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The theory of ferromagnetism developed by Tyablikov for the case of spin-} particles is extended to
higher spin values. The chain of equations for the various Green functions is made finite by a decoupling
which is completely analogous to the one used by Tyablikov and our results reduce to his for the case S=3.
This decoupling procedure seems, however, to be better for larger S values. Explicit expressions are given
for the magnetization for S=4%, 1, 3, 2, 4, and 3 and those expressions are used to obtain series expansions
at temperatures well below the Curie temperature, just below the Curie temperature, and well above the
Curie temperature. The results obtained are compared with those of Dyson for the spin-wave region, with
those of Lax obtained via the spherical model near the Curie point, and with those of the molecular-field
theory at high temperatures. It is interesting to note that we obtain the same Curie temperatures as those
following from the spherical model. The results obtained here seem to be reasonable. In the appendix we
examine critically similar work by Izyumov and Yakovlev and by Kawasaki and Mori.

1. INTRODUCTION

EMPERATURE-dependent Green functions have
recently been applied to several solid-state
problems, often with notable success. We may mention
the work by Schwinger and co-workers!? and by various
Russian groups.3—'® An extensive review of recent work
has been given by Zubarev?® (compare also the survey
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paper by Alekseev?). Bogolyubov and Tyablikov3+*
have applied this technique to the theory of a Heisen-
berg ferromagnet for the case where all spins have
spin & (or rather 4%). It turns out that in the simplest
approximation one can obtain a formula for the mag-
netization which is valid over the whole temperature
range and which is in reasonable agreement with known
results; at low temperatures the result is in good agree-
ment with spinwave results, near the Curie temperature
with the molecular field theory, and at high tempera-
tures with known expansions in inverse powers of the
temperature.” The Curie temperature is obtained from
requiring that on approaching this temperature from
below the spontaneous magnetization vanishes, while
the paramagnetic Curie temperature can be estimated
from the high-temperature susceptibility expansion.

Izyumov and Yakovlev? attempted to extend the
theory to the case of higher spin values. They assumed
that on each lattice site a spin S can be constructed
out of 2S5 ferromagnetic electrons at that site, and that
these electrons are in different orbital quantum states
A, so that they can add up to a total spin S. As one is
now dealing with spin-3 particles, the same technique
can be applied as to the spin-} case. One can object to
their treatment, since they introduce implicity a con-
straint at each lattice site. This should have been done
explicitly by incorporating the mutual interactions of
the 2§ electrons and taking the limit where the inter-
actions are so strong that only the parallel alignment
is possible. The results following from their formulas
can be compared with known results. This is done in
Appendix A; the result of this comparison is that their
theory appears to give reasonable results only in the
case S=4—where it is identical with the Tyablikov
theory, as is to be expected—or in the low-temperature
region.
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Another attempt to extend the Tyablikov theory
has recently been made by Kawasaki and Mori.? So
far, this theory has only been given in outline for the
case of S=1. We discuss it in Appendix B, but at this
point we may mention that we feel that their way of
decoupling is not a very good one, leading to errors of
the relative order of magnitude 7/T¢ (T¢: Curie
temperature). The validity of their results also seems
to be restricted to the low-temperature region.

In the next section we shall, first of all, summarize
those properties of the general spin operators and of the
double-time temperature-dependent Green functions
which we need in the following. In Sec. 3 we apply the
Green function technique to a ferromagnetic system
where on each lattice site there is a spin-S particle
which interacts with its nearest neighbors only. The
interaction is assumed to be of the Heisenberg type.
The equations of motion for the Fourier transform of
the relevant Green functions are solved by a decoupling
procedure similar to the one used by Bogolyubov and
Tyablikov® for the spin-} case. (When S=3, the de-
coupling is the same as theirs.) Once the decoupling
has been performed, one can solve the equations and
obtain an expression for the magnetization. This is
done explicitly for S=4%, 1, 3, 2, §, and 3. In Sec. 4 we
use the expressions obtained in this way to get series
expansions for the magnetization and susceptibility at
low temperatures, just below the Curie temperature,
and at high temperatures. The low-temperature results
are compared with Dyson’s spin-wave results* in Sec. 5
The temperature region just below the Curie point is
discussed in Sec. 6 and the results are compared with
those for spherical model.?® In Sec. 7 we discuss the
high-temperature region and compare our results with
those of the molecular field theory.26

2. PROPERTIES OF SPIN OPERATORS; EQUATIONS
OF MOTION OF GREEN FUNCTIONS

We consider a lattice where on each lattice site, 1,
there is a spin S,. If we write

SiE=S51"£1SY, (2.1)

the components of S; satisfy the basic commutation
relations,

[Sﬁ',Sg_]w: 2h5g251,g, [S ):“:,ng]_.= FhSegEd e
For spin-S spin vectors we have also the relation,

(S1-Sp) = (S1®)24 (S1¥)24- (S1%)?

(2.2)

=3[SHSTHSrSH I+ (S =S(S+D)72,  (2.3)
and from (2.2) and (2.3), it follows that
SSr=%2S(S+1) =4S — (S1?)2 (2.4)

23 K. Kawasaki and H. Mori, Progr. Theoret. Phys. (Kyoto)
25, 1045 (1961).
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25 M. Lax, Phys. Rev. 97, 629 (1955).

26 J, H. Van Vleck, J. Chem. Phys. 9, 85 (1941).
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A generalization of (1.4) is

SO SH) =SS+ D72—n(n—1)%*
—(2n—1)S h— (S*)*J(S)" (S,

from which follows the relation,

(2.5)

(57514 =IT LSSH+Di= 1= ) (= p+ D
—2n—2p+1)aS—(S¥H)%].  (2.6)

We shall also need the following operator equation:
+8

H (Sz_rh):())

r=—38

(2.7

where 7 takes on integral or half-odd-integral values
according to whether S is integral or half-odd-integral.
We also need the following commutator relation:

LS+, (S)»(SH)» 1]
=[2nhS *+ 12 (n2—n) J(Sy)» (S )
=[204S "+ #2(n*—n)]

n—1

XL [S(S+1)= (1= p=1) (= )1
— @n—2p—DAS i~ (S1)?]. (2.8)

In the following, we shall use the double-time tem-
perature-dependent Green functions. Their properties
have been discussed at great length by Zubarev?® to
whom we refer for details.” Here, we shall only write
down those relations which we need for our present
discussion. If {(4; B)) denotes the Fourier transform
of the Green function involving the operators 4 and
B, (({4; B)) will thus be a function of E), it satisfies
the equation of motion,?

E(A; B)y=(1/2m)[4,B1)+([4,H]1-; B)), (2.9)

where the double angular brackets ((---)) indicate
Fourier transforms of the Green functions, and where
the single angular brackets (- - -) indicate averages over
a canonical ensemble,

(F)="Tre 82F /TrefH, (2.10)

with 8=1/ksT (kp=Boltzmann’s constant; I'=abso-
lute temperature) and H the Hamiltonian of the system
considered. From the analytical properties of the Green
functions, it follows that the correlation function
(B(t")A(t)) can be obtained from the equation

(B(A @)
. /+°° {45 BY) p=pwric— (A5 B)p=no—ie

=lim ¢

e—>+0 eﬂhm_ 1

—00

Xemwt=dw. (2.11)

27 See also: W. E. Parry and R. E. Turner, Ann. Phys. 17, 301
(1962).

28 See Egs. (2.17) and (3.106) of reference 19 or Eq. (7) of
I?]. ter Haar, Kgl. Norske Videnskab. Selskab, Forh. Skrifter 34,
77 (1961).
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3. THE HEISENBERG FERROMAGNET

The Hamiltonian of our system is given by the
equation

H=—(gusB/%) 2¢ S¢—2gm I (f—m)(S¢-Sw);  (3.1)
where B is the applied field which we assume to be
along the 4z direction, up is the Bohr magneton, g the
Landé g factor, f and m number the lattice sites, and
I(f—m) is the exchange integral corresponding to the
interaction between the spins on lattice sites f and m.
For the sake of simplicity we assume

I(f—m)=1,

If—m)=0,

Later on we need the correlation functions

CSrOILSHO1m
and we shall therefore study the Green’s functions
{Sgt; (S)™(S1H)» 1)), where # is a positive integer.
The equation of motion of this Green’s function is,
according to (2.9),
E((Se*; (ST)™(SH)™)

= (1/2m){[Ser, (S)(SH) "]
+(LSet,H]-; (SO)SH™),  (3.3)

and if we use (2.8) and the expression (3.1) for H, we get
E((Set; (ST)(SiH))

if f and m are nearest neighbors, 32)
otherwise. )

sooner or later we need to decouple the equations of
motion. The philosophy and justification of the de-
coupling procedure is still far from being well under-
stood®, but we shall introduce a decoupling which in
the S=% case reduces to the one used by Bogolyubov
and Tyablikov®:

{(SexStt; (S)(SH™ )
=(Se2)((StF; (ST)(SH)" D),

This assumes that we may neglect the correlations
between S+ on one lattice site and 5% on another lattice
site. If we introduce the decoupling (3.5) into (3.4), we
are left only with Green’s functions of the same struc-
ture as the one we are trying to find. We note, by the
way, that because of the translational invariance of
the lattice, all averages are independent of the lattice
site index occurring within the (---). Also because of
translational invariance we can Fourier transform our
Green’s functions with respect to the reciprocal lattice:

((Se™; (SO™SH™ )= (1/N) Lk Gx(E)e'®-&D,
G(E)=(1/N) e 21 {(Set; (ST)™(SH)" )

(kg1
Xe i(k- & )7

f#g. (3.5

(3.6)

where the first summation is over all wave vectors
within the first Brillouin zone, and N is the total
number of spins in the lattice.

As 8g; can be written as

dg1=(1/N) X eitx57D, (3.7)
0
=Eg—l([2nh5ﬁ—l—ﬁ2(n2—n)] we get from (3.4), (3.5), and (3.6)
™
n— 1
><111 [S(SH+1) 72— (n—p—1) (n—p) 52 [E_g#BB]Gk(E)=Z*<[2nhsz+h2(”2—”)]
p=1 m
n—1
— (2n—=2p— 1Sy —(Sr)*]) XTI [72S(S+1)— (n—p—1) (n— p) 72
p=1
+gusB{Sg"; (S (SH)»
gusB((Se™; (ST)*(SH)*™) — (n—2p— 1) hS*— (597])
IR T LSS 5653 FASHLT () =T (W)IGu(E), (3.8)
(SOMSH™ ). (34)  where R )
= —f)piC-g—£
We note that (3.4) involves higher order Green’s ) =2e I (g—Dete®. (3.9)
functions—a common feature in this technique—and From (3.8) we get for Gx(E) the equation
n—1
(L2nnS*+i2(n*—n)] 11 [#S(S+1)— (n—p—1) (n—p) i~ (2n—2p—1)S*— (5%)2])
p=1
Gu(E)= . (3.10
(E) o (BB (3.10)
where® i l: 1 1 :I
im -
Ex®=gupB+2ASHWLI0)—T (k)]  (3.11) ePLE—E®+ie E—E®—ic
=—2mis(E—E®), (3.12)

From (3.10), (2.11), and the identity

30 Compare: R. Brout and H. Haken, Bull. Am. Phys. Soc. 5,
148 (1960); F. Englert, Phys. Rev. Letters 5, 102 (1960).

we get

# D. ter Haar, W. E. Parry, and R. E. Turner (unpublished).
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(SP)MSH)™ = ([2nhS*+ 72 (n2—n)]

XTI TS (S+1)— 72 (n—p—1) (n—p)

p=1

— (2n—=2p—1)2S*— (S D2 (S),

®(S)=(1/N) L (ebE=S—1)1, (3.14)

If we use (2.6), we get both on the left- and right-
hand sides of (3.13) a sum of averages of powers of S
We can then write down 2S independent, simultaneous
linear equations in {(S%), ((S?)?), - - -, {(S*)?5), by putting
7 in (3.13) equal to 1, 2, ---, 2S, consecutively. The
equations with #>2S are not independent of the earlier
ones, because of (2.7).

For S=% we get one equation

(S=STy={@n2—1S"— (S*)%)=(215)2(3), (3.15)
and from (2.7)

(3.13)
where

so that
(SHs=3=30/[1+22(3) ],

which is, of course, identical with Tyablikov’s result.*
For S=1 we have

(3.17)

Qr—hS*— (S2)H=2(aS)®(1), (3.18)

<_, 6h3SZ_I_h2 (SZ)2+4h (Sz)3+ (Sz)4>
= (47467352 — 672 (S22 — 4% (S?)3)® (1), (3.19)
(S%)3—S*#2=0, (3.20)

from which it follows that
14-28(1)
{(SHs1=H . (3.21)
1438 (1)4-3[®(1) ]2

The results for higher values of .S are obtained in a

(S#)2=4%2, (3.16)  similar fashion, and we get
$+50(3)+5[a(3) "
EP ML i A R (3.22)
[1+e@) —-[2(3)]
24+98(2)+-15[®(2) ]P+10[P(2) P
(S?) g2 =1 , (3.23)
[1+2(2)F—-[2(2)
63 35
%—l-14@(%)+?[@(%)]2+35[‘1>(%)]3+—2—[<1’ Gy
<SZ>S=%=ﬁ ) (324)
[1+e@)—[2(@)]°
34208 (3)4-56[@(3) JP+84[@(3) P+70[P(3) *+28[®(3) ]°
(S?s—3=1 . (3.25)
[1+23)T—-[23)T
4. SERIES EXPANSIONS FOR THE ®(S) bee, J (k)
In this section we consider various series expansions =J(0) cos(3k.a) cos(3k4a) cos(3k.a), (4.5)
of ®(S) which we shall use in subsequent sections to fee, J(k)
obtain expansions for the magnetization which can be " 1 17 1
compared with expansions obtained by other means. =37 (0)[cos(3%a) cos(3%ya)+cos(} yaz
Let us first consider the low-temperature region for the Xcos(3k.a)+cos(3k.a) cos(3k.0)], (4.6)

case where B=0. We introduce a dimensionless reduced
temperature 7 by the equation

=BT (0)72. @.1)
We have then from (3.11) and (3.14)
1 2n(k)(S?) —
0=y x (5] e
where
7(k)=1-J(k)/J (0). (4.3)

We consider only crystals with cubic symmetry. For
these lattices we can write for J(k):

simple cubic (sc), J(k)

=17 (0)[cos(k.a)+cos(kya)+cos(k.a)], (4.4)

where the nearest-neighbor distance is taken to be ua
with u given by the equation

u2= 6/3’ (4‘.7)
with z the coordination number [sc: 2=6; bcc, 2=38;
fcc, 2=12).

The sum in (4.2) is over the first Brillouin zone, but

at low temperatures we may replace it by an integral
over the whole of k space and write

? 27 T 0
B(S)=—r / d / singdg / Edk
2x)3 Jo 0 0

2rn(E){.S?
XE‘”‘"['L;,)(“)]’ 48)

T
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kBTc> kBTc)

S Cs —Ds 7l Jours #*I ) Brown and Luttinger
3 1978 1.078 1.978 1.93

1 2.119 1.262 5.276 5.36

2 2128 1.278 9.892 10.63

2 2.099 1.253 15.83 17.46

2 2.063 1.222 23.08 25.81

3 2.029 1.063 31.65 35.74

where we have expanded the denominator in (4.2),
and where y and 6 are polar angles, and v is the volume
per site:

sc, v=a’; bcc, v=3a*; fcc, v=2%d% (4.9)

As only small values of & will appreciably contribute
to ®(S) we expand 5(k) in powers of £ and on inte-
grating we obtain a power series in ascending powers of

7 (our notation is similar to Dyson’s®):

3hr \" 3 \*
ool (25
47 1(S?) 4r1(S?)
3hr \"?
oo )+ @10
47v(S?)
where
a0=¢(3/2), a1=3%mv(5/2), ax=nwr?(7/2), (4.11)
sc, v=1; bcc, »=3223; fcc, y=21, (4.12)
sc, w=33/32; bcc, w=281/288; (4.13)

fce, w=15/16,

and where ¢ () is the Riemann zeta function.

The next temperature range to be considered is that
just below the Curie temperature, where (S%)/%7 tends
to zero. If we rewrite (4.2) in the form

14-28(S)= (1/N) X coth[n(k)(S?)/77],
we get

1
14-28(S)=—2_
N x

(4.14)

[ i n(9(S9)
n(k)(S?)  3hr

O

We now must restrict our integration over k to the
first Brillouin zone. Using (4.4) to (4.6), we find
F(2)=(z+1)/3, F(3)=(2+3)/3,

F()=1, (4.16)

where

Fn)=Q1/N) X [n(k)]". (4.17)

TAHIR-KHELI AND D.
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The sums F(—1) are known®! and we have

sc, F(—1)=1.51638; bcc, F(—1)=1.39320;
fee, F(—1)=1.34466.
Finally, we consider the high-temperature region,
where we expand in terms of 77, or rather in terms of
i1 given by the equation

t1="tanh (n(k){(S?)/%7).

We must now consider the case where B0, as other-
wise (S%=0. Introducing a quantity # by the relation

to=tanh (3BgusB), (4.20)

we can write the equation which is the analogy of
(4.14) for the B5%0 case in the form

(4.18)

(4.19)

1 1-+toty
142B(S)=— 3
N x f+H
1 1 b t1 "
2_2?[1+(1—t°2) > (—W(T) } (4.21)
k /o r=1 0

Expanding the hyperbolic tangent ¢, and using (4.16),
we now get from (4.21)

[@(S)],>>1=1[1_@+fﬂ<<53>>2+0( ! )] (4.22)

2&) htoT 2z ﬁtoT T3

5. THE LOW-TEMPERATURE REGION

From (4.10) we see that when 7<<1, ®(S) will be
small, and we can thus expand (3.17), (3.21) to (3.25)
in powers of ®(S) and thus, of 7. We get

(89 s—1=0{3—2(F)+2[2(G) P+HO([2(Z) )}, (.1)
(8952 1=1{S—2(S)+0([2(5) P)}. (5.2)

This leads to the following expansions in 7 for (5%):

1 37\%2 37 \%/2
(Sz>,g=%= ﬁl:—--— a()(’—“) - dl(““)
2 2wy 2my
37\7? 37\?
)
2wy 2wy
37\*
—4aoa1<—~)——---], (5.3)
27y
37 \%2 37 \%/2
—a
47rVS) 1(47FSV)
37 \"? 3 37 \*
ML
47 Sy 28 47 Sy

4 37 \*
EWEL NN
S 47 Sy

31 G. N. Watson, Quart. J. Math. 10, 266 (1939); M. Tikson,
J. Research Natl. Bur. Standards 50, 177 (1953).

(Ss31= h[S—ao(
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These results should be compared with the ones
obtained by Dyson.2*® It turns out that the terms
proportional to 7° 782 72 and 772 are the same as
those given by Dyson, but he does not have a term in
78 and the coefficient of his 7¢ term is different from
ours. This difference can be traced back for S>1 to
the fact that the E® given by (3.11) are not the
correct spin-wave energies. We shall return to this
point in paper II of the present series of papers, but at
this point only mention that (3.11) leads to an ex-
pression of the type [[compare (5.3)]

Ey®=q4Bri04 - -,

while the correct spin-wave energies should be of the
form?®

(5.5)

E®=atyrlp ..., (5.6)

In the case S=4% there is, apart from the 73 term
arising from the wrong spin-wave energies, also a 73
contribution arising from the term 2[®(3) ]2 in (5.1).
This term is due to the limitations of the decoupling
procedure (3.5). We shall return to this point also in a
later part of this series of papers.

6. TEMPERATURES JUST BELOW THE
CURIE TEMPERATURE

Just below the Curie temperature ®(S) is large
compared to unity [see (4.15)7], anditis thus convenient
to expand (S?) in inverse powers of ®(S). We note first
of all that it follows from (3.13) and (2.6) that the
expansion of (S?) in inverse powers of & starts as follows

(§9=S8(S+1/32(S)+0([2(5]?), (6.1

and as [®(S)]! is proportional to (S?), the Curie
temperature is that temperature for which

3 (SHS)=S(S+1), (59)=0, (6.2)
or from (4.15) and (4.17)
To=0¢/F(—1), (6.3)

where the molecular-field Curie temperature ®¢ satis-
fies the equation?®:3

k3@c=25(S+1)J(0). (6.4)

The Curie temperature of (6.3) is exactly the one
obtained in the spherical model.?

One can now expand in powers of 7¢—7, where 7¢
is given by the equation [compare (4.1)]

re=ksTc/J(0)7% (6.5)

Writing
o=(S?)/hS, (6.6)

# See also, T. Oguchi, Phys. Rev. 117, 117 (1960); F. Keffer
and R. Loudon, J. Appl. Phys. 32, 2S (1961).

3 R. Brout and F. Englert, Bull. Am. Phys. Soc. 6, 55 (1961);
see also Paper II of this series of papers, R. A. Tahir-Kheli and
D. ter Haar, Phys. Rev. 127, 95 (1962).

3¢ D. ter Haar and M. E. Lines, Phil. Trans. Roy. Soc. (London)
254, 521 (1962).
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TasLE II. The body-centered cubic lattice.

/_eB_TE) kBTc)

S Cs —Ds #I Jours '\ #*[ /Brown and Luttinger
3 2153 1.328 2.871 2.39

1 2229 1.397 7.656 7.82

2 2197 1.332 14.36 15.42

2 2145 1.298 22.97 25.17

5 2096 1.251 33.50 37.10

3 2053 1.235 45.94 51.19

we find up to terms quadratic in 7¢—7
2=Cs(1—7/70)+Ds(1—1/7c)?, (6.7)

where the coefficients Cs and Dg depend both on the
value of .S and on the crystal structure of the lattice.
In Tables I, II, and IIT we have given the values of
Cs, Ds, ksTc/I# following from (6.3), (6.4), (3.9),
and (3.2), and the value of k3Tc/T#? which Brown and
Luttinger®® imply to be their best value, namely, the
value obtained from the Kramers-Opechowski method?
by finding the temperature where the inverse suscepti-
bility vanishes. Table I refers to the simple cubic
lattice, and Tables IT and IIT to the body-centered and
face-centered cubic lattices, respectively.

One notices from the data in these tables, first of all,
that the values of Cg and Dg are nearly independent
of both S and the crystal structure. Secondly, one
notices that apart from the case S=%, our Curie tem-
peratures lie below those of Brown and Luttinger. The
true Curie temperatures may well lie somewhere
between our and their values except in the S=1% case,
where our theory seems to be rather less reliable than
for higher S-values.

7. THE HIGH-TEMPERATURE REGION

At temperatures above the Curie temperature we
must consider the case where there is a nonvanishing
magnetic field present. We shall derive an expression
for the susceptibility in zero field. We derived in Sec. 4
a series expansion in inverse powers of 7 for ®(S) and
we can use this expansion to find (S? and thus the
susceptibility x per atom. We note from (4.21) and
(4.20) that in the limit as B— 0 and §— 0, &(S)>>1
so that we can use an expansion similar to the one used

TasBLE III. The face-centered cubic lattice.

kBTc) kBTc)

S Cs —Dsg I Jours #*I ) Brown and Luttinger
i 2231 1.508 4.462 4.24

1 2275 1476 11.90 12.74

2 2225 1.392 22.31 24.67

2 2164 1.320 35.70 40.00

5 2109 1.265 52.06 58.74

3 2.062 1.298 71.39 80.89

3 H. A. Brown and J. M. Luttinger, Phys. Rev. 100, 685 (1955).
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in the preceding section. Up to terms of order T3, we

find
7))} o

gus®S(S+ I)I:
3ksT
We note that apart from the factor (z—1)/z in the
third term within the square brackets, (7.1) up to
terms of order T is identical with the molecular-field
result, the Curie-Weiss law,?°

gus?S(S+1)
3ks(T—Oc)

X=

mol.f=

(7.2)

The result (7.1) is also nearly the same as the exact
result given by Brown and Luttinger.?
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APPENDIX
A. The Theory of Izyumov and Yakovlev

In the introduction we have referred to recent work
by Izyumov and Yakovlev? who also extended
Tyablikov’s theory to the case of S>%, and we voiced
misapprehensions about their basic assumptions. In
this appendix we shall show how their basic equations
lead to results which, in the case S>3, are rather poor.

Their Eq. (26) for (S%) can be written in our nota-
tion as follows

A Ol S
= exp(gBu
se s s e

+28(SHHT(0))— 1T (A1)

At temperatures well below the Curie temperature
(A1) reduces for the case B=0 to

(§=1{S—2(S)+S7[2() P+O0([2(S) )}, (A2)

which must be compared with (5.1) and (5.2). Their
result is reasonably satisfactory in this temperature
range, as can be seen from a comparison with Dyson’s
results. We must note that (A2) is identical with (5.1)
for S=%: Izyumov and Yakovlev’s results reduce to
those of Tyabhkov and thus also to ours for the case

At temperatures just below the Curie temperature
(A1) reduces for B=0 to

S tR(=1)+@s—1)]
3mSr 28 (s
9032h473( . S) (83)

AND D. TER HAAR

which leads to a Curie temperature given by the
relation

ksTc
In?

3 252
CF(—1)+(25—1)

(A4)

which differs from (6.3) by a factor (S+1)[F(—1)
+(25—1)]/3SF(—1) which is equal to 1.1 for S=1
and a simple cubic lattice, and equal to 2.1 for =3
and a face-centered cubic lattice. As our estimates for
T are likely to be too low, their result is clearly worse
than ours.

The worst results are, however, obtained at high
temperatures. We now consider the case where B0,
and must expand the last term on the right-hand side
of (A1) as well as ®(S). The result for the suscepti-
bility turns out to be

SgPup
2kpT

[1+ >+ (25— )£—2+ } (AS)

X=

which does not even give the correct expression as
T — o, except for the S=3% case. As was to be expected,
their approximation breaks completely down at high
temperatures.

B. The Theory of Kawasaki and Mori

In a recent paper Kawasaki and Mori*® have very
briefly reported on an extension of Tyablikov’s method
to the case S=1. They state that they have also studied
higher spin-values, but it is not immediately clear from
their paper how this can be done. They seem to neglect
the difference between (SmtSg=Sg?) and (SmtSg*Sg),
where m and g are neighboring lattice sites. From (2.2)
it follows that they neglect terms of the order of
(SwtSg™) which at low temperatures are of the order
S—(5)2 or %2, We should thus again expect their
result to be reasonable-in the spin-wave region. At
temperatures just below T'c one can again estimate the
order of magnitude of (SutSg™) and we find a term of
order 7/r¢c which is not small in that temperature
region. Finally, in the high temperature region we have
used their Eq. (23) to evaluate the susceptibility and

we find
2%’ 16
X o/ | D
3ksT 27r
while the correct expression for S=1 is
2¢%us
X= I:H- +O(1/1-2)} (B2)
3ksT 37

We believe that the reason for their relatively poor
results lies in their decoupling procedure.



