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with the results of some previous investigators. Esti-
mates of the uncertainty for N=3, 4, and even 5 are
very difficult to make, as (Z —s&~&) in these cases is less
than unity. For the higher E, the values may be as
much as 1 eV too low because of the large, negative,
inaccurate o.4& ' values. '4 The perturbation procedure is
quite unsuited for the investigation of negative iops, so
it is unfortunate, as Edlen remarks, ' that probably the
only practicable extrapolation procedure in this con-
nection is an isoelectronic one.

'4The situation is aggravated by the fact that summing the
perturbation series through fourth order resulted, for all Ã, in a
further arithmetic loss of significant figures due to the positive
and negative terms nearly cancelling.

The data of Johnson and Rohrlich, when account is
taken of their ud hoc multiplicative factor, and the data
of Edlen both fall within the limits set above, as they
must, since the present method of estimation furnishes
the maximum information permitted from the available
ionization energies.
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Electron spin resonance studies of trapped nitrogen atoms show that the matrix interaction increases the
hyperfine splitting by some 10 to 20% of the free atom value of 10.45 Mc/sec. A similar increase in the
hyperfine splitting is produced by buffer gases used in optical spin-polarization studies of nitrogen atoms.
These effects can be accounted for by van der Waals interactions between the trapped atom and the matrix
or buffer gas particles. These interactions introduce (2s) (2p)' excited states into the nitrogen wave function.
Since the 2p shell of the 4S nitrogen atom already contains three electrons with the same spin, only that 2s
electron with opposite spin can be excited. This increases the unpaired electron density at the nucleus. An
approximate calculation of this effect, carried out using perturbation theory, is in qualitative agreement
with the experimental results. The magnitude of the effect is proportional to the polarizability of the matrix
or buffer gas particle, so that the hyperfine splitting increases with the size of the perturbing species.

INTRODUCTION
' ~LECTRON spin resonance (ESR) studies of nitro-

- ~ gen atoms trapped at liquid helium temperature
in inert gas matrices' ' have shown that the interaction
of the nitrogen atom with its surroundings increases
the nitrogen hyperfine splitting (hfs) constant by some
10 to 20% of the free atom value of 10.45 Mc/sec. '
More recently, a spin-exchange optical polarization
method has been used to determine the pressure shifts
of the nitrogen hyperfine splitting in various buffer
gases. ' The results of these two experiments are in
qualitative agreement.

* A preliminary account of this work was given at the March,
1961 meeting of the American Physical Society in Monterey,
California.

t This work supported by Bureau of Naval Weapons, Depart-
ment of the Navy, under NOrd 7386.
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Effects of this type have been observed previously
for hydrogen atoms and for alkali atoms in both inert
solids5 and in the gas phase. The matrix and pressure
shifts in nitrogen are, however, somewhat different from
the shifts found for hydrogen and the alkali atoms, as
might be expected from the difference in atomic struc-
ture between the two types of atoms. Specifically, the
matrix and pressure shifts always increase the nitrogen
hyperfine splitting, while the hydrogen and alkali atom
shifts are sometimes positive and sometimes negative.

In this paper we shall make an approximate calcula-
tion of the matrix and pressure shifts of the nitrogen
hyperfine splitting following an earlier treatment of the
hydrogen atom. ' In the hydrogen atom the matrix
perturbation was assumed to be a combination of van
der Waals and exchange forces. It was found that the

5 S. N. Foner, E. L. Cochran, V. A. Bowers and C. K. Jen,I. Chem. Phys. 32, 963 (1960).
6 C. K. Jen, V. A. Bowers, E. L. Cochran, and S. N. Foner,

Phys. Rev. 126, 1749 (1962).
7 L. W. Anderson, F. M. Pipkin and J. C. Baird, Jr., Phys. Rev,

Letters 4, 69 (1960).
F. J. Adrian, J. Chem. Phys. 32, 972 (1960).
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former tended to decrease the hydrogen atom hyperfine
splitting, while the latter tended to increase the split-
ting. The competition between these two effects ac-
counted for the occurrence of both positive and negative
shifts in the hfs constant, and also explained the fact
that heavy buffer gases (e.g. , argon) with a large
van der Waals interaction produced negative shifts,
while light buffer gases (e.g. , helium and neon) gave
positive shifts. In the nitrogen atom qualitative argu-
ments indicate that the exchange forces make only a
minor contribution to the hfs shift, and van der Waals
interactions are found to increase the hyperfine split-
ting for this atom. Thus, the hfs constant of the per-
turbed nitrogen atom is expected to be greater than the
free atom value.

THEORY

As mentioned in the introduction we shall assume
that the interaction between the nitrogen atom and a
spherical nonpolar matrix or buffer gas particle may be
described as the combination of an exchange interaction
and a van der Waals interaction. The exchange or
Pauli exclusion forces restrain two electrons of the
same spin from occupying the same region of space.
Thus, the general tendency of the exchange forces is to
cause the wave functions of the interacting species to
contract so as to reduce the overlap of the interacting
charge clouds. In the case of the hydrogen and alkali
atoms where the unpaired electron is in an s orbital
this contraction increases the charge density at the
nucleus with a consequent increase in the hyperfine
splitting.

In the nitrogen atom the situation is difIerent be-
cause the unpaired electrons are in p orbitals. When
the nitrogen atom is symmetrically surrounded by the
matrix particles as in a solid, the exchange forces will
contract the p orbitals in a symmetric fashion so that
their charge density at the nitrogen nucleus remains
zero. In the gas phase where the net perturbation of the
nitrogen atom is the average of a number of individual
collisions it is possible to have an unsymmetrical ex-
change perturbation of the p orbitals which will
admix a small amount of s-state in the form of nitrogen
3s, 4s orbitals, etc. with the 2p orbital. However, this
effect is expected to be smaller than the contribution
of the relatively long-range van der Waals forces which
can both excite the 2p electrons into higher s orbitals
and also produce excitation of the closed shell 2s
electrons, i.e., (2s)'(2p)'~ (2s)(2p)'. In such excited
states only that 2s electron whose spin is opposite
to that of the 2p electrons can be excited, so that a net
hole is created in the 2s shell. Since the 2s electron has a
much higher charge density at the nitrogen nucleus
than do the outer s electrons this excitation is the domi-
nant source of the change in the nitrogen hyperfine
splitting. The exchange forces which are of shorter
range than the van der Waals forces will have a con-

siderably smaller effect on the inner 2s shell of the
nitrogen atom. For these reasons we shall consider only
the effect of the van der Waals forces on the nitrogen
hfs splitting.

Thus, we assume that a nitrogen atom interacting
with a matrix particle 3f is subject to a perturbation
K' where

~v++hfs.

Here, X,y is the van der Waals interaction, "

e2

Kv= ——p p(2sN„s~, xN„—x~„yN„y—jr,), (2)
E.

where E. is the separation between the interacting par-
ticles, s», x», and y» are the coordinates of the p, th
electron of the N atom measured from the nitrogen
nucleus and s~„,x~„,and y~„are the coordinates of
the vth electron of the matrix particle measured from
the centroid of the charge distribution of M. The s
coordinates are taken along the axis of the interacting
species. The term BCh&, is the spherically symmetric or
contact term in the hyperfine interaction of the nitrogen
electrons with the nitrogen nucleus. It is given by the
expression of the form"

Khfs= 3 Qp 5(rNp)SNp ' IN) (3)

where 3 is a constant which depends on the magnetic
moment of the nucleus, IN is the spin of the nucleus,
and sN„ is the spin of the pth nitrogen electron. The
dipolar part of the hyperfine interaction will vanish
both in a solid where the nitrogen atom is symmetrically
surrounded by matrix particles and in a gas where the
net effect is the average over collisions having all pos-
sible orientations.

For the case of a solid where the N atom interacts
with a number of matrix particles it will be assumed
that the net change in the hyperhne splitting will be
the sum of the shifts produced by the individual matrix
particles. This assumption actually requires some ex-
planation since we have earlier assumed that the net
effect of the exclusion forces was not simply additive
when it was stated that the exclusion forces between
an N atom and a symmetric array of matrix particles
would distort the nitrogen p orbitals but would not
alter their symmetry. Had we treated the hfs shift
produced by the exclusion force between the X atom
and each matrix particle separately and then added the
results a net hfs shift would have resulted. This dis-
tinction arises because to a first approximation the
exchange forces are regarded as arising from the forbid-
den overlap of the averaged charge clouds of each atom so
that the net perturbing force experienced by the N

' J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, Molecular
Theory of Gases and Liquids (John Wiley 8z Sons, Inc., New York,
1954), p. 923.

M A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London)
A205, 135 (1951).
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electrons will be the sum of the contributions from the
individual matrix particles. This net perturbation will

by symmetric for an N atom symmetrically surrounded

by matrix particles, and the resultant distortion of the
nitrogen p orbitals will not cause them to acquire any
s character. The van der Waals forces, on the other
hand, are the result of a correlation between the motions
of the nitrogen electrons and the electrons of the matrix
particles which leads to a force of attraction between
the instantaneous dipole moments of the interacting
particles. For the case of an N atom interacting with a
number of matrix particles, and assuming that the van
der Waals interactions between the matrix particles are
su%ciently small that there is no correlation between
the motion of the electrons on the different matrix
particles, then the electrons of each matrix particle can
separately correlate their motion with the motions of
the electrons of the nitrogen atom so as to maximize
the interaction between the instantaneous dipole mo-
ment of the N atom and the instantaneous dipole
moment of that matrix particle. Under these conditions
the van der Waals interaction with each matrix particle
is independent of the other matrix particles and the
effect of a number of such matrix particles is simply
additive. This discussion is only approximate, of course,
because the separation of the interaction into an exclu-
sion force between the averaged electron clouds and
van der Waals forces due to the correlation between
electron motions is somewhat artificial in the region
where both effects are important. It is felt, however,
that this approximation is satisfactory in a qualitative
treatment of the problem.

In order to calculate the shift in the nitrogen hyper-
6ne splitting due to the van der Waals interaction we
shall calculate those terms in the energy due to the
perturbation K' which are linear in Khf, , The first
order term is just the hfs splitting of the free N atom.
It is readily shown that all second order terms vanish,
that is

(NoMo
I
Xv

I
N,Ms) (N;M~ I

BCsi
I
NoVo) =0 (4)

where No and N; are the ground and ith excited states
of the N atom, and Mo and 3II; are corresponding quan-
tities for the matrix particle 3f. Thus, the first con-
tribution to the hfs shift will come from third order
terms in the perturbation energy, ' namely,

(oo
I
~ Iij) (ijl &

I xi) (ui se
I
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Wo=g' Q'
(&oo—K;) (&oo—&oi)

(ool~lui)(xilscloo)—(ool3CI00) Q' . (5)
(Eoo—%i)'

Here, the symbol (ij IX
I
kl) is an abbreviation for the

quantity (N,M;IBCINi, Mi). The primes on the sum-
mation signs indicate that the ground state NO%0 is
omitted from the summation.

In order to get the change in the hyperfine splitting
energy AEz&, we select out of lV3 those terms which are
linear in BCi,g,. Omitting vanishing terms such as
(00

I
Kv

I
00) gives the relation
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It will turn out that the last term in Eq. (6) is con-
siderably smaller than the first two terms and may be
neglected. (For a complete discussion of this term, see
the Appendix. ) Thus, we shall evaluate only the first
two terms in Eq. (6).

In the present semiquantitative treatment we shall
estimate the sums over the various excited states by the
customary process of replacing the energy denominators
by appropriate average excitation energies. The choice
of the average excitation energies will naturally depend
on the nature of the excited states which contribute to
the hfs shift so we turn our attention to this question.
For the first term in Eq. (6) we note the following:

1. If the matrix element (ktlKQf Ioo) is to be non-
vanishing, then / must be the ground state of the matrix
particle, and state k must be either a (2s) (2p)'(es) or a
(2s)'(2p)'(?is) configuration of the nitrogen atom. How-
ever, states of the form (2s)'(2p)'(es) cannot be reached
in second order from the (2s)'(2p)' ground state by
the van der Waals perturbation which introduces ex-
cited states according to the selection rules

BCvs ~ P and XvP —+ s, or d.

Thus, state k has the configuration (2s) (2p)'(?is).
2. There will be a net contribution to ABh&, only if

the final state k is reached through an intermediate
state i which makes the excitation of the 2s electrons
spin dependent. This requirement restricts the inter-
mediate state i to be either (2s) (2p)' or (2s)'(2p)'(ns).
The intermediate state (2s) (2p)' requires that the
spin of the excited 2s electron be opposite to the spins
of the 2p electrons, while the intermediate state
(2s)'(2p)'(es) requires that the subsequent excitation
involve that 2s electron having the same spin as the
2p electrons. Thus, it would appear that the contribu-
tions to AEhf from these two intermediate states would
cancel each other. Closer inspection shows, however,
that reversing the order in which the 2s and 2p elec-
trons are excited to reach the (2s) (2p)'(es) final state
corresponds to a permutation of the coordinates of the
two excited electrons. The permutation of two electrons
produces a reversal of sign so that the two intermediate
states effectively yield the same 6nal state. The selep-
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tion of the average energy for the intermediate states
is simplified by the fact that these two states have
nearly the same energy. "For simplicity we assume that
the two excitation energies are equal and have the
value denoted by EN.

From these considerations we obtain the following
average excitation energies for the first term in Eq. (6):

&oo K,= I—-'a+I"-Er, &oo—&Ei= 2J'-N.

Here, E,& is the average excitation energy of the matrix
particle which may be set equal to the ionization energy
(with negative sign) for the rare gas atoms. Using the
same considerations for the second term in Eq. (6)
gives the following estimates of the average excitation
energies appropriate to this sum:

&oo &=&oo—E~o= &N—+&Er.

By introducing the average excitation energies the
erst two terms of Eq. (6) may be summed by matrix
multiplication. Note that the sum over k in the first
term must be completed by the inclusion of the term
corresponding to the ground state of the nitrogen atom.
This quantity, while not strictly zero is, however, of the
same order of magnitude as the third term in Eq. (6)
which is shown to be negligible in the Appendix. The
result of the summation is

1
~Lhfs +

&N (&N+&~) -(&N+&Er)'-

where it is to be noted that Khf, and Ky commute.
We introduce Eqs. (2) and (3) for Kv and BCi,f„

respectively, and simplify by noting the following
points. Mixed terms such as s~„x~„vanish upon
integrating over the coordinates of the matrix particle,
and for a spherically symmetric matrix particle a term
involving the s coordinates of the electrons makes the
same contribution as the corresponding terms in the
x and y coordinates. This gives the following equation
for ~~hfs

matrix particle e~f which is given by the expression '

2e
~M= — p (0j!sÃvsM, ~0)

~M "~"

This leads to the relation

3e 1 1 AgIo!~
AEhi, ,———3— +-

&o ~''N I-"-'N+ I'-'Er I'"N+ I''Er

(0
~
sN„sN„8(rN, )SN„ IN

~
0). (12)

P~P ~P

The simplest way to evaluate this last expression is
to consider the ESR experiment where the electron and
nuclear spins are quantized independently along an
external magnetic field, and to evaluate the matrix
element for the state where Mq=S= ~."For this case
the ground-state wave function is

Po=(5!):deters (1)sp(2)x (3)y (4)s (5) ~) (13)

where s is the nitrogen 2s orbital, x, y, and s denote the
nitrogen 2p orbitals oriented along the indicated direc-
tions, and n and P denote the parallel and antiparallel
electron spin orientations. In evaluating the matrix
element with the above wave function it may be noted
that the determinantal form is essential because the
only nonvanishing terms involve exchange of the s
and s orbitals. This is to be expected from the earlier
discussion which showed that the action of the van der
Waals forces in influencing the hyperfine splitting
involved excitation of the 2s electrons into the 2p
shell, a process which was spin dependent because the
2p shell was half filled. Upon computing this matrix
element and noting that in a strong magnetic field the
hyperfine splitting energy is given by the expression

Ehfs —A N3f

+MAL~

one gets the following expression for the change in the
hfs splitting constant of N":

2e' 1 1 B~n~
QQN14= —— +

E EN Ex+Ear)EN+Ear

AEh fs A
1 -6e4

EN (EN+Eor) (E-N+&Er)' ~o- X(sisis) AN o,. (15)

X Z (o~sN, sN '~(rN ")sN„"'iN~0)

X Q (0~ sor,sor„~0). (10)
v, v'

In the present treatment it is not only likely to be more
accurate, but is inherently desirable to relate as many
of the theoretical terms as possible to experimental
quantities. Thus, we introduce the polarizability of the

» R. F. Bacher and S. Goudsmit, Atomic Energy States (Mc-
Graw-Hill Book Company, Inc., ¹wYork, 1932), p. 293.

Here ANI42, is the hyperfine splitting constant for a 2s
electron of N", and (s~s~s) is the matrix element of
the operator s evaluated between the nitrogen 2s and
2ps orbitals.

'~ H. Eyring, J. Walter, and G. K. Kimball, Quantum Chemistry
(John Wiley 8z Sons, Inc. , New York, 1944), p. 121.

"The shift in the hyper6ne splitting constant will naturally be
the same with or without an applied magnetic 6eld. The hyperfine
splitting can be calculated for the case of zero magnetic field using
the usual methods of the theory of angular momentum operators.
See, for example, E. U. Condon and G. H. Shortley, The Theory
of Atomic Spectra (Cambridge University Press, New York, 1951),
Chap. 3.
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The following values will be used for the nitrogen
atom parameters appearing in Eq. (15). Using the
Hartree atomic orbitals of nitrogen" it was found that
(s~s~s) =0.607aps and AN~4s, ——1510 Mc/sec. The aver-
age excitation energy of the nitrogen atom E& was
taken to be the energy required to excite a 2s electron
into the 2p shell. This gave EN = —0.402e'/ap. "

RESULTS AND DISCUSSION

N Atoms in a Solid Matrix

We shall use the present theory along with the experi-
mental results for the shift in the nitrogen hyperfine
splitting to estimate the separation of the trapped N
atom from the nearest neighbor matrix atoms. This
value can be compared with the value predicted from
the crystal structure of the host matrix for different
possible sites which the trapped atom may occupy.

The inert gases neon, argon, etc. crystallize in a face-
centered cubic structure. "At liquid helium temperature
nitrogen also crystallizes in a face-centered cubic
structure. " In a face-centered cubic lattice there are
three possible trapping sites: (1) substitutional site;
(2) octahedral site, and (3) tetrahedral site. ' The num-
ber of nearest neighbor matrix atoms for the substitu-
tional, octahedral, and tetrahedral sites are 12, 6, and
4, respectively.

In Table I we have calculated for each type of site
the nearest-neighbor distance E„ywhich when used in
Eq. (15) gives the observed shift in the nitrogen hyper-
fine splitting. This value is compared with the observed
nearest-neighbor distance for the various possible sites
in the perfect crystal. From these results it is clear that
the best agreement between the calculated and observed
separations is obtained when the N atom is trapped
substitutionally, and that a nitrogen atom trapped in
either of the interstitial sites would experience a much
larger hfs shift than is observed unless there was a
marked outward distortion of the lattice. Thus, it is
very likely that the nitrogen atoms are trapped sub-
stitutionally in these matrices. This conclusion is in
agreement with the results obtained for hydrogen
atoms in these matrices, which indicated that when the
hydrogen atoms were produced in the gas phase by
electric discharge and frozen out along with the matrix
gas that all the hydrogen atoms entered the matrix
substitutionally. Only when the hydrogen atoms were
produced in the matrix at 4.2 K by the photolytic dis-
sociation of HI did one get additional ESR lines which
were interpreted as due to interstitially trapped H
atoms. ' Since all the nitrogen atom results are based on
deposition from the gas phase, it is very unlikely that

"D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A193, 299 (1948)."E.R. Dobbs and G. O. Jones, Reports on Progress in Physics
(The Physical Society, London, 1957), Vol. 20, p. 560.

"M. Rnhemann, 7.. Physik 76, 368 (1932).

TABLE 1. Comparison of the nearest-neighbor distance (R„&)
required to give the observed shift in the nitrogen hyper6ne
splitting with the corresponding distance (R,b, ) in the perfect
crystal. The calculation is made for nitrogen atoms trapped in
the substitutional site and two interstitial sites of the host crystal.

Matrix

Ar

DAN'4
(Mc/sec)

1.00'

2.15'

1.63'

Site

Subs.
Oct.
Tet, .
Subs.
Oct.
Tet.
Subs.
Oct.
Tet.

R„l(aP)

7.08
6.31
5.90
7.84
6.98
6.53
8.32
7,41
6.93

R.b. (ap)

5.81"
4.11
3.56
7.09'5
5.01
4.34
7.57"
5.36
4.63

any of the nitrogen atoms would enter interstitial sites
if the smaller hydrogen atoms were unable to do so.

(aAN) =p aAN(R) exp[ U(R)/hr Jd—&. (16)

Here, U(R) is the interaction energy between a nitro-
gen atom and a buffer gas particle and p is the density
of buffer gas particles.

In order to estimate the integral in Eq. (16), we
represent U(R) by a Lennard-Jones 6—12 potential, "

U(R) =4eL(a/R)" —(a/R)'3. (1~)

The parameter o- is a measure of the collision diameter
of the interacting particles and e is the maximum energy
of attraction or depth of the potential well. The collision
diameter o- is the sum of the collision radii of the inter-
acting particles, that is

a=s&N+s&sr. (18)

The collision radii of the buffer gases are known from
such properties as their virial coefficients" and ~o-N

will be estimated from an empirical rule due to Pauling":

—',&rN ——R (covalent single bond)+1. 5ap—2.9ctp.

"Reference 9, p. 32."Reference 9, pp. 162 and 1110.
rP L. Pauling, The Nature of the Chemical Baud (Cornell Uni-

versity Press, Ithaca, New York, 1960), 3rd ed. , p. 263.

Nitrogen Atoms in Buffer Gases

A nitrogen atom in the presence of a buffer gas will
experience collisions with the buffer gas particles which
will change the nitrogen hfs constant. Unless the buffer
gas pressure is extremely low the net shift will be the
average over all types of collisions. This average over
collisions which is essentially a time average may,
according to the usual procedures of statistical me-
chanics, be replaced by an ensemble average which
gives us the following equation for the average hfs
shift (DAN):
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TABLE II. The maximum energy of attraction e between a
nitrogen atom and various buffer gas molecules.

Gas

He
Ne
Ar
N2

5.35
5.51
6.12
6.41

&v (e'/oo)

—'/. 93/R'—14.6/Rs—54.8/R'
—59.5/R'

4/k (deg K)

26.7
41.2
82.3
67.7

Our estimate of e is very rough and is obtained by
computing the van der tA"aals interaction energy E&
as described in the Appendix and using the relation

~v = —«(o/R) s (19)

Fortunately it will turn out that the results are only
slightly dependent on the value of e. Using the formula
for Ey given in the Appendix the values of e were com-

puted for the various buffer gases. These results are
given in Table II.

Using Eq. (15) for AN and Eq. (17) for U(R) in

Eq. (16) gives

discrepancy between theory and experiment. For one
thing the average excitation energy of the nitrogen
atom EN was chosen to correspond to one of the lowest
excited states, namely the (2s)(2p)' state, because of
the key role that this state played in producing spin
unpairing in the 2s shell. However, higher excited states
are also present in the excited wave function and a
detailed analysis of their contribution would probably
result in the choice of a larger value for EN. This would
reduce the calculated value of the nitrogen hyperfine
splitting. Another factor is the use of Hartree-Fock
wave functions for the ground state of the nitrogen
atom. Since the Hartree-Fock method neglects correla-
tion between the electrons, except for correlation due
to the exclusion principle, it tends to give wave func-
tions which are somewhat too diffuse. As a result matrix
elements such as (s~s~s) which appears in Eq. (15)
may be somewhat too large. This also would overesti-
mate the shift in the nitrogen hyperfine splitting.

0.75

4z pCgg 4 1
r ' exp ————— dr (20).

0 3 T* r" r'

14s

0.70' - *l(T*) = I exp—
J j. T"
O

0.65-

't~t~~ gg
~12' g6 .

TABLE III. Effect of various buffer gases on the nitrogen hyper-
Gne splitting constant. Results are in cycles/sec mm Hg for a
bulb 61led at room temperature.

Gas (+AN44)theor44 (hA N44), „4'

Here, DAN(R) has been written as Calf/R' where C,rv
is a constant depending only on the matrix gas, r =R/o.
and T*=kT/e. The integral in Eq. (20) which we de-
note as I(T*) can be evaluated for the values of T*
encountered here by a method described by Hirsch-
felder et al." This method expands the exponential
term in r in a power series to obtain a series expansion
for I(T*). The results of this integration are given in

Fig. 1. For a bulb temperature of 343'K and the values
of e/k given in Table II the function I(T*) varies only
from 0.50 to 0.46 in going from helium to argon. Thus,
the results will be quite insensitive to the exact value
chosen for e. It also follows that the hfs shift will be very
insensitive to fluctuations in temperature.

The results for the pressure shifts in various buRer

gases are given in Table III. Comparison with the
experimental values shows that the calculated results
are of the right order of magnitude, but are consistently
too high by a factor of 2 to 3. The calculation contains
several approximations which may contribute to the

4.44

4.44,

0.45
1.0 2.5 5.0 10

f '4

25 50 100

FIG. 1. Integral giving the dependence of the shift in the
nitrogen hyperQne splitting constant on temperature and on the
maximum energy of attraction (s) between the nitrogen atom and
the buffer gas particle. Here T*=kT/e, and for convenience a
logarithmic scale is used for the abscissa.

The results for nitrogen atoms in solid matrices also
suggest that the computed results are high by a factor
of two since the computed nearest-neighbor distances
are somewhat greater than the nearest neighbor dis-
tances in the host crystal. Reduction of the computed
hyperfine splitting shift by a factor of two would reduce
the calculated nearest neighbor distance in Table I by
a factor of (2)'~s, and they would then be in close agree-
ment with the nearest neighbor distances E,b, of the
perfect crystals. Thus, the present theory gives good
correlation between the results obtained for nitrogen
atoms trapped in solids and in buGer gases.

He
Ne
Ar
N2

See reference 4.

Reference 9, p. 163.

1.1
1.8
5.0
4.8

0.32
0.57
1.93
2.40

CONCLUSIONS

It appears that the shift in the nitrogen hyperfine
splitting produced by the interaction of the nitrogen
atom with a host matrix or a buQ'er gas is largely the
result of van der Kaals interactions. The effect of the
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van der Waals forces is chiefly to introduce (2s)(2p)'
excited states into the nitrogen wave function. Since
the 2p shell of the '5 nitrogen atom already contains
three electrons of the same spin only that 2s electron
with the opposite spin can be excited. This creates a
positive spin density at the nucleus, which increases
the already positive free-atom hyperfine splitting con-
stant. The magnitude of the effect depends linearly on
the polarizability of the perturbing species so that the
shift tends to increase as one goes to larger more
polarizable atoms and molecules.

A similar but larger eftect could be produced by the
electric field of a polar molecule. Moreover, this mecha-
nism can produce changes in the hyperfine splitting
constants of nitrogen nuclei in x-electron free radicals
just as it did for the free nitrogen atom. Thus, one
might expect relatively large variations in the hfs
splitting constants of nitrogen nuclei for free radicals
in highly polarizable or polar solvents.
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If we replace the energy denominators by average
energies for the excited states of the nitrogen atom
(EN) and the matrix particle (E~), use Kq. (11) for
the polarizability of the matrix particle, and sum over
the excited states of the nitrogen atom by matrix multi-
plication, we obtain the result

—3e' n~E~
2 (0lsN"N'lo).

EN+E3f &&

(A3)

Using the Hartree orbitals of nitrogen'4 and the wave
funct. ion of Eq. (13) it was found that P„„(0

~
sN„sN„~0)

=2.792, so that

where we have used Eq. (2) for the van der Waals
Hamiltonian. Now a given excited state (ij) can be
reached by only one of the operators s»s~„,x»x~,
or y»y~„. If the matrix particle is spherically sym-
metric, then all three operators will be equally effective
so that
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APPENDIX

In this section we shall estimate the van der Waals
interaction energy between a nitrogen atom and a
matrix particle, and incidentally obtain an estimate
of the third term in Eq. (6) which was claimed to be
negligible.

Second-order perturbation theory gives the following
formula for the van der Waals energy

e4

Ev=—P' Z Z (Eoo—E,,) '
R & 2 9 j

X (00I »N.&~ —».&~.—yN. y~. I'j)

X(~j~2sN„sw;—»„~~,—yN„yjr„~00), (A1)

EN+EM

Here EN was assigned the value —0.40e'/ao and E~
was taken to be the ionization energy (with negative
sign) of the matrix particle. The van der Waals inter-
action energies of the nitrogen atom with various matrix
particles are given in Table II.

We can now estimate the third term in Eq. (6) by
using the average energy approximation for the energy
denominator. This term is of the order of magnitude
ANEv/(EN+E~), where AN ——10.45 Mc/sec is the hfs
splitting of the free nitrogen atom. ' In argon, EN+EM
=—0.98e'/ap and Ev= —54.8/R', so that the contribu-
tion of this term to the hfs shift is 584/R'. This is
negligible in comparison to the contribution of the first
two terms in Eq. (6) which produce a hfs shift of
42 100/R'.


