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We treat Dyson’s ideal-spin-wave Hamiltonian by Green’s function methods. In the second section we
consider only noninteracting Dyson spin waves. In the third section we consider interacting spin waves,
using the simplest possible decoupling assumption. Our results lead then to the same expressions for the
magnetization and the spin-wave specific heats as Dyson in the limit as .S — o up to terms of order T
The difference is of order 7¢/S2 If we introduce a higher-order decoupling, we obtain results identical with
those of Oguchi, which in turn agree fairly closely with those of Dyson. We also obtain a spin-wave dispersion
law which is a slight improvement of the one obtained by Brout and Englert, especially for small values of
S. In three appendices we discuss, respectively, the decoupling process, the shifts in the spin-wave energies,

and their “‘damping.”

1. INTRODUCTION

N Paper I of the present series of papers! we discussed
an extension of the Bogolyubov-Tyablikov theory
of ferromagnetism? to the case of general spin. We con-
sidered there Green’s functions of the S* and S~ oper-
ators [see Eq. (I2.1)] and introduced a simple,
Tyablikov-like decoupling. In the present paper we
shall use the Dyson spin-wave operators® and study
higher-order decoupling.

In Sec. 2 we introduce Dyson’s (non-Hermitian)
Hamiltonian which when operating on the idealized
spin-wave states gives the same results as the original
Hamiltonian operating on the physical spin-wave states.
This Hamiltonian is used in the equations of motion for
the spin-wave Green’s functions. We first of all neglect
the interaction term in the Hamiltonian, and solve the
equations of motion and obtain the low-temperature
magnetization, and the spin-system specific heat. In
Sec. 3 we take the interactions into account and consider
the changes in the spin-wave dispersion law due to the
simplest decoupling, in the magnetization, and in the
spin specific heat. In Sec. 4 we look into the question
of higher-order decoupling, and we discuss the conse-
quences of this procedure. Details of the often tedious
mathematical arguments are given in the appendices.

2. NONINTERACTING DYSON SPIN WAVES

We start from Dyson’s Hamiltonian [compare
Eq. (13.1)]

H=(gusB/1)221 Sv*—% 21ml (1—=m)(81-Sm), (2.1)

where up is the Bohr magneton, g the Landé g factor,
B the applied field which is assumed to be along the
—z direction, and where S; is the spin on the lattice

1R. A. Tahir-Kheli and D. ter Haar, preceding paper [Phys.
Rev. 127, 88 (1962)]. This paper is referred to as I and its equa-
tions are quoted as (I 3.5) and so on.

2 N. N. Bogolyubov and S. V. Tyablikov, Doklady Akad. Nauk
S.S.S.R. 126, 53 (1959) [translation: Soviet Phys.-Doklady 4, 604
(1959)7; S. V. Tyablikov, Ukrain Mat. Zhur. 11, 287 (1959);
V. L. Bonch-Bruevich and S. V. Tyablikov, Green Function
Methods in Statistical Mechanics; (Moscow, 1961) [English transla-
tion: North-Holland Publishing Company, Amsterdam, 19627,
Chap. VII.

3¥. J. Dyson, Phys. Rev. 102, 1217, 1230 (1956).
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site 1. We now introduce the following transformation®
Sim=(28%)} 01— (b170:01/25%)],
Sit=(25h)t, Sy=>0bi1b—S%,
where the b, and b, are the harmonic oscillator creation

and annihilation operators referring to the lattice site 1.
They satisfy the boson commutation relations

[b1ba' ] =781m, [b1,ba"]-=[b1,6m]-=0. (2.3)

Combining (2.1) and (2.2) we get Dyson’s ideal spin-
wave Hamiltonian Hiq:
Hyy= ——guBBSN—%WSZNJ(O)
+[(gusB/%)+ShT(0)] 21 618
—S7 Zl,m I(l—m)bﬁbm
+5 X 1m I(0—m)[01"00 0 — 01701620 ],
where J(0) is defined by Eq. (I 3.9).

We now introduce the spin-wave creation and an-
nihilation operators by the Fourier transformation

bit = (b/N)! Tn e~ ODayt,
bl= (ﬁ/N)% Z)\ 67:()“‘)(1)\, (25)

where NV is the total number of spins in the lattice and

where the sums over A are over the first Brillouin zone.

The commutation relations for the a)t and ay follow
from (2.3) and are again of the boson type:

[ana =6, [aat,e.']-=[are.]-=0. (2.6)
From (2.4) and (2.5) we now get

(2.2)

(2.4)

Hig=Hiq©+H;q®, (2.7)
where
H;4© =const
20 {gurB+SH LT (0)—J () JYaaTan, (2.8)
H;qO=(%%/2N)
XZ)\J‘J’ [J(l)—](l—V)]d)\Td,fayaH.uﬁy, (2.9)

4S. V. Maleev, J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1010
(1957) [translation: Soviet Phys.—JETP 6, 776 (1958)]. We
should like to point out here that Maleev’s transformation enables
us to obtain Dyson’s result in a much simpler way than the
original one.
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with J(2) defined by [see Eq. (I 3.9)]
J)=>, I v, (2.10)
We shall in the following again introduce the sim-
plifying assumption [see (I 3.2)7]
I(1—m)=1,
I(1—m)=0,

if 1 and m are nearest neighbors,

2.11
otherwise. ( )

For our discussions we need the equation of motion
for the Fourier transform ({(a.; a./")) of the single spin-
wave Green function. This is given by Eq. (2.9) which
in the present case will be of the form

E{{aw; au'))=(1/2m)8, v+ ({LanHial-; ar’)). (2.12)

We shall first of all neglect the interaction term
H;q™® and (2.12) then becomes of the form

(ax; at))="08¢,0/2m(E— &), (2.13)
where

& = gusB+72S[J(0)—J (%) ]. (2.14)

From the general theory® of the properties of the
single-particle Green functions when there are no inter-
actions, it follows that € is the energy of a non-
interacting spin wave with wave vector .

We now use the general relation (I 2.11) between the
correlation functions (B(#)A(¢)) and ((4;B)) and the
operator identity

1
lim =
e>+0 E-‘Eo:izie E—Eo

Firs(E—Eo), (2.15)

where P indicates that whenever these expressions occur
under an integral (or summation) sign, the principal
part of the integral must be taken. We then get
(8=1/ksT; ks=Boltzmann’s constant; 7'=absolute
temperature)

(at(t)ax®)
=bx.w exp[ —ie. O (t—1)/n]/[exp(Be.”)—1], (2.16)
and from (2.16), (2.5), (2.2), and the relation between

the magnetization M(8) at temperature 7= (8kp)~! and
the average value of S?, we then get

MB)=[M(»)/SITLS—N"" L« (a'ax)]
= [M(C’o )/53[5—0003/2—(1105/2
—a0"24-0(6°2)], (2.17)
where M(«) denotes the saturation magnetization,

reached at T=0, where [compare the expansion
(14.10) and Egs. (I14.1)]

6-1=2x85%27 (O)y, (2.18)

where » is the numerical factor given by (I 4.12) which
differs from one lattice to another, and where the a; are

& For instance, D. N. Zubarev, Uspekhi Fiz. Nauk 71, 71 (1960)
[translation: Soviet Phys.—Uspekhi 3, 320 (1960)].

AND D. TER HAAR

given by the equations

a0=2(3/2), ax=3mZ(5/2), ar=m’ww?Z(1/2) (2.19)
with w given by (I 4.13) and
Z(n)= 3 (e~rBonnB /yn). (2.20)

r=1

Note that if B=0, Z(n) is the Riemann zeta function
¢(n), and (2.19) reduces to (I 4.11) and (2.17) to (I5.3
and 4), if we neglect in those last equations the terms
in 6% and 6

The average magnetic energy per lattice site for the
case where B=0 is in the present approximation
(H;q@=0) given by the expression

Enmag=—2N)" 1m I(1—m){(S1-Sm))

= const+(72/N)Ex S[J(0) =T ) artar).  (2.21)

The sum over A can be changed into an integral over the
first Brillouin zone in the manner discussed in I, and
we find

Enag= const+7#25J (0) (v (§)6%24- (Sw2/4)v% (3)672

+(77%/3)er’s (H)624-00")],  (2.22)
and for the spin-wave specific heat we have
Cmag=kaEmag/a(1/ﬁ)
=k[(15/4)¢(5)6**+ (105/16)mv§ (3)65
+(6372/4)wn%(3)6724-0(6%)].  (2.23)

The results for M(8) and Cu,e are identical with
Dyson’s results and give corrections to Bloch’s results.®

3. INTERACTING DYSON SPIN WAVES

If we take H;q® into account we have instead of
(2.12) or (2.13) the following equation for {{a,; a.)):

[E—e]({as; ™))
= duw/ 20+ 12/ 2N) 20 i [T (M) +T (1) = T (1 —w1)
—J (x— 1) J{{ar 10, @cir—p; act)). (3.1)

We notice here the well-known appearance of higher
order Green functions which make it necessary to intro-
duce some kind of decoupling. We expect that to a first
approximation only those Green functions will appre-
ciably contribute to the sum on the right-hand side of
(3.1) for which at least one of the two indices w;, and
x+%1—u1 is equal to Xy. We therefore write

{an e @ern—ps @)= {[0n, 10 5]
- 5)\1 .K‘Su.n+ [1 - 5M N 6#1 ,x+ 6)\1x5ux]}
X {{ar @ @ein—u; a’)),

§ F. Bloch, Z. Physik 61, 206 (1930); 74, 295 (1932).

(3.2)
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and introduce the decoupling assumptions

{arfan,ae; ao™))=an o ){{aw; ant))

=iin (e av')), (3.3)
(1 - 5Mu1"‘ 5u1x+ 5)‘1:‘5;410 <<d)\1Tdﬂla)\1+K—#1 > aA’T»
(1= r g — Ot OnpiBpp) (an, Ty
X {ay; aet))=0, (3.4)

where 72, is the average number of spin waves ((ala»))
with wave vector A. The term & 0,c({ac axas; ac®))
occurs only when all these indices are equal and has
thus a weight in the sum on the right-hand side of (3.1)
which is smaller by a factor N=! as compared to the
weight of terms such as ({(@'ara.; arT)). In the limit as
N — o« we can thus ignore that term. This means that
we write

{ar," @ @uini—us; ')
g(a)\lyﬂ1+au1,x)ﬁ)\l<<a,‘; dKIT>>, (3.5)

Substituting this into (3.1) we get finally for
{{ax; awt)) instead of (2.13) the equation

<<d,(; a’K'T»: (1/27")5“’/(}2— Gx(o)_‘Aex), (36)

where
Aee= (/N2 [JQ)+T () =T —x)—=J(0) Jir.  (3.7)

This “renormalization” of the spin-wave energies is
identical with the result given (without proof) by Brout
and Englert.” These renormalized spin-wave energies
can now be used to evaluate the magnetization and
spin-wave specific heat. Before doing this, however, we
shall briefly discuss (3.7) which can be written in
the form

Aee=—@T (0)/ N2 n[n()+1(2)—n(da—1)], (3.8)

where 7(x) is defined by (I 4.3). We note here that the
spin-wave energies are temperature dependent through
7in. The question of temperature-dependent energy
levels is usually a difficult one,?® but they fit rather
naturally into the Green’s function formalism. If we
use the expression obtained in the previous section for
the 7\ we find for the renormalized spin-wave energies

V=€, 04 Aex=gusB+72S[J(0)—J (x) ]

X[1—(mv/S)Z($)0524+0(6"2)7]. (3.9)
The terms neglected by taking for 7, the expression from
Sec. 2 are of higher order in 6 than the ones retained
in (3.9).

Using the renormalized spin-wave energies, we obtain
for the magnetization instead of (2.17)
MB)=[M(=)/SIS—aeh*2—a:1652— a0/

— (as/8)8*4-0(6*2)],
as=4mZ(3)Z(%). (3.11)
7 R. Brout and F. Englert, Bull. Am. Phys. Soc. 6, 55 (1961).

8 G. S. Rushbrooke, Trans. Faraday Soc. 36, 1055 (1940); see
also the book by Bonch-Bruevich and Tyablikov (reference 2).

(3.10)
where

It should be emphasized here that in evaluating the
averages, we have followed Dyson and assumed that
all kinematical interactions may be neglected.® We
should also mention here that the coefficient of 6* for
which we find here a3/S agrees only in the limit as
S — o with the results of Dyson and of Oguchi® who
found, respectively (for the simple-cubic lattice),
(as/S)[14(0.31/8)+0(S™)] and (as/S)[1+(0.2/S)].

The magnetic energy is no longer given by (2.21),
but by the equation

E mag= const-+ N1 35 SA[J(0)—J (2) Kartar)
+ @2/ 2N o[ (1) =T (=) ]

X{amte S a0 u). (3.12)

If we evaluate {(an'a,fa,an1u—) using the decoupling
(3.5) and the relation (I 2.11), we find

Emag=const+(S%#2/N)>_x [J(0)—T () Kar'ar)
+ (ﬁz/ZNz)Z)\,,,(aﬂa)\Xa,Jaﬂ)
X[27 () =T G—w)—J(0)].
The integrations involved in the evaluation of the last

double sum are tedious, but straightforward and for the
case B=0, we get instead of (2.22) the equation

(3.13)

Enag= const+7%5J (0)|:7ru§(5/2)0i”/2

Sw? Tt
A1/ DOt O/ D

+mwwwwmmmw}@m

and for the spin-wave specific heat per lattice site we
get instead of (2.23)

Cnag=F[(15/4)¢(5/2) %2+ (1057/16)¢ (7/2)6°2
1 (63n2/4)v2wt (9/2)07
+(1570/8)5(5/2)5(5/2)6*+0(6°2) ].

This last result differs from Dyson’s result in the coeffi-
cient of 64 for which Dyson finds our coefficient multi-
plied by 1+(0.31/S)4+0(S~). This difference arises
because our simple decoupling (3.5) does not properly
take the dynamic interactions between the spin waves
into account. It is, however, surprising how well this
simple decoupling works. We also note that, as was
already mentioned in I, the first-order decoupling is
the better, the larger S.

(3.15)

4. HIGHER ORDER DECOUPLING

If we wish to improve our approximations, we need
the equation of motion for the Green function
{{ar, @ @uir—u; aurT)) occurring on the right-hand side
of (3.1). This equation is obtained {from (I 2.9) and is

9 See also T. Oguchi, Phys. Rev. 117, 117 (1960); F. Keffer and
R, Loudon, Suppl. J. Appl. Phys. 32, 2 (1961),
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of the form

{an"au aein—p; @) E— €4, @ — exgri @+, ]

TER HAAR

= [7iay8s,07/ 27 [0y, 80,1 1+ (7% 2N) 20, D(x+01—w1, w1, ¥+ 01— w1—v, w1—v){(an, [ @005 @)
+@2/2N) D(3, kA —u1, A—v, kA —u—v) <<a>\1Ta>\Tamavax+>\1+>\—m—v; ax’T»
+(h2/2N)Z7\yV DO") U, Q"'—v’ ui— V)<<a)\‘Td)\T(lyd,¢+)“_md)\_Hﬂ_y; aK'T>>_ (h2/2N)Z)~,V D(Q\., 3‘) 3"_9"1> QL—9"1)

where
D(a,B.4,8)=J(e)+J(B)—J(v)—J(). (4.2)

This is clearly a formidable equation, and we discuss
in Appendix A the way in which we can introduce a
decoupling into this equation of motion. The final result
is the following equation for {{a,; a,/")):

(s a LB e 0T 22
. ae )| E—e0 |= —+
’ 2 2 E—e®

+y A(x2u) (@ aet))

b
My B— em(l)— EK+)\,_,“(1)+ 6)\1(1)

(4.3)
where

Al,u1) = (A2/2NH)D (A1, %, M— 1, k— 1)
X D(u1, ¥ +01—w1, 41— %1, K— 1)

X [(1 +ﬁm+ﬁx+h*m)ﬁh - ﬁmﬁx+>\1~m]- (4-4)

We note that, if we neglect the last sum in (4.3) we
get again (3.6) for {(a,; aw't)); this sum is thus the term
due to the higher-order decoupling.

Solving (4.3) for ({a.; a.)), we get

{as; e ) o= (6c,/2m)[Es— P (EL) T, (4.5)
where
&P (Ey)= e V+R(E)Fivi(E), (4.6)
A KA, U
R(E)=P ¥ it @.7)

A1ap E—em(l)—6,‘+)\l__,,l(1)+e)\l(l),
Ve(E)=m 2 A(di,u1)

A1opy
XB(E— 6"1(1)_€x+)\1~u1+5)\1(1))- (48)

Equation (4.5) is derived by replacing under the
summation sign (E—¢,®)/(E—e®) by 1, bearing in
mind that ultimately we need (I 2.11) and thus the
Fourier transform for energy values E-ie(e — -0),
as indicated by the subscript 4=, and using (2.15).

From (4.5), we can find the spectral intensity f(E)
defined by the relation

-0
(@t (t)a®))= F(E)A(E/B)e=F a0,

—o0

(4.9)

which satisfies the equation [compare (I 2.11)]
TEN P —1) = (a4; ac")-— (as; ey (4.10)

X{an & argyn @ Qe s @), (4.1)
Combining (4.5), (4.6), and (4.10), we find
(8x /)
JE) (PP —1)= (4.11)

(E— ﬁn(l) —RK>2+’YI(2‘

In Appendices B and C we show that R, and v, are
small quantities which vanish as 6 tends to zero. We
know that if R, and v, vanished rigorously, (4.10) will
lead to a delta function on the right-hand side of (4.11).
As long as R, and v, are small and +, is of a smaller
order of magnitude than R, we may thus expect the
right-hand side of (4.11) to be strongly peaked at an
energy & satisfying the equation

&— e,_(l)—R,‘( EK):O; (412)

provided v.(E) is a slowly varying function of E. We
note that y,(E) plays the role of a damping coefficient.1?
If R(E) is also a slowly varying function of E, we get

approximately
(5n,x'/ 7")

(E)(efE—1)t— 5, #8(E—&,). (4.13)
fee (= &)t

From (4.12) and (4.8), we then get
7ie=[expBé—1]7, (4.14)

that is, a boson-distribution for the spin-wave occupa-
tion numbers. The distribution is, however, smeared
out over a width of the order of v, Inasmuch as the
distribution is nearly the one produced by ‘“undamped”
energy-levels, we can still approximately talk about
spin-wave energies; these satisfy (4.12), or

€= eK(1)+RK( Ex),

and R, thus plays the role of an energy-shift.

In Appendix B, we evaluate this energy shift and find
that our result is identical with the one obtained by
Oguchi®; it is an improvement on the results obtained
by Brout and Englert.” We can use the improved spin-
wave energies & to evaluate M (8) and Cpae and we now
find that for a simple cubic lattice the coefficients of 64
are changed from a3/S for M(B) and kp(157v/S)2(3)
for Cumae by a factor 14-(0.2/S). Our results are, of
course, general and can be applied to any lattice.

(4.15)

ACKNOWLEDGMENTS

We should like to express our gratitude to the
Colombo Plan authorities, the Government of Pakistan,

10 Compare reference 5, Sec. 8.1,



GREEN FUNCTIONS IN THEORY OF FERROMAGNETISM. II. 99

and the British Council for a grant to one of us
(R. A. T.-K.), to Oriel College, Oxford, for the award
of a Bishop Fraser Scholarship to R. A. T.-K,, and to
Dr. R. J. Elliott, Dr. W. E. Parry, Dr. H. Stern, and
Dr. R. E. Turner for helpful discussions.

APPENDIX A

To illustrate how (4.3) can be derived from (4.1) by
suitable decoupling procedures, we shall first of all dis-
cuss the function {{@r,’ar'@u,@@cirir—ps—v; @) For
this function we write

{anax @, a@iininin—s; ac'))
%[(8)",,—}— 6N+)\1.H1+V+ 6)\,#1+ 5)\1 ,1'+ 5N+)\,#1+V+ 3)\1-111)
— & .7(5K+)\1.u1+l'+ 5>\'ﬂx+ 5)\1 ,V+ BK+)\‘M1+V+ 6)\1,#1)
= Serngantr (O Ony O, st Oy )
- 6)\'!‘1(6)\1 -v+ 6n+)\vu1+v+ 6>\x ,u1)
— 0N »ﬂ(6~+>\,u1+v+ 8>\1,#1) - 6K+)\,#1+V6>\1,M1]

(<a>‘1TaxTa,,la,a,‘+)\l+)\_,,1_,,; aK’T»' (Al)

This approximation consists in neglecting all terms
where neither A nor 2 is equal to at least one of uy, v,
or k+A+A—ui—v. It is a straightforward generaliza-
tion of our earlier approximation and can be regarded
as a higher-order random-phase approximation. We
have not included in (A1) terms involving three or more
Kronecker deltas, as their occurrence is smaller than
that of the terms retained by a factor of at least N1
which in the limit as N — « leads to their making a
vanishing contribution (compare the discussion in Sec.
IIT; the difference between the situations then and now
is that now terms with two delta functions will make a
nonvanishing contribution because of the occurrence of
at least two annihilation and two creation operators).

If we now consider all the terms which are left in the
sum on the right-hand side of (4.1), once (A1) has been
substituted, we see that a representative term will be
of the form

(B2/2N)X"\ D, x+2A1—u1, 0, kA — w1 —3)

(o artapanaen—p; ac®)).  (A2)

In the Green function in (A2) we now decouple as
follows

{anT o @ araein—m; @)= [{axTar)— o, ]
[on .m(aMTaM)«d# 5 @) (1= 80m)
X <<a)\1Tamax+M—u1; an'1>>]~ (A3)

This leads to an equation for ((an@umun—u; &)
where on the left-hand side we have the term
<<a’)\1Td#1aK+)\1—m; a‘K’T»EE—' em(l) - €K+M—M1(1)+ e)\l(l)] and
on the right-hand side first of all a term (%a8,x/2)
X [ 86,4+ 8x,4, ] which corresponds to the result of the
first-order decoupling procedure of Sec. 2. The remain-
ing terms on the right-hand side are a consequence of
the improved decoupling and contain Green functions
involving two creation and two annihilation operators.
As the first-order decoupling led already to reasonable
results, these extra terms will only contribute relatively
small corrections and it thus seems reasonable to use
the first-order decoupling approximation (3.5) for the
higher-order Green functions occurring in the correction
terms. If that is done we are led to the following
equation for ({an, @ @cini—p; @)

{ant@muin—n; @ NE— € P —ecin— P+ ey, @]
= (5~,~’77L>\1/27T)[5>\1,u1+5~.u1]
+(#/ N)D(g1, +-d1—w1, p1—21, k— 1)
X [ﬁm(l +77Lu1+ﬁr¢+)\1—u1) - ﬁn1ﬁx+)\1vu1]
X <<d,(; ax’T>>7
where we have neglected terms which on substituting

into (4.1) will lead to terms which vanish in the limit
as N — . Substitution of (A4) into (4.1) leads to (4.3).

(A4)

APPENDIX B

In this Appendix we shall briefly study the energy-
shift R, for which we have Eq. (4.7). As we expect R
to be a small correction to &, we may replace its
argument E everywhere by ¢,®. We also remind our-
selves that as we are interested in the influence of the
higher-order decoupling on the 6* term in the mag-
netization and spin-wave specific heat, we can neglect
all terms which will lead to terms of higher order in 6.
From (2.17) we note that the 7, are of order 6%2 so
that to first-order we neglect in (4.4) all terms involving
a product of two spin-wave occupation numbers. We
thus write approximately

D(Q»., X, ?"—"y: K—U)D(kl, K+3"_97 9—3‘7 K—"U)n—)\

: (B1)

R.=(h?/2N?)P iZ

Moreover, we replace in the denominator on the
right-hand side of (B1) the ™ by ¢,®, as the difference
between the two is of relative order 652 [see Eq. (3.9)].
We then get

Ry=(h2/2SN2)P 3 n iaD(\, %, A—u, x—u)
XD(y, x+2—y, d—u,x—y) /

D(U; K+9"_U} K, 3‘) (BZ)

W — e, — e n_, D ®

Comparing (B2) with (3.7) we see that R, is of the
same order in # as Ae, but of higher order in S~%. It
will thus contribute to the * terms in M (B8) and Ciag,
and the neglect of the quadratic terms in the 7, and of
the difference between ¢, and ¢,® is thus justified.
If we rearrange the sums in (B2) for the case of a
simple-cubic lattice, we obtain Oguchi’s result.®
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APPENDIX C

In this Appendix we consider the “damping coeffi-
cient” .. We shall indicate a proof which shows that
it is related to the lifetime 7 of a spin-wave as calculated
by second-order time-dependent perturbation theory
through the equation!!:12
(&Y

Once this relation has been established, we can use
the results obtained from perturbation theory!® which
shows that the contribution from v, to M(8) and Cpmg,
will not arise until the 8%2-term at the earliest, and that
(except for very short wavelength spin waves which
will not be excited in the temperature range in which
we are interested) v, <&R,.

The terms in the sum on the right-hand side of ex-

1t Morkowski [Acta Phys. Polon. 19, 3 (1960)7 has also calcu-
lated 7., but his results are slightly different from ours, due to
slight errors in his numerical factors.

12 For a discussion of the relation between the results obtained
from Green function techniques and perturbation theory see also
D. ter Haar, Kgl. Norske Videnskab. Selskabs, Forh. Skrifter 34,
No. 14 (1961) and D. ter Haar and H. Wergerland, Kgl. Norske
Videnskab. Selskabs, Forh. Skrifter 34, No. 15 (1961).

13 For instance, R. J. Elliott and H. Stern, Report to the Inter-
national Atomic Energy Agency Vienna Symposium on Inelastic
Scattering of Neutrons in Solids and Liguids, Vienna October, 1960
[International Atomic Energy Agency (to be published)] or
%’1 gir)xcus, M. Sparks, and R. C. Lecraw, Phys. Rev. 124, 1015

961).

YeT="h.
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pression (2.9) for H;a‘V represent scattering processes
where two spin-waves of wave-vectors v and dA4u—v
are annihilated and two spin waves of wave vectors &
and u are created. The transition probability for such
a process follows in a straightforward fashion from
ordinary perturbation theory, if we use the well-known
relations for boson operators. The delta function in (4.8)
corresponds—provided we put E=¢? as we may do
in the approximation in which we have been working
throughout (compare the discussion in Appendix B)—
to the energy-conservation law, while A4 (x,A1,u;1) con-
tains both the exchange integrals which occur in Hiq®
and the occupation numbers which arise from the matrix
elements of the a, and ¢,’. We must emphasize, though,
that we have the thermodynamic averages of the 7, in
(4.8) which do not occur in the quantum-mechanical
formula. One can, however, show that this does not
lead to an appreciable error.'t'¢ One obtains finally
(C1) by writing down the transport equation for 7,
using the transition probabilities obtained from pertur-
bation theory, and writing this transport equation in
the form

(dﬁx/dt)scattering= _ﬁx/Tx- (CZ)

14 A. Akhiezer, J. Phys. (U.S.S.R.) 10, 217 (1946); M. 1. Kaga-
nov and V. M. Tsukernik, J. Exptl. Theoret. Phys. (U.S.S.R.)
%4,51;5]10 (1958) [translation: Soviet Phys.—JETP 7, 1107

1958)7.



