. Nauk. 60, 69 (1956).

London' are assumed, to which has been added a
mutual friction term F,„:

BV, Rs

p. +p, V, &V.= ——Vp+P, SVT—F,„
85 p

+ V'i V -V, i' (6)
2p

BV„ pn
p jP„V„&V„= Vp —P—,SVT—+F,„

8$ p
pspn

v'(v„—v, ~' —~vxvxv„. (7)
2R

The mutual friction is written essentially in the form
originally proposed by Gorter and Mellink':

F,.=P,P.A i
V,—V

i
'(V, —V„). (g)

The empirical necessity for such a term has been de-
monstrated by many experiments, and Hall and Vinen"
have suggested a plausible mechanism. The sufficiency
and limitations of mutual friction in explaining effects
observed in helium II will be discussed in Sec. IV.

It was assumed that the liquid was incompressible,

V (p.V.+p, V,)=0, (9)

and that the temperature differences were small
enough so that variations of p„and the frictional term
-'s(r)VV V ) could be neglected. The other frictional
terms derived by Khalatnikov'~ should be extremely
small for the present applications and were also
neglected.

Equation (10) defines p, .
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E„=~
~

VXV„~'dr,

being of the same form as Eq. (4). At higher velocities
the energy dissipation implied by the mutual friction
must be considered, and is

E, =p,p„A iv, —V i'dr, (16)

To measure the relative importance of these dissipa-
tive terms we define a dimensionless parameter g, which

might be called the Gorter number, as follows:

p,.p„,~J'I V.—V„I'dr

E„gj')VXV„~'dr

It is clear that for low velocities g«1 and the stability
of the laminar solutions of Eq. (12) can be justifled, just
as those of Eq. (5), by the principle of minimum entropy
production. " However, for /=1, the thermodynamic
justification of the stability of this steady laminar Qow is
no longer valid. This last conclusion may seem obvious,
but is mentioned because, in the past, it has often been
assumed that the normal Quid must be stable to much
higher velocities. Furthermore, the above discussion
provides a background for the hypothesis which will

now be made.
This hypothesis was suggested by the criterion of

instability for an ordinary viscous liquid, where we
know that for values of the Reynolds number (R((1 the
principle of minimum entropy production assures sta-
bility. (The Reynolds number is essentially the ratio
[pv Vv~[/[iIVXVXV

(
in Eq. (I).] We also know

that for some higher value of this same parameter (R= R.
the Qow becomes unstable. For the normal component
of helium II it was shown that the additional require-
ment g«1 was necessary before we could justify that
the Qow was stable by the principle of minimum entropy

'8 In He II the temperature gradient furnishes an entropy
production term, but at low heat current densities this is propor-
tional to that of viscous dissipation and so does not alter the
functional dependence of g.

In parallel flow Eq. (13) implies that Vx(v, —V )=0.
Thus, for F,„WO, the relative velocity across the channel
is constant and

(VX V,)..=VX V.. (14)

Here the average vorticity designates the circulation
around a small but macroscopic region divided by the
area of the region and does not necessarily imply that
the flow must be microscopically rotational. Actually,
Eq. (14) follows for any mutual friction term which
varies with greater than the first power of the relative
velocity.

At low velocities where we can neglect accelerations,
the energy dissipation of the normal fluid in a volume 7 is

production. Thus, it seems natural to assume that at
some higher value of this same parameter g=g„ the
low will become unstable. Incidentally, the change at
such an instability will not necessarily be to turbulence,
and the subsequent state might be another steady
regime of flow which again minimizes the entropy pro-
duction subject to the existing constraints by reducing
the average relative velocity. If this last conjecture is
correct, the instability criterion might have a rigorous
thermodynamic basis, but here it is introduced as a
hypothesis.

Now it is reasonable to ask why we chose an insta-
bility criterion which is the ratio of two entropy pro-
duction rates rather than the more traditional ratio of
two forces, as is done in defining the Reynolds number.
This choice is possible because both terms are dissipa-
tive and seems natural in the context of the thermody-
namic argument. Furthermore, it has the advantage of
being the ratio of two scalars. On the other hand, the
Reynolds number, for instance, is the ratio of the abso-
lute value of two vectors, whose directions, although
evidently important, are neglected. For this reason it is
hardly surprising to find that I,, varies greatly with the
geometry of the flow. On the other hand, g has for every
fluid element a physical meaning which depends only
on the relative magnitude of the two entropy produc-
tions. If an instability can be described by such a
parameter, the most obvious assumption is that this
instability should take place when the two entropy
production terms are equal. Thus, we are led to make
the hypothesis that the Qow of helium II becomes un-
stable when g=g, where b, is approximately constant
for difI'erent experiments and of the order of unity. The
subsequent sections are mainly devoted to comparing
the instabilities predicted by this hypothesis with the
Qow transitions experimentally observed.

When terms of the form V VV in Eq. (11) can no
longer be neglected, we expect a type of turbulence or
secondary flow analogous to that found in a normal
viscous fluid. For oscillating boundary experiments,
Donnelly and Hallett" have shown that usually two
critical velocites can be identified. The lower one, which

they identify with the entrainment of the superfluid,
will be shown in the next section to satisfy the condition
g= g, . The higher one they showed to be correlated with

a critical value of a Reynolds number of the form

(R=pVd/g,

where p is the total density, V is the boundary velocity
(which equals V„at the boundary), and q is approxi-
mately the viscosity of the normal Quid. There is evi-

dence" of an increase of effective viscosity for g)g„
but near the critical velocity this is not large and will be

ignored at present.

"R. J. Donnelly and A. C. Hollis Hallett, Ann. Phys. (New
York) 3, 320 (1960).
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For g&g„we might expect' a turbulence in the
normal fluid corresponding to a critical value of a
Reynolds number (R„=p„V„d/g, but it would be dificult
to fulfill both of these requirements except near Tz,
when the transition would probably be indistinguishable
from that given by Eq. (18).

In thermal counterflow the two fluids are constrained
to have a relative linear velocity, and perhaps some more
complex expression is necessary; but at low tempera-
tures where

~
V ~))

~
V,

~
we might expect Eq. (18) with

V= V„ to be appropriate.

w =pSTV„, (19)

where w is the heat current density and 5 is the
entropy per unit mass. Since there is no net mass trans-
fer, we have from Eq. (9) and the assumption of nearly
uniform temperature

p.(~.)-+p (~ ) (20)

At low heat current densities, V„and V, are both
small, and we may assume that Eq. (12) gives the
steady, low-velocity laminar solution. If the axis of the
tube (radius=a) coincides with the x axis and the radial
distance is r, the boundary conditions

III. APPLICATION TO EXPERIMENTAL RESULTS

Thermal CounterQow

Assume that a long, straight cylindrical tube of
negligible thermal conductivity is ulled with liquid
helium and has a heat source at one end and a heat sink
at the other. The normal fluid carries all the entropy so
that we have

presumably be near convex wall irregularities, so the
apparent accuracy of g would usually not be real.

Thus, for thermal counterflow we write Eq. (17) in
the form

where
g= fi(T) V„d,

f (~)= (p.p-~/n) "(p/p. )'

(25)

LOW.

and V„ is the average normal-Quid velocity.
Figure 1 (solid lines) shows a family of theoretical

curves for the product V„d as a function of temperature
according to Eq. (25) for various values of the parameter
g. The velocity symbol U is used in this figure so that
theoretical curves for other types of flow, to be described
later, can be represented on this same figure (dashed
lines) with their appropriate characteristic velocity. The
values of the constants used in the temperature-de-
pendent factor are shown in Table I. The values of p„
are from Bendt, Cowan, and Parnell'; the values of p
from Kerr. "The normal Quid viscosity q is from meas-
urements by Heikkila and Hallett" and by Brewer and
Edwards. "The values of the Gorter-Mellink constant 3
were calculated from the same data which these authors
used. The magnitude of A increases with the relative
velocity apparently to some limiting value at high
velocities; it is this limiting value which is used, and it
agrees rather well with the values given by Vinen. '4 The
values below 1.2'K were extrapolations, and above
2.0'K the scatter in the data is large.

V„=O at r=a,
V~" at r=O,

(21a)

(21b)

10 EMENT

MAL
FLOW

lead to the usual Poiseuille solution. The normal fluid

velocity not too close to the ends is only in the x
direction and is given by

V„=—(1/4&)(dp/dx)(r' —a') = 2 V„(1—r'/a'). (22)

Equations (10) and (20) imply

(23)

-510

and from (22),

(i vyv„i )..=sv./a. (24)

10
1.0

I s 1 s I s l

1.2 1.4 1.6 1.8 2.0 2.2

TEMPERATURE ( K)

Rather than this exact expression, we chose one of
greater generality using a characteristic lateral channel
dimension d. This is useful since we know the exact
steady-state solution only in very simple cases, and even
with these the experimental boundary conditions are
geometrically imperfect. Small-scale surface roughness
has little effect on viscous flow because the velocities
near the wall are small, bu, t no such statement can be
made for the superfluid whose maximum velocities will

FIG. 1.Theoretical curves for the product of the critical velocity
and the characteristic channel dimension for various values of the
Gorter number, g. For thermal counter flow V= V„;for isothermal
flow V= V„and for boundary motion V= Ub p d y.

"P. J. Bendt, R. D. Cowan, and J. L. Yarnell, Phys. Rev. 113,
1386 (1959)."E.C. Kerr, J. Chem. Phys. 26, 511 (1957).

~ W. J. Heikkila, A. C. Hollis Hallett, Can. J. Phys. 33, 420
(1955)."D.F. Brewer and D. 0. Edwards, Proc. Roy. Soc. (London)
A251, 247 (1959).

"W. F. Vinen, Proc. Roy. Soc. (London) A240, 114 (1957}.
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b=(rfL/q V )", (26)

Figure 2 shows the experimental data on the observed
critical velocities in thermal counterQow. The product
of the critical value of V„and d is plotted as a function
of temperature. The theoretical curve from Eq. (25)
with /=4 is shown for comparison. Since the channels
were different in cross-sectional shape, d was taken to
be the hydraulic diameter. "Mellink" used a glass slit
1.05X10 ' cm wide (d=2.10X10 'cm) and the data
plotted were recalculated by I ifshitz and Andro-
nikashvili, ' who corrected for the effect of vapor pres-
sure. Kinkel, Broese van Groenou, and Gorter' used a
similar glass slit 2.4X10 4 cm wide (d=4.8X10 4 cm).
Meservey" measured the slope of the free surface of a
horizontal layer of liquid helium about 10 ' cm thick as
a function of heat current density and d is taken to be
4 times the liquid depth; details of this experiment will

be published soon.
In the data of Kramers, Wiarda, and Broese van

Groenou, "the tubes were so short that the normal Quid

boundary layer could not have propagated across the
channel, so d was taken as twice the dimensional ex-

pression for the boundary layer thickness'0 of the
normal Quid,

500

Ii ~ ~, ~

o M

o MESERVEY

~ WINKEL et al.

).0
I 1

t.2
I I I I I I I I

4.4 3.6 4.8 2.0
TEMPERATURE ('K)

2.2

FIG. 2. Product of the critical normal-fiuid velocity and the
characteristic lateral channel dimension in thermal counterflow as
a function of temperature. The measured points are from refer-
ences, 3, 26, 28, 23, 29, 31, 32, 33; the solid lines are calculated
from equations (18) and (25) for the given values of the Reynolds
number 8, and the Gorter number g.

where I. is the length of the tube. The definition of the
hydraulic diameter does not apply to this case so that
the factor of 2 has little significance and may be regarded

TABLE I. Values of the temperature-dependent quantities
used in the calculations.

T
('K) (g/cms)

P
(g/cm')

qX10' A
(poise) (cm sec/g)

2.15
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

0.126
0.120
0.0874
0.0647
0.0473
0.0342
0.0241
0.0165
0.0108
0.00672
0.00391.
0.00207

0.1463
0.1462
0.1460
0.1458
0.1457
0.1456
0.1456
0.1455
0.1455
0.1455
0.1455
0.1455

2.33
1.96
1.48
1.36
1.32
1.32
1.34
1.36
1.44
1.60
1.90
2.44

320'
115'
110
99
92
82
71
60
48
35
27
19b

a Estimated from scattered data of reference 6.
b Extrapolated from data of reference 6.

"The hydraulic diameter d=4 area/perimeter is commonly
used as the characteristic dimension for turbulence in noncircular
pipes. See, for instance, H. Schlichting, Boundary Layer Theory
(Pergamon Press, London, 1955). p. 32.

J. H. Mellink, Physica 13) 180 (1947).
27 E. M. Lifshitz and E. L. Andronikashvili, A Supplement

to Heffmm (Consultants Bureau Inc. , New York, 1959).
28 R. Meservey, Ph.D. thesis, Yale University, 1960 (un-

published).
"H. C. Kramers, T. M. Wiarda, and A. Broese Van Groenou,

Proceedings of the Seventh Internutionut Conference on Low-
Temperutlre Physics, Toronto, 1960 (University of Toronto Press,
Toronto, 1961),p. 562.

~H. Schlichting, Bolndury Layer Theory (Pergamon Press,
New York, 1955).

as a normalizing factor to bring out the similarity of the
temperature dependence with other measurements.

The experiments of Brewer, Edwards, and Mendels-
sohn" on heat flow in a circular glass tube (diam=d
=5.2X10 ' cm) are interesting because, with precau-
tions against vibrations and initial turbulence, they
sometimes observed a metastable laminar Qow at a heat
current considerably larger than the usual critical value.
This may account for the somewhat higher value of g„
although, if we carry out the exact calculation for this
case, we find that the entropy production in the viscous
liquid equals that due to the mutual friction force for
g= 7, which is very close to the g value for the transi-
tions actually observed.

The solid circles in Fig. 2 show the critical velocities
given by Vinen" for rectangular channels using an
ingenious second-sound detection technique. His
channels were 0.240&(0.645 cm and 0.400)&0.783 cm in
cross section and were both 10 cm long. The data of
Careri, Scaramuzzi, and McCormick" are also shown

by the solid squares. They used a rectangular tube of
cross section similar to Vinen's smaller tube, but 24 cm
long. Here the critical velocity was detected by measur-
ing the mobility of ions in the liquid. The upper line of
Fig. 1 is a plot of V„d from Eq. (18) with V= V, with d
again taken as the hydraulic diameter, and with a
Reynolds number of 2300, which is often taken as the

"D. F. Brewer, D. O. Edwards, and K. Mendelssohn, Phil.
Mag. 1, 1130 (1956).

ss W. F. Vinen, Proc. Roy. Soc. (London) A243, 400 (1957).
' G. Careri, F. Scaramuzzi, and W. D. McCormick, Proceedings

of the Seventh Internutionul Conference on Low-TemPerutlre Physics,
Toronto, 1960 (University of Toronto Press, Toronto, 1961),p.502.
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)0-'—

or exclude Eq. (27) on the basis of the rather scattered
experimental results.

Moving Boundary

io-s —/ go 4

When a solid of revolution, which is immersed in
helium II, executes torsional oscillations about its axis,
Andronikashvili" showed that for small amplitude
oscillations V,=O. Furthermore, since the normal-Quid
velocity at the boundary equals the boundary velocity
V, we can write Eq. (17) as

to= fs(T) Vd, (28)

)0-'- where fs(T) =(p,p„A/rf)'t'. In this case, d is taken to
be the penetration depth in the normal Quid, '0 which is
a function of the angular frequency, or.

~ I I I 'I I I I I I I

).0 3.2 1.4 l.6 l.8 2.0 2.2
TEMPERATURE (oK)

d= (2v/p. ~)"' (29)

FIG. 3. Transformation of the curves for thermal counterflow
shown in Fig. 2 to a plot of the product of the critical superfluid
velocity and the characteristic lateral channel dimension as a
function of temperature.

critical Reynolds number for a viscous liquid in a similar
geometry. '4 Although such a Reynolds number is a
plausible explanation for the quite different magnitude
and temperature dependence of these critical velocities,
inlet and end effects in such short tubes are considerable
and probably cannot be ignored. For instance, such
effects probably account for the 25% increase in the
critical Reynolds number in Uinen's wider channel.
Recent measurements by Chase" using both the delay-
time technique and a measurement of thermal resistance
confirm and extend Uinen's results and when completed
should throw considerable light on these complex effects.

Although V„d appeared to be the most natural param-
eter to use in Fig. 2 because of the origin of g, the fact
that p, (V,)„+p (V ), =0 in thermal counterflow as-
sures just as orderly a result if we use the parameter
V,d. In terms of the superRuid velocity, Eq. (25)
becomes

A closely related case concerns Qow past a plane solid
boundary parallel to the Qow; in this case d'is the
boundary-layer thickness at a distance I. downstream
from the leading edge and is the same as ff in Eq. (26).
Theoretical values of Vd as a function of temperature
for various values of g in Eq. (28) are shown as the
dashed lines in Fig. 1.

Figure 4 shows the data of Anglin and Benson" on
oscillating cylinders, one with diameter 3.19 cm and
periods 4.5 and 36 sec, the other with diameter 2.545 cm
and period 5.25 sec. These data are the latest and
perhaps the best of the oscillating-boundary measure-
ments and are shown to agree rather well with Eq. (28)

&o'

OI es
E IO

8=(p*/p. )ft(T) V.d. (25a)

(V.d).= (4A/m) in(d/4a). (27)

The magnitude of this expression also approximately
agrees with Eq. (25a) for g=4, but the uncertainty in
the choice of both u and d does not allow us to verify

'4 See, for instance, reference 30, p. 32."C. E. Chase, Proceedings of the Seventh International Conference
on Lom-TemPeratlre Physics, Toronto, 1960 (University of Toronto
Press, Toronto, 2962), p. 438; and (private communication).

The transformation of /=4 and $,=2300 to this type
of plot is shown in Fig. 3. Within the limit of error of the
numerical factors in Eq. (25a), the values of V,d corre-
sponding to a given value of g are independent of tem-
perature (at least up to T=2.0'K) in agreement with
the relation suggested by Atkins, ' IO'

I.o

ANGLIN & BENSON
~ ATKINS

KIOOER

STASS 8 OUBOTER

+ DONNELLY

I I . I I t I

),2 $,4 I.6 I,s
TEMPERATURE ('K)

I

R.O 2.2

FIG. 4. Product of the critical velocity and the characteristic
lateral channel dimension in boundary motion and isothermal
Qow. The measured points are from references 2, 37, 38, 39, and
40; the solid line is calculated from equation {28) or (31) for the
given value of the Gorter number g.

ve E. L. Andronikashvili, J. Phys. {U.S.S.R.) 10, 210 (1946).
sr F. Anglin and C. B. Benson, Proceedings of the Seventh

International Conference on Lom-Temperatlre Physics, Toronto,
1960 (University of Toronto Press, Toronto, 1961), p. 558.
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for g=1, using for d the penetration depth as given in

Eq. (29).
For the sake of clarity, only one oscillating-boundary

experiment is shown in Fig. 4. However, experiments
with oscillating spheres, disks, and oscillations in
U-tubes were reviewed by Donnelly and Hallett, "and
they proposed an empirical Reynolds number

(30)

where a=re/p, although measured values of this kine-
matic viscosity were used which are slightly higher
than ri/p.

The functional form of (R„, is the same as Eq. (28)
for g in this case, and the temperature-dependent factor
is numerically similar. These authors showed that all

low-velocity transitions correlated with such an empiri-
cal Reynolds number. The correlation with a value of

g, for each geometry is thus assured to a fair degree of
accuracy.

Below 1.6'K, the empirical temperature dependence
of (R, fits the data in Fig. 4 within the limit of error,
whereas g is too high. Actually this low-temperature
effect is perhaps present in the thermal counterQow
results shown in Fig. 2. Whether this discrepancy is
fundamental to the theory, or owing to a neglected
correction, is not clear.

Isothermal Flow

When V,))V and we assume a mutual friction force,
the normal Quid velocity is determined by the balance
of the mutual friction force and the normal Quid re-

sistance on the channel walls so that p,p„A V, '=riV /d'
and

(31)

where fs(T) = (p,p„A/ri)'~'. Theoretical values of V,d as
a function of temperature for various values of g in

Eq. (31) are again given by the dashed lines of Fig. 1,
assuming in this case V= V, .

Data for isothermal Qow are plotted in Fig. 4, and

V is to be interpreted as V,.Atkins' data' are for gravity
Qow in glass capillaries with diameters 2.6&10 ' cm and

8.1&10 ' cm. Kidder and Fairbank" measured the

superQuid velocity at which a pressure gradient ap-
peared in a 0.11-cm-diam stainless steel tube whose

ends were closed with packed powder filters which
allowed only the superfluid to Qow into and out of the
tube. The measurement of Stass and Ouboter" is for
gravity Qow in a glass capillary of diameter 2.60)&10 '
cm with temperature regulation at each end.

"J.N. Kidder and %. M. Fairbank, Proceedings of the Seventh
International Conference on Loco-Temperature Physics, Toronto,
1960 (University of Toronto Press, Toronto, 1961),p. 560.

' F. A. Stass and R. De Bruyn Ouboter, Physica Suppl, 24, 143
(1958).

Steady Rotation

Experiments involving steady rotation can perhaps
be analyzed like other moving-boundary experiments.
Donnelly, " using concentric cylinders with the inner
one rotating, has observed two critical velocities, the
lower of which at T= 1.35 and 1.5'K is shown on Fig. 4
to agree fairly well with other measurements. Few other
data giving definite critical velocities in steady rotation
have been published, and these are diHRcult to analyze
because of transient effects or centrifugal forces, so
further comparison will be deferred. In fact, Donnelly's
lower critical velocities just cited were only about half
the higher critical velocities, which correspond rather
closely to ordinary Taylor instability for a liquid with
a kinematic viscosity of ri/p. 4r This implies that neglect
of the centrifugal forces even for the lower critical
velocities is perhaps not justified.

When centrifugal forces cannot be neglected we ex-
pect the two-Quid analog of Taylor instability. Chan-
drasekhar and Donnelly4' have derived such an insta-
bility criterion for liquid helium II between rotating
coaxial cylinders with the assumption that the coupling
between the two Quids is proportional to both the rela-
tive velocity and the constant vorticity of the steady
state in this geometry. Presumably, both branches of
such an instability, which is based on the assumption
that V.= V initially, would be observable only above
the low-velocity transitions with which we are presently
concerned. In this connection it should be noted that
the thermodynamic instability discussed previously is
diGerent from the dynamic instability calculation
carried out by Chandrasekhar and Donnelly. In the
latter, the stability of a system is investigated in the
vicinity of a steady state where the relative velocity of
the two Quids vanishes; in the former, the initial state
for g= g, usually involves finite or even high relative
velocity, and linearity of the interaction is not essential
to the argument.

IV. DISCUSSION

The above analysis is successful enough that we
should examine more closely the validity of the mutual
friction term on which it is based. That such a term is
necessary to explain the heat conduction in liquid helium
was demonstrated by Gorter and Mellink' and by
Atkins. 4'

It has often been suggested that other frictional forces
besides normal Quid viscosity and mutual friction are

0 R. J. Donnelly, Phys. Rev. Letters 3, 507 (1959).
"The point given by Donnelly at T=2.1 K is actually at a

slightly larger velocity than that calculated for the onset of Taylor
instability (G. I. Taylor, PhiL Trans. Roy. Soc. London A223,
280 (1923)g in the normal Quid. Possibly a transition at lower
velocity was not observed because of the very small change in
effective kinematic viscosity to be expected from the entrainment
of the superRuid at this temperature.

4' S. Chandrasekhar and R. J. Donnelly, Proc. Roy, Soc.
(London) A241, 9 (1957).

'3 See reference 2, p. 190.
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One way to resolve this paradox is to assume that the
instability criterion initially applies only to a thin
boundary region whose effect on the overall pressure
and temperature gradients is negligible. It was shown
by Hall" that the surface roughness of a boundary is
important in the development of additional friction.
And the metastability observed by Brewer, Edwards,
and Mendelssohn and by Reppy and Lane is perhaps
connected with the smoothness of the drawn glass walls
used, since there is no clear evidence for such meta-
stability with metal containers, mica disks, or optical
Qats, all of which are microscopically rougher. These
facts lead us to believe that the additional frictional
forces develop close to the boundary and then propagate
into the body of the Quid. Apparently, the steady
motion of a front of this kind has been observed by
Pellam" in a cylindrical container brought into steady
rotation.

A second way to explain the results, which does not
necessarily conQict with the 6rst, is that the Qow in-
stability arises from a neglected inertial term of the
hydrodynamic equations. If we assume that the equa-
tions given by Landau and London are correct I Eqs. (6)
and (7) without F,„$, the only apparent source of such
an instability which has not yet been discussed is in
the terms in the square of the relative velocity,

(p.p-/2p)~
I
~.—~.

I

'

necessary to explain certain experimental results. Heik-
kila and Hallett's" experiment with a rotating cylinder
viscometer apparently demonstrated that an additional
frictional force was necessary to explain the observed
drag, but actually the effect was later observed44 using
carbon disulfide at room temperature and was pre-
sumably the onset of a secondary Qow near the ends of
the cylinder. The damping of an oscillating disk also
measured by Hallett" was, at low temperatures, much
greater than that calculated by Zwanniken, "assuming
mutual friction and that the superQuid velocity is zero
-at all times. In a later analysis, Donnelly and Hallett"
concluded that in the velocity range in question the
superQuid in the boundary layer must move with the
normal Quid. If we assume that the thickness of this
boundary layer is approximately equal to the penetra-
tion depth of the normal Quid, the temperature de-
pendence of the extra damping is approximately correct,
but an exact calculation would necessitate an exact
knowledge of the Qow, which at present we do not have.
Kidder and Fairbank, "in their experiment with Qow in
a 1.1-mm tube between superQuid Alters, found that the
pressure increased with superQuid velocity more rapidly
than that calculated from the Gorter-Mellink term,
assuming the normal-Quid velocity is everywhere zero.
However, Newton's third law precludes the normal
Quid remaining stationary if there is a mutual friction
force, and we would expect some kind of circulating
Qow of the normal Quid in the space between the filters.
Again, until the exact nature of the Qow is known we
cannot make an exact calculation of the pressure gradi-
ent, but we also cannot conclude that a direct interac-
tion between the superQuid and the wall is required.
Thus, these experiments which have been cited to show
the inadequacy of mutual friction currently seem to be
compatible with it.

However, there is a group of experiments which show
that the Gorter-Mellink equations do not always apply.
Experiments by Craig and Pellam, ' Reppy and Larie,
Brewer, Edwards, and Mendelssohn, ""and Kidder
and Fairbank" all demonstrate that, below a certain
critical velocity, F,„=O or at least has a value much
less than that given by Gorter and Mellink. Above the
critical velocity, the mutual friction rapidly rises to its
expected value. The last two experiments just men-
tioned are of particular interest because they seem to
fall into the present pattern of results without ap-
parently having initially present both of the competing
mechanisms of dissipation.

It would be interesting to see if a dynamic stability
calculation including such a term would lead to the
observed critical velocities. 5' From this point of view,
mutual friction would be attributable to the new Qow

pattern above the critical velocity rather than to the
appearance of an additional term in the equations. An
analogous conclusion is generally accepted concerning
turbulence in a viscous liquid, namely, that the Navier-
Stokes equation is still applicable, but above a certain
velocity other solutions besides the laminar solution are
possible. Thus, all dissipation is attributable to viscosity,
and the nonlinear frictional forces are not caused by a
new dissipative mechanism, but rather by the higher
shear rates in the new Qow pattern. A similar view can
be taken with helium II, since there seems to be no
evidence that the mutual friction and the friction of
normal-Quid viscosity are additive, either above or be-
low the critical velocity. This leads us to the possibility
that practically all dissipation, even above the critical
velocity, may be attributable to the viscosity of the
normal Quid in the new Qow pattern in which the rate
of shear of the normal Quid is much greater.

H. E.Hall, Phil. Trans. Roy. Soc. (London) A250, 369 (1957).
J. R. Pellam, Proceedings of the Seventh International Con-

ference on Low Ternperatnre Physi-cs, Toronto, 1960 (University of
Toronto Press, Toronto, 1961),p. 446.

5'The instability criterion g=g„based on thermodynamic
reasoning cannot yield details of the process of instability; a
dynamical stability calculation from the true hydrodynamic
equations could yield such details and naturally the result would
not conflict with the thermodynamic hypothesis if the latter were
correct.

44 A. D. B. Woods and A. C. Hollis Hallett, Proceedings of the
Fifth International Conference on Low-Temperature Physics and
Chemistry, 1/madison, S'isconszn, j957 (University of Wisconsin
Press, Madison, 1958), p. 16.

5 A. C. Hollis Hallett, Proc. Roy. Soc. (London) A210, 404
(1952).

G. C. J. Zwanniken, Physica 16, 805 (1950).
47 P. P. Craig and J. R. Pellam, Phys. Rev. 108, 1109 (1957).' J. D. Reppy and C. T. Lane, Proceedings of the Seventh

International Conference on Loco Ternperatnre Physics, Toronto, -
INO (University of Toronto Press, Toronto, 1961), p. 443.
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The view that the buildup of mutual friction is
caused by the formation of vortex line in the superfluid
was suggested by Feynman' and developed by Vinen. "
These vortices are possible solutions of the equations
of motion, and nothing in the present hydrodynamic
analysis appears to conflict with this point of view. In
thermal counterflow Eq. (25a) of the present theory is

not at variance with Eq. (27) suggested by Atkins on
the basis of vortex creation. Other qualitative features
can also be given plausible explanation in terms of
vortex theory, but the exact relationship of the present
macroscopic theory to the microscopic motion will not
be considered here, since the exact nature of these
microscopic motions is not settled.

The above analysis has been applied to channels with
d&4.8)&10 ' cm. However, the characteristic tempera-
ture dependence of the critical velocities appears to
persist into somewhat narrower channels. Whether the
critical velocities in narrower channels are of a quite
different origin has yet to be determined, but the separa-
tion between the two regions is apparently not com-

pletely sharp.

V. CONCLUSIONS

Starting from hydrodynamic equations which contain
a mutual friction force, we have proposed an instability
condition which corresponds to the measured critical
velocities with considerable accuracy. In fact, in certain
ways, this instability condition seems more general than

'2 W. F. Vinen, Proc. Roy. Soc. (London) A242, 493 (1957).

the equations on which it was based. This phenomeno-
logical theory puts the data into a consistent pattern
and shows that the critical velocities in thermal counter-
flow, boundary motion, and isothermal flow have much
the same character. Complicating features which need
further investigation are clearly differentiated from the
rest of the pattern. Quite aside from any theoretical
basis, the rather simple correlation of many experi-
mental results by the Gorter number g should be
useful in the design of future experiments.

The principle of minimum entropy production was
used here in a negative way to show under what circum-
stances we could not justify the stability of laminar
flow of the normal component of helium II. Perhaps this
principle could be applied more generally to turbulence,
but in any case the macroscopic nature of the argument
and its success indicate that the critical velocities in
helium II can be considered from a continuum point of
view. This suggests that dynamic stability calculations
and statistical methods, which have led to the recent
progress in understanding the turbulence of ordinary
liquids, can be usefully applied to helium II.
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