
PH YSI CAL REVIEW VOLUME 127, NUMBER 3 AUGUST 1, 1962

Complex Angular Momentum in Relativistic 8-Matrix Theory*
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On the basis of unitarity and the Mandelstam representation we discuss the analyticity and threshold
behavior of the positions and residues of the poles of the scattering amplitude in angular momentum as a
function of energy, separate the right and left cuts of the partial wave amplitude for complex l, and extend,
in a model theory in which elastic unitarity hoIds, the domain of analyticity in the I plane to the region
Ret&1.

'HE importance of regarding the scattering ampli-
tude in strong interactions as an analytic function

of both energy and angular momentum has been recently
emphasized. ' ' ' A number of interesting experimental
consequences of the hypothesis of poles in angular
momentum l, in analogy to the Regge poles in nonrela-
tivistic potential scattering, 4 have been obtained. ' "
The purpose of this note is to establish, in the relativistic
case, on the basis of the Mandelstam representation and
unitarity, the following: (a) analyticity of the positions
n„and residues P„of the poles of the scattering ampli-
tude in the angular momentum plane as a function of
energy; (b) threshold behavior of n„and P„ for the pur-
pose of an effective-range approximation; (c) separation
of the left- and right-hand cuts in energy of the partial
wave amplitude which extends the Ã/D method to
complex l; and (d) extension of the domain of analy-
ticity in l to Rel)1 in a model theory in which the
elastic unitarity condition holds, and a discussion of the
role of unitarity and inelastic processes in establishing
the analyticity in the / plane. "

We consider the two-body elastic scattering ampli-
tude for equal mass spinless particles. We use the usual
variables s, l, and u: s=4(q' jrjs') &= —2q'(1 —&)

u= —2q'(1+s), s=coso, and v=q' q and 0 are the
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center-of-mass momentum and scattering angle in the s
channel, respectively. For integral values of the angular
momentum l, one obtains, from a fixed-energy dispersion
relation with E subtractions, the partial wave
amplitudes"

00

A(s, l) =— ds Q~(s)LA~(s, s)+(—1)'A„(s,s)7,
7I p

where ss ——1+ (4nz'/2q'), A ~ and A„are the absorptive
parts of the amplitude in the 3 and I channels, respect-
ively, and Q~(s) is the Legendre function of the second
kind. Equation (1) can be used to define an analytic
function A (s,l) of s and l which coincides with the par
tial wave amplitudes for physical values of 1. From the
asymptotic behavior of A & and 2 „, it follows immedi-
ately that A (s,l) is holomorphic in l for Rel)iV for all

s, since Q~(s) behaves as s ' ' for large s. Furthermore,
a weak form of the unitarity condition in the crossed
channels shows that for s(P (physical region of the
l channel) the bounds of A ~ and A „are such that A (s,l)
is holomorphic in l for Re)&1."

According to Eq. (1), the partial wave amplitude
A(q', l) generally has cuts along the whole real q' axis.
Part of this cut is kinematical and will be separated as
follows. Using a relation connecting Q~(s') to the hyper-
geometric function F(a,b; c; s)", we rewrite Eq. (1)
in the form

1 r'(1+ 1)
A~(v, l) =— —(4v)'

~ I'(2l+2) 2
772

D+(v, w)

XF(l+1, l+1; 2l+2; —4v/w); Rel~ lir (2)

where D+(v, w) =A&(v, w)&A„(v,w) and we have intro-
duced the A~ partial wave amplitudes for which the
unitary relation is diagonal. The function F has a cut
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negative axis the amplitude A(s, f) is holomorphic for Rel)1+e.
(G. Prosperi, private communication). Ke make use of this result
later in Eq. (13)."
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In addition, the representation (2) has the advantage
of displaying the asymptotic behavior of Q&(s) for large
a t since F(a,b; e; s) behaves as unity for large sj and
will allow us to separate the singular part of the ampli-
tude. For this purpose we rewrite F in Eq. (2) as the
sum of two terms by subtracting the 6rst R terms in the
power series expansion of Il:

F(3+1, 1+1;2t+2, —4v/w)

2 e (1)( /w)"3+2 e (i)( /w)"
r=o r=O

in v=q' from —pp to —w/4, and D+ has the spectral
cuts on the right from v=0 to and on the left from
v = —~ to the boundary of the double spectral function.
Thus, A (v, t)/v' is a real analytic function of v, real in
the gap between v= mP a—nd v=0. (We omit the super-
scripts & unless necessary. ) Thus, an X/D method is
possible for complex / for the quantity.

8(v, l) =A (v, l)/v'. (3)

written in the form

8 '(v, l)= (v+m') '(cos~l) '(I'(v, l)

+expL(1+1/2) ln( —v —ie)$}, (7)

where 'Y(v, l) is a real meromorphic function of v for
Rel~T that has no elastic cut but only the left-hand
cut of 8(v, ))) and a right-hand cut beginning at the in-
elastic threshold. It can be verified that the discontinu-
ity of the second term of Eq. (7) is that of Eq. (6).

Equation (7) has a direct nonrelativistic counterpart.
By a slight modi6cation of a relation given by Bottino,
Longoni, and Regge" the nonrelativistic amplitude can
be written in the form

8 '(v, l) = (cosprl) 'f P (v, l)+exp/())+1/2) ln( —v —ie)]},
where I' has again only the left cut from 9= —~ to
v = —m'/4. For physical values of i we have

I'+(v i) =+v'+ cotbP-,

and consequently V(v, l) is the analytic continuation of
the inverse reaction matrix, E '.

which give rise, respectively, to two terms in 8(v,l):

8 (v, l) =8p(v, l)+8) (v,l). (4)

we have the result that the analyticity domain in l of
A (v, i) is closely connected with that of the Mellin trans-
form of the absorptive part D(v, t). This provides a
useful criterion for the analyticity in l of a given
amplitude.

We now make use of the unitarity condition. For v) 0
but below the inelastic threshold the A+ amplitudes
separately satisfy the analytically continued unitarity
relation '4

The term Bp(v, l) is holomorphic in i for Rel)X—R
while the term 8)(v, l) contains all the singularities in
l of 2 and in v, only the cuts of D which are due to the
spectral functions. Since the terms of 8) (v, l) are of the
form

D(v, w)
A8

~l+r+1
m

IV

The relation (7) is exact and the fact that Y does not
have the elastic cut allows us to discuss the analyticity
and the threshold behavior of the Regge pole param-
eters, n„(v) and P„(v).

Let us assume for the moment that I'(v, l) is mero-
morphic in I in the region Re))1. Then the only
singularities of the amplitude in the l plane allowed by
unitarity are poles given by

I"(v, l)+ exp/(l+-', ) ln( —v —ip) ]=0. (8)

Let us denote the solutions of Eq. (g) in i by
n„(v) and the residues of 8(v, l) at these poles by
b„(v) =P„(v)/v~&"), where P (v) are the residues of the
amplitudes A(v, l). It follows from the separation (4)
that n (v) is obtained as the solution of 8) '(v, l) =0.
Consequently, n„(v) is an analytic function of v in the
domain of analyticity of 8&(v, l) except, possibly, for
isolated singularities at the points where Bi ' has
multiple poles. We recall that 8) (v, l) has only the spec-
tral cuts of D. Wherever n„(v) is analytic and distinct
from all other n (v), b (v) is analytic since

A (v, l) = (v+m'/v)'e" &"') sinb(v, ))),

or, with (3),

(5) b.p)=(2~ )-'gp, ( ply

8 '(v, l) = (v+m') '*v'+ *'(c to—6 i)-—(6)

Since 8, and hence 8 ', is a real analytic function of v

and l for Re/)W, its discontinutiy across the physical
cut is twice the imaginary part and can therefore be

"See for exzmple, E.J. Squires, University of California Radia-
tion Laboratory Report UCRL-10033 (unpublished} and G.
Prosperi, University of California Radiation Laboratory Report
UCRL-10116 (unpublished}.

for an appropriate contour about the pole e„.
It is clear in potential scattering, because of the

uniqueness of the solution to the Schrodinger equation
(second-order differential equation with the boundary
condition p(0) =0 for Re/) —~~), that the poles are
distinct so that n (v) and b (v) have only the right
spectral cut, and are real analytic functions. If this holds

"A.Bottino, A. M. Longoni and T. Regge, University of Turin,
1961 (to be published).
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also in the relativistic case then o. (v) and b„(v) have,
in the left, at most tlie spectral cut of D(v, l) and will

be real analytic functions. Even this spectral cut may
not be there as can be seen from the following con-
sistency argument. " For if a pole term of the form
0(sp' &.&(

—1—l/2&I')/sin7r&r(s) should dominate for
large 3 and s 0 the discontinuity of such a term in i

must be real which implies that &r(s) and P(s) must be
real for all s &0.

To discuss the threshold behavior" of &r„(v) and b„(v),
we introduce two constants which are real since V is
real at the threshold:

c& Y/&) v(0,&r(0))
—=Y„&)I /8/(0, &r(0))= Yi. (9)

In Eq. (8), we expand Y(v, l) about the point (0,&r(0))
and obtain in the region Re&r„&—1/2 for each pole"
(we omit the index I)

&r(v) =&i(0)—(Y„/Y&)v+0(v')
—Y&

—rvn&v&+vs —iv&niv&+vl (10)

Only the last term contributes to the imaginary part of
ci(v), everything else is real. Below threshold, v real and
negative, we see immediately that &r„(v) is real, and
above threshold we can make the following useful
approximation:

Imn(v) = Yi 'p" &'&+—i sin~Ln(0) y-,'7
and

or, at threshold, simply by

f& (v) (v+ Bz ) ' Y& cos'&r&r (v) .

We note that although I' has a left-hand cut in v from
—m' to —n&, ( &cY/dl)( v, &r( v)) has at most the left-hand
spectral cut. We note the important fact that b(v),
Im&r(v) have the same sign at threshold.

Finally, we discuss the question of the extension of
the domain of analyticity in l plane to the region Rel) 1
on the basis of elastic unitarity condition (5) or (7).
Let us consider a model theory in which the elastic
unitarity condition holds. Or, let us assume that the
phenomenological elasticity factor r) (v, l) in the uintarity
relation

A(v, l) = (v+m-'/v)i(rf(v, l) exp)2i&&(v, l)7—1)/2i

is analytic in l in the region Rel) 1 so that the inelastic
problem can be formally transformed into an elastic
one."Under these conditions we can prove the analytic-
ity of A(v, l) in Rel&1. For this purpose we write a
dispersion relation for Y(v, l) in the v-plane with sub-
tractions and pole terms which we combine into a single
rational function":

1 '"' Im Y(v', l)
Y(v, l) =—v~ dv'

-P P P

¹ MO

Re&i(v) =&r(0)—(Y„/Yi)p+0(v')
—Y& 'v""'+' costi &r(0)+s7

If, in A+, &r(0) becomes very close to an even or odd
integer l, a Regge pole term approximates very well
the partial wave amplitude for this i. Then Eq. (10)
is the basis for an effective-range approximation. ' For
c&(0)~ 1/2 the slope of the curve Re&r„(v) is continuous
at threshold. In the q plane, for real l, the trajectories
of the poles come down along the positive imaginary
axis, make a right-angle turn at &I=O for l)1/2, and
make a turn through an angle

q = vr t
1—1/(21+1)7

for I~ 1/2. Thus, an s-wave trajectory shows a distinct
behavior from other physical partial waves.

The residues are given by

(v+ms) v cosm&r(v)
b(v) = (12)

L(c& Y/c&l)(v, n(v))+in( —v ie) ( p)—&"&+17—

' P. Burke (private communication).
'7 We are indebted to Marcel Froissart for pointing out to us

the usefulness of Eq. (8) in the study of the threshold behavior
of the amplitude.

's If Ren„(0)(—1/2, one may rewrite Eq. (8) in the form
I' '(v, l)+exp L (l+-,'—) 1n( —v —ie)]—=0

and expand I(v,l)—= I' r(v, l), and obtain instead of Kq. (10):
n(v)=n(0) —(Iv/I&)v+0(vs) I& v &~&v&+i&e'v& &v&+1&. —

+( 2 ~-(t)v")/( 2 f-(l)v") (13)
m=0

This expression is written first for Rel~E. However,
for some domain which includes real v, v (—ns',

Y(v, l) is a meromorphic function of / in the region
Rel&1." Consequently, the functions a„(l) and b (l)
are meromorphic functions of l for Rel&1, as they are
the solutions of the system of linear equations obtained
by writing Eq. (13) for 1Vp+3Ilp fixed values of v (—m'.
The right-hand side of Eq. (13) thus provides a repre-
sentation of Y(v, l) which is meromorphic in /for Rel&1
and all v. Fixed cuts in Rel) 1, due to the endpoint or
pinching poles from the term containing the integral,
cannot arise since they are known to be absent for
p& —eP.

Analyticity in angular momentum does not follow
from Mandelstam representation and crossing sym-
metry alone. The unitarity condition is also essential.
In fact, one can construct amplitudes satisfying Mandel-
stam representation which are not meromorphic in the
i plane. (For example, take the spectral function

p(s, l)=(t/3P) v&tln(l/3I')]' '(s/3P) v

&& Dn(s/3P) 7e—' s, I)31'
=0, otherwise

» M. Iioissart, Nuovo cimento 22, 191 (1961).
~0The validity of this equation rests upon assumptions about

the asymptotic behavior of Y and would not be rigorous if there
were an in6nite number of poles.
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which gives for Mellin transform of the discontinuity
function

~ "1'(tI)/(I+P)'
dS

(s/M') "fin(s/3II') 14 '

which has a cut at /= —p for nonintegral q. )
Even for the proof of holomorphy for Ref ~ 1,

v( —m', a weak form of the unitarity condition has
been used. It is also clear that the poles in the l plane
for one channel are the result of highly inelastic processes
in the crossed channels. This can be seen from the fact
that these poles dominate the high-energy behavior of
the amplitude in crossed channels and correctly predict
a purely imaginary forward scattering amplitude. There-
fore, a complete proof of analyticity in l must, we feel,
make use of the full unitarity condition. Because the
unitarity condition couples all channels, such a proof

must await further developments in the 5-matrix
theory of multiparticle processes. Also perturbation
theory is no guide in establishing the analyticity in I,,
since a finite number of diagrams does not give energy-
dependent poles. The proof given in this section may
indicate the direction along which a future proof should
proceed.

If one invokes a principle of maximal analyticity in
angular momentum then the previous discussion shows
that the only singularities required by unitarity are
poles, throughout the entire / plane. However, in order
to avoid the introduction of a new postulate, one would
like to derive the principle of maximal analyticity in /

as a consequence of maximal analyticity in linear
momentum.

We would like to express our gratitude to Professor
G. F. Chew for his helpful encouragement during the
course of this work.
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Taking account of the diurnal rotation and the oblateness of the earth, the average relative rate difference
is calculated for an arbitrary inclination of the satellite orbit. For eccentricities less than 0.1, an accuracy of
order 10 "is obtained.

' 'T is well known that' ' due to the general theory of
- - relativity, the rate of a clock on the earth will be
different. from the rate of a similar clock in an artificial
satellite. For an elliptic satellite orbit the average
relative rate difference is'4

orbit in the equatorial plane corrections terms in 6 of
order 10 ".In the present paper we will calculate the
correction terms for an elliptic orbit with an arbitrary
inclination. The rate of a standard clock in a satellite
and on the earth, respectively, is given by"

GMg
1—

7J; crp
=6.96@10 " 1——. 1

dt, = (1+2X,/cs —u s/cs)*dt,

dt~ (1+2Xg/c' us——'/c') ~dt—,

~g and v, are the periodic times read on the earth clock
and the satellite clock, respectively; G is the gravi-
tational constant, Mg is the mass of the earth, rp is the
radius of the earth, and 2a is the major axis of the
satellite orbit. In this derivation the diurnal rotation
and the oblateness of the earth are not taken into
account. Ho6mann' has calculated the inhuence on 6
from these two perturbations, and finds for a circular

*Work supported by the Norwegian Research Council for
Science and the Humanity.' F. Winterberg, Astronaut. Acta. 2, 25 (1956).' S. F. Singer, Phys. Rev. 104, 11 (1956).' C. Moiler, Suppl. Nuovo cimento 6, 381 (1957).
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tg, t„and t being the times read on the earth clock,
the satellite clock, and a coordinate clock, respectively
zeal.: and I, being the velocity of the earth clock and the
satellite, respectively, relative to the center of the earth,
and Xg and X, being the scalar gravitational potentials
on the earth and on the satellite, respectively. Neglecting
terms of order X'/c4, Xu'/c', and u4/c', we get from
Eqs. (2) and (3)

dt, —)1+c '(X —Xz—-'u '+—'uz')$dtz. -
' C. Moiler, The Theory of Relatioity (Clarendon Press, Oxford,

England, 1960), p. 247.
7 We have ignored the vector potential because the fractional

error in 6 due to this is of order u~'/c'.


